用户名: 密码: 验证码:
人工免疫系统的若干关键问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人工免疫系统是受自然免疫原理启发而建立的计算模型,由阴性选择算法、克隆选择算法与免疫网络三部分构成。阴性选择算法模拟T细胞精确的自体/异体识别能力,并成功应用于异常检测问题,但是该算法生成的检测系统存在漏洞且计算代价高,影响实际应用。克隆选择算法则模拟了自然免疫系统在应对外界攻击时的免疫响应过程,并将响应过程中表现出的免疫特征应用到高维全局优化问题,但在优化过程中,克隆选择算法表现出早熟收敛、全局搜索能力不足的问题。免疫网络模拟了自然免疫系统,但该模型中存在大量的参数、非常不成熟,导致实际应用价值不高。
     本论文研究了阴性选择算法与克隆选择算法中存在的几个关键问题,研究成果及主要创新如下:
     (1)为降低阴性选择算法的时间复杂度,提出了一种应用种子个体连续位刺激变异的检测器生成策略。首先随机生成种子检测器集合,根据其与自体的亲和度选定变异个体和变异片段;其次在被选个体的特定基因片段发生刺激-应答变异,产生新的候选检测器个体;最后应用r位连续匹配准则筛选候选个体生成新的检测器。该策略的特点在于利用种子个体和自体集合的模式信息指导变异过程,降低候选检测器与自体的匹配成功率。实验表明,在保持高检测率的同时,种子检测器变异算法比穷举算法、个体随机变异算法和检测器连续胞体超变异算法的生成效率更高。
     (2)提出层次匹配算法用以降低阴性选择算法的时间复杂度。首先从理论上证明了层次匹配算法的有效性,其次依据r位连续匹配准则将自体集合分解为多个模式子集合以获得构成检测器的组件,最后通过二叉树接合组件得到检测器集合;层次匹配算法充分利用自体模式以提高搜索成功率、缩短生成时间;实验结果表明,在同样的实验环境下层次匹配算法比传统算法和位变异算法有更好的性能。
     (3)针对阴性选择算法生成的异常检测系统存在大量漏洞,提出了一种能够探测系统全部漏洞的非检测模式漏洞探测算法(EHANDP)。首先指出了目前检测系统漏洞探测算法(EHASP)的不完备性;然后利用问题空间中的串模式证明了空间中个体成为漏洞的充分必要条件,并提出探测系统漏洞的完备性算法EHANDP;能够找出给定系统的全部漏洞是该算法的主要特点。实验中采用随机数据集和人工数据集比较了两种漏洞探测算法。实验结果表明,EHANDP算法不仅与EHASP有相同的计算复杂度,而且有更强的探测能力。
     (4)为了克服免疫算法在优化高维多峰函数时存在的早熟收敛问题,提出一种高效的混合免疫进化算法。动态克隆扩张、基于存档机制的超变异和多母体交叉是该算法的主要特点。同时提出了一种算法性能评价准则,以比较不同算法在优化高维函数时的性能。在实验部分,首先使用经典测试函数测试了混合免疫进化算法的性能,然后分别在不同的评估次数下比较了自适应差分进化、基本免疫算法和混合免疫进化算法。实验结果表明免疫进化算法在求解精度、稳定性等方面均明显优于前两种算法。
     (5)针对免疫算法在全局优化过程中多样性不足的问题,提出一种新型的免疫进化算法。提出的α-随机克隆扩张和多受体随机编辑算子是该算法的主要特色,同时引入改进的超变异算子以加强个体的学习能力。在实验环节中,首先通过优化经典的经典测试函数确定了进化群体大小和克隆扩张比;其次,根据算法性能评估准则,比较了免疫进化算法、快速克隆算法和Opt-IMMALG算法,结果表明免疫进化算法明显优于另外两种算法。
Artificial immune system, inspired by natural immune principle, is a new computational model, and it contains three computational models:negative selection algorithm, clonal selection algorithm, and immune network. Negative selection algorithm simulates T-cell's abilities of identifying self and non-self accurately, and is applied to generate abnormal detection systems. But systems exists holes so that some non-self individuals are not detected. On the other hand, the computational complexity of generating abnormal detection systems is high. The above aspects of negative selection algorithm affect its applications in real world. The second computational model is clonal selection algorithm. The algorithm simulates the process of immune response triggered when natural immune system is attacked by external entities. Clonal selection algorithm is employed to global high-dimensional optimization problems. However, the algorithm demonstrates premature convergence and insufficient of diversity information. The next computational model is immune network, which tries to simulate the whole natural immune network. The model which contains many control parameters and few attention is focused on it.
     In the paper, some problems coming from negative selection algorithm and clonal selection algorithm are studied. Main contributions and innovations of the dissertation are shown as follows.
     (1) A new detector generation strategy, based on seed individuals and contiguous somatic simulating mutation, was proposed to reduce the time complexity of negative selection algorithm (NSA). Firstly, the strategy produced seed detectors, and determined the special detectors and gene segment by measuring the affinity between seed set and self set; Then a stimulated-response mutation (SRM) occurred in a special gene fragment to obtain the newly candidate individuals; Finally the new competent detectors were selected according to r-contiguous bits matching rule. The characteristic of the algorithm is the pattern information used to guide the mutation process for reducing the matching rate of candidate individuals. The experimental results show that the algorithm outperforms several similar algorithms based on mutation operator in term of time complexity and coverage.
     (2)Hierarchy Match Strategy (HMS) is proposed to decrease the computational cost of negative selection algorithm. The foundation of HMS is proved in theoretical firstly. Then HMS constructs the components of detector set through dividing the self set into several pattern subsets according to r-contiguous bit match rule. Lastly Detector set is obtained by using binary tree combing components. Using the self pattern information in generating process is the novelty of the algorithm, and which is the difference between the conventional generation strategies. The experimental result shows that HMS improves the performance in term of both detective rate and time complexity under the same experimental environment.
     (3) A novel exploring holes algorithm based on non-detector pattern (short for EHANDP) was proposed for holes existing in anomaly detection system generated by negative selection algorithm. Incompleteness of current exploring holes algorithm grounded on self pattern (short for EHASP) was point out. And then the sufficient and necessary condition for individuals to be holes was proven using the string patterns in problem space, what is more, an exploring holes algorithm named EHANDP was proposed. The capability of finding all holes of a given detection system is EHANDP's main feature. The above two algorithms are compared using random dataset and artificial dataset, and the results shows that EHANDP algorithm outperforms than EHASP in the term of exploring capability although they have the same computational complexity.
     (4) In order to overcome the premature of immune algorithm when solving high dimensional multimodal functions, an efficient hybrid immune evolutionary algorithm is proposed. The main characteristics of the novel hybrid algorithm are dynamic clonal selection, archive-based hypermutation and multi-parentic crossing operators. In addition, a novel performance evaluation criterion for comparing different algorithms is constructed in the paper. In experimental study, firstly the performance of proposed HIEA is validated using several classical test functions; next HIEA is compared with self-adaptive differential evolution (SaDE) and simple immune algorithm (SIA) under certain amount of function evaluations, the experimental results show that the performance of proposed HIEA is significant better than that of SaDE and SIA in term of the accuracy and stability.
     (5) In order to increase the diversity of immune algorithm when solving high dimensional global optimization problems, a novel immune evolutionary algorithm (IEA) is proposed. The main characteristics of IEA are clonal expansion and multiple-parent random receptor editor operators. In addition, a modified hypermutation operator is introduced to improve the learning ability of individuals. In the experimental study, firstly several typical test functions are used to determine the population size and the ratio of clonal expansion. Next, the IEA is compared with fast clonal algorithm (FCA) and Opt-IMMALG, and the experimental results of the IEA are significantly better than that of FCA and Opt-IMMALG in terms of the performance evaluation criterion proposed.
引文
[1]张冠玉.免疫学基础及病原生物学(第3版).成都:四川科学技术出版社,1999
    [2]王重庆.分子免疫学基础.北京:北京大学出版社,1999
    [3]焦李成,杜海峰,刘芳,公茂果.免疫优化计算学习与识别.北京:科学出版社,2006
    [4]刘俊达.科学广播:免疫知识漫谈.北京:科学普及出版社,1980
    [5]林学颜,张玲.现代细胞与分子免疫学,重庆:重庆大学出版社,1999
    [6]Burnet F.M.. The clonal selection theory of acquired immunity, Vanderbilt University Press 1959.
    [7]吴敏毓,刘恭植.医学免疫学.合肥:中国科学技术大学出版社,1999
    [8]漆安慎,杜婵英.免疫的非线性模型.上海:上海科技教育出版社,1998
    [9]Farmer J.D., Packard N. H., Perelson A. S.. The immune system, adaptation, and machine learning. Physica D,1986,22:187-204.
    [10]Segel L.A., Perelson, A.S.. Computations in shape space:A new approach to Immune network theory. In Theoretical Immunology, Part Two, SFI Studies in the Sciences of Complexity, A.S.Perelson, ed.Addison-Wesley, Reading, MA,1988:321-343.
    [11]Sawyer W.. The persistence of yellow fever immunity. Journal of Prevent Medicine, 1931,5:413-428.
    [12]De Castro L.N., Von Zuben F.J.. Artificial immne sytems:Part I basic theory and applications. Technical Report DCA-RT,2000.
    [13]Ahmed R., Sprent J.. Immunological Memory. The Immunologist,1999,7(1-2):23-26.
    [14]Ayara M., Timmis J., De Lemos, R., et al.. Negative selection:How to generate detectors. In Timmis, J. and Bentley, P. J., editors, Proceedings of the 1st International Conference on Artificial Immune Systems (ICARIS) University ofKent at Canterbury.2002,1:89-98.
    [15]Balachandran S., Dasgupta D., Nino F., et al.. A framework for evolving multi-shaped detectors in negative selection. In Proceedings of IEEE Symposium Series on Computational Intelligence, Honolulu. IEEE Press.2007:1-15.
    [16]Ceong, H. T., Kim, Y.I., Lee, D.,et al.. Complementary dual detectors for effective classification. In J. Timmis, P. Bentley, and E. Hart (Eds), Proceedings of Second International Conference on Artificial Immune System (ICARIS 2003),2003:242-248. Springer-Verlag.
    [17]Dasgupta, D.. An overview of artificial immune systems and their applications. In Dasgupta, D., editor, Artificial Immune System and Their Applications, pages 3-23. Springer-Verlag.
    [18]Dasgupta, D. Forrest, S.. An anomaly detection algorithm inspired by the immune system. In Dasgupta, D., editor, Artificial Immune System and Their Applications, Springer-Verlag.1999:262-277.
    [19]Dasgupta, D. Gonz'alez, F. An immunity-based technique to characterize intrusion in computer networks. IEEE Transactions on Evolutionary Computation,2002,6(3): 1081-1088.
    [20]D'haeseleer, P.. An immunological approach to change detection:Theoretical results. In Proceedings of the 9th IEEE Computer Security Foundations Workshop, IEEE Computer Society Press.1996,18-27.
    [21]D'haeseleer P., Forrest S., Helman P. An immunological approach to change detection: Algorithms, analysis, and implications.In Proceedings of the 1996 IEEE Symposium on Computer Security and Privacy, IEEE Computer Society Press.1996,110-119.
    [22]Esponda F., Ackley E. S., Forrest S., et al.. Online negative databases.In G. Nicosia, V. cutello, P. J.Bentley, and J. Timmis (Eds), Proceedings of Third International Conference on Artificial Immune Systems (ICARIS 2004), Springer-Verlag.2004, 175-188.
    [23]Esponda F., Forrest S., Helman P.. The crossover closure and partial match detection (a). In J. Timmis, P. Bentley, and E. Hart (Eds), Proceedings of Second International Conference on Artificial Immune System (ICARIS 2003), Edinburgh, UK. Napier University. Springer.2003,249-260.
    [24]Esponda F., Forrest S., Helman P.. A formal framework for positive and negative detection schemes (b), IEEE Systems, Man, and Cybernetics Society.2003,357-373.
    [25]Garrett S. M.. How do we evaluate artificial immune systems? Evolutionary Computation,2005,13(2):145-178.
    [26]Cutello V., Nicosia G., The clonal selection principle for in silico and in vitro computing. In Recent Developments in Biologically Inspired Computing, L.N. de Castro and F. J. von Zuben, Eds. Hershey, PA:Idea Group Publishing,2004.104-146.
    [27]Fukuda T., Mori K., Tsukiyama M.. Parallel search for multimodal function optimization with diversity and learning of immune algorithm, In Artif. Immune Syst. Their Appl., D. Dasgupta, Ed. Berlin, Germany:Springer-Verlag,1999,210-219.
    [28]De Castro L.N., Von. Zuben F. J.. Learning and optimization using the clonal selection principle, IEEE Trans. Evol. Comput.,2002,6:239-251.
    [29]Cutello V., Narzisi G., Nicosia G., A multi-objective evolutionary approach to the protein structure prediction problem, J. Royal So. Interface,2006,3(6):139-151
    [30]Nicosia G.. Immune algorithms for optimization and protein structure prediction, Ph.D. dissertation, Dept. Math. Comput. Sci., Univ. Catania, Catania, Italy,2004.
    [31]Cutello V., Nicosia G.. An immunological approach to combinatorial optimization problems, in Proc.8th Ibero-American Conf. Artif.Intell., Seville, Spain,2002, 361-370.
    [32]Cutello V., Nicosia G., Pavone M.. A hybrid immune algorithm with information gain for the graph coloring problem, in Proc. LNCS on Genetic and Evol. Comput. Conf., Chicago, IL,2003,171-182.
    [33]Cutello V., Nicosia G., Pavone M.. Exploring the capability of immune algorithms:A characterization of hypermutation operators, in Proc.3rd Int. Conf. Artif. Immune Syst., G. Nicosia, V. Cutello, P. Bentley, and J. Timmis, Eds., Catania, Italy,2004, 263-276.
    [34]Nicosia G., Castiglione F., Motta S.. Pattern recognition by primary and secondary response of an artificial immune system, Theory in Biosciences,2001,120(2):93-106.
    [35]Dasgupta D., Cao Y., Yang C.. An immunogenetic approach to spectra recognition, in Proc. Int. Conf. Genetic and Evol. Comput. Conf, Orlando, FL, Jul.1999,149-155.
    [36]Branco P. J. C., Dente, J. A., Mendes, R. V.. Using immunology principle for fault detection. IEEE Transactions on Industrial Electronics,2003,50(2):362-373.
    [37]Dasgupta, D., KrishnaKumar, K., Wong D.et al.. Negative selection algorithm for aircraft fault detection. In G. Nicosia et al. (Eds), Proceedings of Third International Conference on Artificial Immune Systems (ICARIS 2004), Springer-Verlag 2004,1-13.
    [38]Bradley D., Tyrrell A. M., Hardware fault tolerance:An immunological solution, in Proc. IEEE Int. Conf. Syst., Man, Cybern., Nashville, TN,2000,107-112.
    [39]Forrest S, Hofmeyr S A, Somayaji A.. Computer immunology. Communications of the ACM,1997,40(10):88-96.
    [40]靳蕃,范俊波,谭永东.神经网络与神经计算机原理应用.成都:西南交通大学出版社,1991.
    [41]Forrest S, Perelson A. S, AIL L, et al.. Self-nonself discrimination in a computer. In: Process of IEEE Symposium on Research in Security and Privacy, Oakland, CA:IEEE Press,1994.202-212.
    [42]Zhou J., Dasgupta D.. Revisiting negative selection algorithm. Evolutionary Computation,2007,15(2):223-251.
    [43]Gonz'alez F., Dasgupta D., Kozma, R.. Combining negative selection and classification techniques for anomaly detection. In Congress on Evolutionary Computation (CEC 2002), Hawaii. IEEE Press,2002,261-272.
    [44]Lee D. W.. Sim, K. B.. Negative selection for DNA sequence classification. In Proceedings of Joint 2nd International Conference on Soft Computing and Intelligent Systems and 5th International Symposium on Advanced Intelligent Systems (SCIS & ISIS 2004), Yokohama, Japan.2004,157-179.
    [45]Freitas A. A., Timmis J.. Revisiting the foundation of artificial immune systems:A problem-oriented perspective. In J. Timmis, P. Bentley, and E. Hart (Eds), Proceedings of Second International Conference on Artificial Immune System (ICARIS 2003), Springer-Verlag.2003,249-260.
    [46]Kim J., Bentley P.J.. Negative Selection:How to Generate Detectors. In Proceedings of the 1st International Conference on Artificial Immune Systems (ICARIS),Canterbury UK,2002,89-98.
    [47]D'haeseleer P, Forrest S, Helman P. An immunological approach to change detection: algorithm, analysis and implications. In:Proc of the IEEE Symposium on Security and Privacy, IEEE Computer Society Press, Los Alamitos, CA,1996,110-119.
    [48]Freitas A. A., Timmis J.. Revisiting the Foundations of Artificial Immune Systems for Data Mining IEEE Transactions on Evolutionary,2007,11(4):521-540.
    [49]郭振河,谭营,刘政凯.基于负选择原则的Non-self探测器生成算法,小型微型计算机系统.2005 26(6):959-964.
    [50]何申,罗文坚,王煦法.一种检测器长度可变的非选择算法,软件学报,200718(6):1361-1368.
    [51]张衡,吴礼发,张毓森等.一种r可变负选择算法及其仿真分析,计算机学报,2005,28(1):1614-1619.
    [52]罗文坚,曹先彬,王询法等.检测器自适应生成算法研究,自动化学报,2005,31(6):907-916.
    [53]De Castro L N, Von Zuben F J. Artificial immune system:Part I:basic theory and application. School of Electrical and Computer Engineering, State University of Campinas, Campinas-SR, Brazil:Technical Report RT2DCA 01,1999.
    [54]Nitesh K., Anoop P.b, Ravi S., et al.. Fast clonal algorithm Engineering Applications of Artificial Intelligence 2008 21 106-128.
    [55]Dasgupta D., Gonzalez F.. An immunity-based technique to characterize intrusions in computer networks. IEEE Transaction On Evolutionary Computation 2002.6 (3).281-291.
    [56]De Castro L N, Von Zuben F J. Clonal selection algo rithm with engineering applications. In:Proc GECCO'00, Las Vegas, Nevada, USA,2000.36-37.
    [57]Cutello V., Nicosia G.. Multiple learning using immune algorithms. In:Fourth International Conference on Recent Advances in Soft Computing, Nottingham, UK. 2002a,231-245.
    [58]De Castro, L.N., Zuben, F.J.V.,. aiNet:an artificial immune network for data analysis. In:Abbas, H.A., Sarker, R.A., Newton, C.S. (Eds.),Data Mining:A Heuristic Approach,2002.231-259.
    [59]Cutello V., Nicosia G. Povene, M.. Real coded clonal selection algorithm for unconstrained global optimization using a hybrid inversely proportional hypermutation operator. In:SAC'06, Dijon, France.2006,23-27.
    [60]Muller S.D., Marchetto J., Airaghi S., et al.. Optimization based on bacterial chemotaxis. IEEE Transaction on.Evolutionary Computation,2002,6:16-29.
    [61]Eiben, A.E., Schoenauer, M.. Evolutionary computing. Information Processing Letters, 2002,82:1-6.
    [62]Jerne N.K.. Towards a network theory of the immune system. Ann. Immunol. (Inst. Pasteur),1974,373-389.
    [63]De Castro L N, Von Zuben F J.. An evolutionary immune network for data clustering. In:Proc 6th Brazilian Symposium on Neural Networks, Rio de Janeiro, Brazil,2000. 84-89.
    [64]Tang Z, Yamaguchi T, Tash ima K et al.. Multiple-valued immune network model and its simulations. In:Proc 27th International Symposium on Multiple-Valued Logic, Antigonish, Nova Scotia, Canada,1997.519-524.
    [65]Timmis J, Neal M, Hunt J. Artificial immune system for data analysis. Biosystems, 2000,55 (1-3):143-150.
    [66]Timmis J., Neal M.. A resource limited artificial immune system for data analysis. Knowledge Based System s,2001,14 (3-4):121-130.
    [67]Ishiguro A., Shirai Y., Kondo T.. Immunoid:An architecture for behavior arbitration based on the immune networks. In:P roc IEEE RSJ International Conference on Intelligent Robots and Systems, Osaka, Japan,1996.1730-1738.
    [68]Ishiguro A, Kubo Shiki S, Ichikawa S.. Gait coordination of hexapod walking robots using mutual-coupled immune networks. In:Proc IEEE International Conference on Evolutionary Computation, Perth, Australia,1995.672-677.
    [69]Ishiguro A, Watanabe Y, Kondo T., et al.. Decentralized consensus making mechanism s based on immune system:Application to behavior arbitration of an autonomous mobile robot. In:Proc IEEE International Conference on Evolutionary Computation, Nagoya Japan,1996.82-87.
    [70]Jerne N. Towards a network theory of the immune system. Annual Immunology,1974, 125C:373-389.
    [71]Varela F J, Coutinho A.. Second generation immune networks. Immunology Today, 1991,12 (5):159-166.
    [72]Galeano Juan Carlos, Veloza2Suan Angelica, Gonzalez F A. A comparative analysis of artificial immune network models. Proceedings of the 2005 Conference on Genetic and Evolutionary Computation. Washingdon D C:ACM,2005:12-22.
    [73]Timmis J. Artificial immune system:a novel data analysis technique inspired by the immune network theory. Aberystwyth:Department of Computer Science, University of Wales,2000:16-53.
    [74]De Castro L N, Von Zuben F J. An immunological approach to initialize centers of radial basis function neural networks. Proceedings of the 5 th Brazilian Conference on Neural Networks. Rio de Janerio:[s. n.],2001:79-84.
    [75]Payne S J,Arrd H P, Hunt S V, et al. Automated classification and analysis of the calcium response of single T lymphocytes using a neural network app roach. IEEE Transation on Neural Networks,2005,16 (7):949-958.
    [76]De Castro L.N., Timmis J.. Artificial immune system as a novel soft computing paradigm. Soft Computing-A Fusion of Foundations, Methodologies and Applications 2003,7(8):526-544.
    [77]Balachandran S., Dasgupta D., Nino F., et al.. A framework for evolving multi-shaped detectors in negative selection, in Proceedings of the First IEEE Symposium on Foundations of Computational Intelligence (FOCI), Honolulu, Hawaii, USA,2007, 1-15
    [78]Kim G. H., Spafford E. H.. The design and implementation of tripwire:a file system integrity checker. Technical Report CSD-TR-93-071, Purdue University, Dept. of Computer Sciences, Purdue University, West Lafayette,1994,18-29.
    [79]Kelsey.J, Timmis.J. Immune Inspired Somatic contiguous Hypermutation for Function Optimization. Springer-Verlag Berlin Heidelberg, GECCO 2003, LNCS 2723.2003, 207-218.
    [80]Timmis J., Edmonds C., Kelsey J.. Assessing the Performance of Two Immune Inspired Algorithms and a Hybrid Genetic Algorithm for Function Optimisation. In Proceedings of the Congress on Evolutionary Computation, Potland, Oregon. USA., IEEE.2004,1:1044-1051
    [81]D'haeseleer P. An immunological approach to change detection:Theoretical Results. In Proceedings of the 9th IEEE Computer Security Foundations Workshop. IEEE Computer Society Press 1996:132-143.
    [82]Stibor T, Mohr P, Timmis J. Is negative selection appropriate for anomaly detection. GECCO'05, Washington, DC, USA.2005,321-328.
    [83]龙振洲.医学免疫学[M].北京:人民卫生出版社,1995.
    [84]Hofmeyr S A. An immunological model of distributed detection and it s application to computer security [D]. Albuquerque:University of New Mexico,1999.
    [85]马文萍,焦李成,张向荣,李阳阳.基于量子克隆优化的SAR图像分类.电子学报2007,35(12):2241-2247.
    [86]刘芳,潘晓英.基于免疫克隆选择的块匹配运动估计,软件学报.2007,18,(4):850-860.
    [87]李阳阳,焦李成.量子克隆多播路由算法.软件学报.2007,18(9):2063-2069.
    [88]庄键,王娜,杜海峰,苟世宁,贾茂林,王孙安.一种模糊人工免疫网络故障诊断策略.自然科学进展.2007,17,1544-1554.
    [89]陶海红,于江,王洪洋,廖桂生.基于IGA-ML的星载天线抗干扰技术.中国科学E辑信息科学2005,35(2):124-134.
    [90]王磊,潘进,焦李成.免疫规划,计算机学报,2000,23(8):806-812.
    [91]Gong M. G., Jiao L. C, Du H. F.,et al. Multi-objective Immune Algorithm with Nondominated Neighbor-based Selection. Evolutionary Computation,2008,16(2): 225-255.
    [92]Cutello V., Nicosia G.. An Immune Algorithm for Protein Structure Prediction on Lattice Models. IEEE Transaction on Evolutionary Computation,2007,11(1): 101-117.
    [93]Weise T. Global Optimization Algorithms-Theory and Application. Thomas Weise edition,2009. Online available at http://www.it-weise.de/.
    [94]Hunt J. E., Timmis J., Cooke D. E., et al.. Jisys:The development of artificial immune system for real world applications. In:Dasgupta D. Artificial Immune System and Their Applications, Berlin:Springer-Verlag,1999,157-186.
    [95]Cutello V., Narzisi G., et al. An immunological algorithm for global numerical optimization. Artificial Evolution 2006,3871:284-295.
    [96]Yao X., Liu Y.. Evolutionary Programming Made Faster. IEEE Transactions on Evolutionary Computation,1999 3 (2),82-102.
    [97]Cutello V., Krasnogor N., Nicosia G, et al.. Immune Algorithm Versus Differential Evolution:A Comparative Case Study Using High Dimensional Function Optimization. ICANNGA 2007, Part I, LNCS 4431. Springer-Verlag Berlin Heidelberg.2007:93-101.
    [98]Gog A., Dumitrescu D.. Parallel mutation based genetic chromodynamics. Informatica 2004, XLIX (2):45-54.
    [99]杜海峰,公茂果,刘若辰,焦李成.自适应混沌克隆进化规划算法,中国科学E辑(信息科学),2005,35(8):817-829.
    [100]Liu L. J., Cai Z. X., Chen H.. Immunity clone algorithm with particle swarm evolution. Journal of Central South University of Technology 2006,13(6):703-706.
    [101]丛琳,沙宇恒,焦李成.采用正交免疫克隆粒子群算法求解SAT问题.西安电子科技大学学报(自然科学版)2007,34(4):616-621.
    [102]Gao S., Z. Tang, Dai H.. A hybrid Clonal Selection Algorithm. International Journal of Innovative Computing Information and Control 2008,4(4):995-1008.
    [103]Gao S. C., Wang W, et al.. Improved clonal selection algorithm combined with ant colony optimization. Ieice Trans. on Information and Systems 2008, E91d(6): 1813-1823.
    [104]Wong E., Yu. C. H., Yeung S. C., et al.. Immunity-based hybrid evolutionary algorithm for multi-objective optimization. Research and Development in Intelligent Systems 2009, Xxv:337-342.
    [105]刘若辰,杜海峰,焦李成.一种免疫单克隆策略算法,电子学报.2004,32(11):1880-1884.
    [106]Acan A.. Clonal selection algorithm with operator multiplicity. Proceedings of the Congress on Evolutionary Computation,2004,1,2:1909-1915.
    [107]Cutello, V., Lee D.. Clonal selection algorithm with dynamic population size for bimodal search spaces. Advances in Natural Computation, Pt 12006,4221:949-958.
    [108]Hao, L., Gong M. G., Jiao L.. Niching Clonal Selection Algorithm for multimodal function optimization. Advances in Natural Computation, Pt 2006,4221:820-827.
    [109]Yang, J. H., Sun L.. Clonal selection based memetic algorithm for job shop scheduling problems. Journal of Bionic Engineering 2008,5(2):111-119.
    [110]公茂果,焦李成,杜海峰等.用于约束优化的人工免疫响应进化策略,计算机学报.2007,30(1):37-47.
    [111]刘若辰,贾建,赵梦玲,焦李成.一种免疫记忆动态克隆策略算法,控制理论与应用.2007,24(5):777-784.
    [112]Wang, Y., Cai Z. X., Zhou Y., et al.. Multiobjective optimization and hybrid evolutionary algorithm to solve constrained optimization problems. Ieee Transactions on Systems Man and Cybernetics Part B-Cybernetics 2007,37(3):560-575.
    [113]Brest J., Greiner S.. Self-adapting control parameters in differential evolution:A comparative study on numerical benchmark problems. IEEE Transactions on Evolutionary Computation 2006,10(6):646-657.
    [114]Ma W. P., Jiao L. C., Gong M. G.,et al.. Immune Clonal Selection Evolutionary Strategy for Constrained Optimization. PRICAI 2006, LNAI 4099,, Springer-Verlag Berlin Heidelberg 2006:661-670.
    [115]Liu R C, Jiao L.C.. Immune Clonal Strategy Based on the Adaptive Mean Mutation. LSMS 2007, LNCS 4688, Springer-Verlag Berlin Heidelberg 2007: 108-116.
    [116]HONG L., MU Z. C.. A new clonal selection algorithm based on function Stretching technique. Proceedings of 2006 International Conference on Artificial Intelligence:2006,538-541.
    [117]Yang Z., He J., Yao X.. Making a Difference to Differential Evolution. Advances in Metaheuristics for Hard Optimization Z. Michalewicz and P. Siarry, Eds. Springer,: 2008,397-414.
    [118]Yang Z., Tang K., Yao X.. Self-adaptive Differential Evolution with Neighborhood Search. IEEE World Congress on Computional Intelligence:2008, 1110-1116.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700