用户名: 密码: 验证码:
六盘山地区中新生代构造事件及沉积响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
六盘山地区位于现今青藏高原的东北缘,对该地区中、新生代构造演化研究可以为验证青藏高原形成、隆升及生长的诸多模型提供边界限定条件;研究区同时也位于中国西北干旱区与东南湿润区的交界处,对中国古气候的演化有着详尽的记录;另外,作为现今高原的边界地区,研究区的活动构造异常发育,对活动构造的研究可以为该区的地震安全评价提供参考。
     本文对六盘山地区自晚白垩世以来的沉积学特征、裂变径迹热年代学、构造变形及古气候事件进行了研究,结合其它研究成果,取得了以下认识:
     1香山山前小洪沟剖面砾石统计与沉积分析认为该剖面寺口子组上段、红柳沟组下段、红柳沟组上段、第四系以及现今河床出露的砾石成分主要为砂岩和石英砂岩;砾石以中砾和小砾为主,呈次圆状和次棱角状,砾径分布显示出向细粒成分偏的特征,主要呈尖峰正态分布;砾石分选好至中等好。这些特征表明各层位砾石相似的搬运过程,为中距离山前河流冲积砾石;且该砾石与气候振荡无必然联系,为构造隆升的产物。结合磁性地层定年结果和邻区沉积分析表明香山地区新生代以来经历了三次构造隆升,分别是在始新世寺口子组沉积时期,中新世早-中期红柳沟组沉积时期和更新世以来。始新世香山山体可能与晚白垩世至新生代早期的构造事件有关,中新世的隆升时间可以作为印度-欧亚碰撞效应到达香山地区的最早时限,且该区存在多期隆升。
     2本文的磷灰石裂变径迹测试及热史模拟结果显示晚白垩世至新生代早期和中新世以来的冷却事件在研究区广泛存在,表明研究区在这两个时期经历了显著的隆升/剥蚀作用。中新世以来的隆升速率远大于晚白垩世至新生代早期的隆升速率,表明中新世以来的构造事件的强度较大;而新生代早期的冷却事件可以追溯到晚白垩世,是晚白垩世广泛存在的燕山运动晚期隆升事件的延续影响。
     3寺口子剖面新生界底部的河流相沉积物的岩性、交错层理指示的水流方向等显示寺口子剖面西部的马东山-六盘山地区在新生代早期存在相对较高的构造地貌,为寺口子剖面提供物源,这从另一个侧面反映了研究区燕山晚期构造抬升所造成的构造地貌在新生代早期的延续性影响。
     寺口子剖面的第五岩性组合中的沉积物建造发生显著变化,交错层理指示的古水流方向由先前的主体由东往西流动变为后期的由西往东流动;沉积物堆积速率明显增大。作者将此事件解释为寺口子剖面以西的马东山一六盘山地区开始初始隆升,其时间约为9.5Ma。继初始隆升之后,六盘山地区在约7.2-8.2Ma经历了快速隆升。
     4野外地质调查中发现寺口子剖面下部红色砂岩发育有复杂的多界面的板状交错层理。低级界面产状经过变形校正恢复至原始沉积时的产状显示原始沉积时与更高级别的界面间呈高角度;发育显示颗粒流沉积过程的沙丘前翼高角度交错纹层;发育风成波状交错层理及崩落变形构造;发育规模可至厚度约200m沙丘后翼巨型低角度交错层;发育丘间洼地处有水参与沉积作用的固结较好的深红色细砂岩沉积。在显微结构上显示砂岩颗粒间相互支撑,颗粒具有一定的磨圆度,颗粒表面见蝶形撞击坑,颗粒表面发现次生颗粒状、鳞片状石英等。这些特征显示该砂岩属于沙漠沙丘砂岩,沉积于极端干旱的沙漠环境,表明在古近纪时期研究区经历了一次干旱化过程。
     5结合前人胞粉测试结果和磁性地层学定年结果,发现寺口子剖面沉积物特征的变化反映中新世中期(约16~14Ma)的气候变化事件。中新世中期之前研究区为总体湿润伴随局部湿润-干旱振荡的气候,之后表现为干旱一半干旱气候。本文按照区域背景将这一气候事件解释为青藏高原隆升作用下中国西北干旱一半干旱气候区与中国东南部季风湿润区的相互对抗相互作用,干旱一半干旱气候区占主导的情况下的产物。
     6野外地质调查结合光释光测年结果,表明寺口子剖面新生界的褶皱变形以及后期夷平面的发育时间应该早于26.4~38.7ka;寺口子剖面新生界与下白垩统逆冲于第四系之上的逆冲断层的最晚活动时间晚于约14.7ka;小洪沟剖面红柳沟组逆冲于第四系层序之上的逆冲断层(香山一天景山断裂中段)的活动时间介于约108.3~49.2ka之间;车家湾剖面出露的逆冲断层(海原断裂)在约4.0ka之后仍然持续活动。
     7将本文研究成果用以验证青藏高原隆升生长及成因机制模型,本文结果支持高原多期隆升模型;并没有约8Ma的准同期整体隆升事件,不支持对流拆离模型;对于倾斜逐步抬升与生长模型,本文支持大型走滑逆冲断裂在高原生长过程中起着重要作用,但是各地具体的隆升时间除与距离喜马拉雅带的距离远近有关之外,还要考虑先存构造的影响,此外,高原生长至现今东北缘的时间应该修正至中新世。
     此外,本文的研究成果支持青藏高原隆升驱使中国西北干旱化的观点,支持青藏高原隆升导致中国大陆气候分区在中新世发生根本调整的观点。
The Liupan Shan area is situated in the northeast of present Tibetan Plateau. Studies of Mesozoic-Cenozoic evolution in this area will provide constraints to test the models which have been proposed to explain the formation, uplift and mechanism of the plateau. The studies of active faults, especially the timing, would be with importance for the earthquake evaluation. Meanwhile, as the boundary between the arid northwest China and humid southeast China, this area provides detailed information to the palaeo-climate evolution of China.
     Based on the studies of sedimentology, fission-track thermochronology, structural deformation and palaeoclimate since late Cretaceous, combined with other results, the following implications have been achieved.
     1 Based on the gravel counting in Xiaohonggou section southeast of Xiang Shan, gravels in upper segment of Sikouzi Formation, lower and upper segments of Hongliugou Formation, Quaternary and present riverbed, appear to be mainly sandstone and quartz sandstone, which is similar to the lithology in Xiang Shan, indicating they came from Xiang Shan area. The gravels are mainly pebbles and cobbles, sub-rounded and sub-angular, and well sorted to moderately well sorted. The grain-size distribution seems to be mainly fine skewed and leptokurtic normal distributing. These characters show all the gravels have experienced similar transport processes. It is interpreted that the gravels was formed by the alluvial fans moderate distance far from the Xiang Shan. The ages of the gravels have been constrained by magnetostratigraphical work conducted in adjacent Hejiakouzi section. This indicates that there has been a relatively high relief in the Xiang Shan, northeast of Tibetan Plateau, when the Sikouzi Formation deposited (Eocene). During Oligocene, when the Qingshuiying Formation deposited, the existing high relief had been eroded. The second high relief of Xiang Shan occurred during early to middle Miocene, when the Hongliugou Formation deposited. During the deposition of Ganhegou Formation (later Miocene to Pliocene), Xiang Shan area experienced another tectonically stable period. The latest uplift event happened in Pleistocene. The high relief in Xiang Shan during Eocene might be caused by the impact of tectonic events during the later Cretaceous to early Cenozoic. The second high relief during early to middle Miocene can be related to the impact of India-Asian collision. These imply that this area has experienced periods of uplift.
     2 Apatite fission-track analysis and related thermal history modeling results reveal that Liupan Shan area has widely undergone two periods of cooling/uplift, as late Cretaceous to early Cenozoic and since Miocene. The uplift rate since Miocene is much larger than that during late Cretaceous to early Cenozoic, implying more intense tectonic activity since Miocene. The cooling/uplift event in early Cenozoic can be traced to late Cretaceous, implying that it can not be considered as the initial response to the India-Asian collision, but the continuing impact of the late Yanshanian Movement.
     3 The sequences at the bottom of the Cenozoic strata in Sikouzi section are fluvial. Lithology and palaeo-current directions from cross-bedding both indicate that there was a relatively highland at the Madong Shan-Liupan Shan area at the early Cenozoic, providing sediments for the Sikouzi section. These evidences also imply the continuing impact of the late Yanshanian Movement.
     Within the fifth lithologic package, sedimentary architecture displayed dramatic variation at around 9.5 Ma. Synchronously, the palaeo-current direction changed, from previous E→W to later W→E. The accumulation rate increased to more than double at the meanwhile. All of these sedimentary events have been interpreted as the implications to the commencing uplift of the Madong Shan-Liupan Shan area. After the initial uplift at around 9.5 Ma, this area underwent rapid uplift during around 7.2-8.2 Ma as suggested by the apatite fission-track data.
     4 Regarding to the red sands at the lower part of the Sikouzi section, both the sedimentary structures and surface texture suggest that they deposited under the desert dune circumstance. The interpretation of the palaeo-climate background depends on their timing. If they deposited in the beginning of Miocene, they probably result from the aridity triggered by the uplift of the Tibetan Plateau. If deposited during Oligocene or even older, they might be the results of the aridity controlled by the planetary climatic belts. Considering the unconformity between the third and fourth association, the author is inclined to the later interpretation.
     5 The sediment records, combined with pollen and magnetostratigraphic results, reveal a palaeoclimate event during Mid-Miocene (around 16~14 Ma). Generally humid with sporadic humid-arid fluctuations prevailed in this area before 16~14 Ma, while after 16~14 Ma, this area was dominated by semi-arid to arid climate. This palaeoclimate event has been interpreted under a local context, not a global context as some other geologists did. During this period, the Tibetan Plateau underwent intense uplift and growth, which intensified both the aridity in northwest China and the summer monsoon in southeast China. However, the aridity overcame the humidity and predominate this area.
     6 Geological survey and luminescence dating have been conducted to study the active faults. In the Sikouzi section, the folding and planation happened older than 26.4-38.7 ka. The thrust fault, which thrusted the lower Cretaceous and Cenozoic strata over the Quaternary sequences, has a latest active timing younger than 14.7 ka. In Xiaohonggou section, the thrust fault, which thrusted the Hongliugou Formation over the Quaternary sequences, has an active timing during 108.3-39.2 ka. In Chejiawan section, the thrust fault, which thrusted the Cenozoic strata over the Quaternary sequences, was still active even after 4.0 ka.
     7 The results of this dissertation support multiple-period uplift model. It seems there has not been a synchronous surface uplift at around 8 Ma, which rejects the convective removal model. With regards to the oblique stepwise rise and growth model, our results indicate that the large strike-slip thrust faults play important role in the plateau growth. However, the existing tectonic conditions should be taken into consideration when studying the response of the Indian-Asian collision. In the present northeast of the plateau, it seems the initial response to the collision happened at Miocene.
     Moreover, our results also support the proposal that the uplift and growth of the Tibetan Plateau play a vital role in the China palaeo-climate, including the forming and intensification of the Asian monsoon and desertification. VII
引文
安艳芬,韩竹军,万景林,2008.川南马边地区新生代抬升过程的裂变径迹年代学研究.中国科学D辑地球科学,38(5):555-563.
    安芷生,张培震,王二七,等,2006.中新世以来我国季风-干旱环境.第四纪研究,26(5):678-693.
    柏道远,孟德保,刘耀荣,等,2003.青藏高原北缘昆仑山中段构造隆升的磷灰石裂变径迹记录.中国地质,30(3):240-246.
    拜永山,任二峰,范桂兰,等,2008.青藏高原西北缘祁漫塔格山中新世快速抬升的磷灰石裂变径迹证据.地质通报,27(7):1044-1048.
    保增宽,袁万明,董金泉,等,2005.磷灰石裂变径迹法研究阿尔泰青河地区地质热历史.核技术,28(9):722-725.
    陈刚,1999.中生代鄂尔多斯盆地陆源碎屑成分及其构造属性.沉积学报,17(3):409-413.
    陈刚,孙建博,周立发,等,2007.鄂尔多斯盆地西南缘中生代构造事件的裂变径迹年龄记录.中国科学D辑,37(增刊I):110-118.
    陈刚,王志维,白国绢,等,2007.鄂尔多斯盆地中新生代峰值年龄事件及其沉积-构造响应.中国地质,34(3):375-383.
    陈刚,周鼎武,1994.陕西淳化口镇-圣人桥地区地层变形特征及其地质意义.西北大学学报(自然科学版),24(2):163-166.
    陈汉林,杨树锋,肖安成,等,2006.酒泉盆地南缘新生代冲断带的变形特征和变形时间.石油与天然气地质,27(4):488-494.
    陈杰,Heermance R V, Burbank D W,等,2007.中国西南天山西域砾岩的磁性地层年代与地质意义.第四纪研究,27(4):576-587.
    陈杰,Wyrwoll K H,卢演俦,等,2006.祁连山北缘玉门砾岩的磁性地层年代与褶皱过
    程.第四纪研究,26(1):20-31.
    陈丽华,缪昕,魏宝和,1990.扫描电镜在石油地质上的应用.北京:科学出版社.
    陈丽华,缪昕,于众,1986.扫描电镜在地质上的应用.北京:科学出版社.
    陈文寄,李齐,周新华,等,1996.西藏高原南部两次快速冷却事件的构造意义.地震地质,18(2):109-115.
    陈正乐,官红良,李丽,等,2006.阿尔金山脉新生代隆升-剥露过程.地学前缘,13(4):91-102.
    陈正乐,万景林,刘健,等,2006.西天山山脉多期次隆升-剥露的裂变径迹证据.地球学报,27(2):97-106.
    程晓敢,陈汉林,杨树锋,等,2007.构造变形特征分析、剥蚀量恢复方法推测油气成藏——以酒泉盆地花海地区晚白垩世-始新世为例.天然气工业,27(4):31-33.
    程晓敢,郑德文,杨树锋,等,2006.酒泉盆地晚白垩世-古新世构造特征.石油与天然气地质,27(4):522-527.
    丁林,钟大赉,潘裕生,等,1995.东喜马拉雅构造结上新世以来快速抬升的裂变径迹证据.科学通报,44(16):1497-1500.
    杜治利,王清晨,2007.中新生代天山地区隆升历史的裂变径迹证据.地质学报,81(8):1081-1101.
    付国斌,李兴亮,2002.六盘山盆地中新生代沉积地层.新疆石油学院学报,14(2):24-27.
    傅开道,方小敏,高军平,等,2006.青藏高原北部砾石粒径变化对气候和构造演化的响应.中国科学(D辑),36(8):733-742.
    高峰,王岳军,刘顺生,等,2000.利用磷灰石裂变径迹研究鄂尔多斯盆地西缘热历史.大地构造与成矿学,24(1):87-91.
    高山,潘保田,李吉均,等,2005.祁连山东段金塔河流域层状地貌时代与成因探讨.山地学报,23(3):129-135.
    宫红良,陈正乐,胡远清,等,2007.伊犁盆地白垩纪剥露事件的裂变径迹证据.地质力学学报,13(1):42-50.
    郭正堂,Fedoroff N,刘东生,1993.全新世与上次间冰期气候差异的古土壤记录.第四纪研究,1:41-55.
    国家地震局地质所,宁夏回族自治区地震局,1990.海原活动断裂带.北京:地震出版社,1-176.
    哈斯,董光荣,王贵勇,1999.腾格里沙漠东南缘格状沙丘的形态-动力学研究.中国科学(D辑),29(5):466-471.
    韩建恩,余佳,孟庆伟,等,2005.西藏阿里地区札达盆地第四纪砾石统计及其意义.地质通报,24(7):630~636.
    贾承造,陈汉林,杨树锋,等,2003.库车坳陷晚白垩世隆升过程及其地质响应.石油学 报,24(3):1-5.
    江新胜,徐金沙,潘忠习,2003.鄂尔多斯盆地白垩纪沙漠石英沙颗粒表面特征.沉积学报,21(3):416-422.
    康铁笙,王世成,1991.地质热砾石研究的裂变径迹法.北京,科学出版社:9-25.
    来庆洲,丁林,王宏伟,等,2006.青藏高原东部边界扩展过程的磷灰石裂变径迹热历史制约.中国科学D辑地球科学,36(9):758-796.
    雷祥义,2006.黄土高原河谷阶地黄土地层结构模式.海洋地质与第四纪地质,26(2):113-122.
    雷永良,钟大赉,贾承造,等,2008.青藏高原东南缘察隅地区晚新生代岩体差异抬升-剥露和高原扩展的裂变径迹证据.岩石学报,24(2):384-394.
    黎兵,李勇,张开均,等,2007.青藏高原东缘晚新生代大邑砾岩的物源分析与水系变迁.第四纪研究,27(1):64-73.
    黎敦朋,赵越,胡健民,等,2007.青藏高原西北缘高原面与陡坡地貌形成过程的裂变径迹热年代学约束.岩石学报,23(5):900-910.
    李斌,孟自芳,宋岩,等,2007.鄂尔多斯盆地西缘前路盆地构造-沉积响应.吉林大学学报(地球科学版),37(4):703-709.
    李吉均,方小敏,1998.青藏高原隆起与环境变化研究.科学通报,43(15):1569-1574.
    李小明,2004.裂变径迹方法及云开大山热年代学研究.中国科学院广州地球化学研究所博士学位论文,广东广州.
    李孝泽,董光荣,靳鹤龄,等,1999.鄂尔多斯白垩系沙丘岩的发现.科学通报,44(8):874-877.
    刘池洋,赵红格,桂小军,等,2006.鄂尔多斯盆地演化-改造的时空坐标及其成藏(矿)效应.地质学报,80(5):617-633.
    刘池洋,赵红格,王锋,等,2005.鄂尔多斯盆地西缘(部)中生代构造属性.地质学报,79(6):737-747.
    刘东生,郑绵平,郭正堂,1998.亚洲季风系统的起源和发展及其与两极冰盖和区域构造运动的时代耦合性.第四纪研究,3:194-204.
    刘少锋,杨士恭,1997.鄂尔多斯盆地西缘南北差异及其形成机制.地质科学,32(3):397-408.
    刘顺生,Wagner GA,谭凯旋,等,2002.阿尔泰哈巴河岩体的裂变径迹年龄及热历史.核 技术,25(7):525-530.
    刘文中,徐士进,万景林,等,2003.攀西地区早白垩世以来地壳抬升运动的裂变径迹年龄研究.南京大学学报(自然科学),39(3):337-344.
    刘武生,秦明宽,漆富成,等,2008.运用磷灰石裂变径迹分析鄂尔多斯盆地周缘中新生代沉降隆升史.铀矿地质,24(4):221-232.
    刘晓东,1999.青藏高原隆升对亚洲季风形成和全球气候与环境变化的影响.高原气象,
    18(3):321-332.
    刘秀铭,刘东生,HellerF,等,1992.中国黄土磁化率与第四纪古气候研究.地质科学,增刊:279-285.
    刘永江,葛肖虹,叶慧文,等,2001.晚中生代以来阿尔金断裂的走滑模式.地球学报,22(1):23-28.
    彭杨伟,2006.酒泉、肃北盆地新生代磷灰石裂变径迹年龄及其意义.兰州大学硕士学位论文,
    申旭辉,田勤俭,丁国瑜,等,2001.宁夏贺家口子地区晚新生代地层序列及其构造意义.中国地震,17(2):156-166.
    沈传波,梅廉夫,郭彤楼,2007.川东北地区中、新生代热热史的裂变径迹分析.天然气工业,27(7):24-26.
    沈传波,梅廉夫,刘麟,等,2006.新疆博格达山中新生代隆升-热历史的裂变径迹记录.海洋地质与第四纪地质,26(3):87-92.
    沈传波,梅廉夫,徐振平,等,2007.大巴山中-新生代隆升的裂变径迹证据.岩石学报,23(11):2901-2910.
    沈传波,梅廉夫,张士万,等,2008.依连哈比尔尕山和博格达山中新生代隆升的时空分异:裂变径迹热年代学的证据.矿物岩石,28(2):63-70.
    施炜,张岳桥,马寅生,等,2006.六盘山盆地形成和改造历史及构造应力场演化.中国地质,33(5):1066-1074.
    施小斌,丘学林,刘海龄,等,2006.滇西临沧花岗岩基新生代剥蚀冷却的裂变径迹证据.地球物理学报,49(1):135-142.
    施雅风,汤懋苍,马玉贞,1998.青藏高原二期隆升与亚洲季风孕育关系探讨.中国科学(D辑):263-271.
    宋友桂,2001.六盘山及邻区晚新生代沉积与构造隆升.兰州大学博士学位论文.
    宋之琛等,2008.依据孢粉资料探讨我国西北地区第三纪时期的干旱化及其与季风的关系.古生物学报,47(3):265-272.
    苏世民,1996.鄂尔多斯盆地西缘的两个不同类型的盆地.西安石油学院学报,11(4):21-24.
    孙建博,陈刚,张辉若,等,2006.鄂尔多斯盆地中新生代构造事件的峰值年龄及其沉积响应.西北地质,39(3):91-96.
    汤锡元,郭忠铭,1992.陕甘宁盆地西缘逆冲推覆构造及油气勘探.西安:西北大学出版社.
    万景林,王二七,2002.西昆仑北部山前普鲁地区山体抬升的裂变径迹研究.核技术,25(7):565-567.
    万景林,王瑜,李齐,等,2001.阿尔金山北段晚新生代山体抬升的裂变径迹证据.矿物岩石地球化学通报,20(4):222-224.
    万世明,李安春,Stuut J-B W,等,2007.南海北部ODP1146站粒度揭示的近20Ma以来东亚季风演化.中国科学D辑:地球科学,37(6):761-770.
    万世明,李安春,胥可辉,等,2008.南海北部中新世以来粘土矿物特征及东亚古季风记录.地球科学——中国地质大学学报,33(3):289-300.
    汪品先,赵泉鸿,剪知湣,等,2003.南海三千万年的深海记录.科学通报,48(21):2206-2215.
    王步清,陈汉林,杨树锋,等,2005.酒泉盆地晚白垩世反转构造特征研究.天然气工业,25(3):32-35.
    王成善,丁学林,1998.青藏高原隆升研究新进展综述.地球科学进展,13(6):526-532.
    王军,1998.西昆仑卡日巴生岩体和苦子干岩体的隆升.地质论评,44(4):435-442.
    王世明,马昌前,佘振兵,等,2008.柴西新生代沉积源区及盆地热砾石的磷灰石裂变径迹分析.地质科技情报,27(5):29-36.
    王修喜,李吉均,宋春晖,等,2006.青藏高原东北缘西秦岭新生代抬升——天水盆地碎屑颗粒磷灰石裂变径迹记录.沉积学报,24(6):783-789.
    王彦斌,王永,刘训,等,2001.天山、西昆仑山中、新生代幕式活动的磷灰石裂变径迹记录.中国区域地质,20(1):94-99.
    王瑜,万景林,李齐,等,2002.阿尔金北段阿克塞-当今山口一带新生代山体抬升和剥蚀的裂变径迹证据.地质学报,76(2):191-198.
    吴中海,吴珍汉,万景林,等,2003.华山新生代隆升-剥蚀历史的裂变径迹热年代学分析.地质科技情报,22(3):27-32.
    向宏发,虢顺民,张秉良,等,1998a.六盘山东麓地区活动构造研究.国际地震动态,7:23-26.
    向宏发,虢顺民,张秉良,等,1998b.六盘山东麓活动逆断裂构造带晚第四纪以来的活动特征.地震地质,20(4):321-327.
    谢富仁,舒塞兵,窦素芹,等,2000.海原、六盘山断裂带至银川断陷第四纪构造应力场分析.地震地质,22(2):139-146.
    谢又予,1984.中国石英砂表面结构特征图谱.北京:海洋出版社.
    杨福忠,刘三军,1997.六盘山盆地构造特征及勘探方向.勘探家,2(4):27-30.
    杨俊杰,2002.鄂尔多斯盆地构造演化与油气分布规律.北京:石油工业出版社.
    杨树锋,陈汉林,程晓敢,等,2003.南天山新生代隆升和去顶作用过程.南京大学学报(自然科学),39(1):1-8.
    袁万明,保增宽,董金泉,等,2007.新疆土屋-延东斑岩铜矿区成矿时代与构造活动的裂变径迹分析.中国科学D辑:地球科学,37(10):1330-1337.
    袁万明,董金泉,保增宽,2004b.新疆阿尔泰造山带构造活动的磷灰石裂变径迹证据.地学前缘,11(4):461-468.
    袁万明,董金泉,保增宽,等,2005a.新疆阿尔泰造山带构造作用的锆石裂变径迹分析.地球学报,26(Sup.):239-243.
    袁万明,董金泉,保增宽,等,2008.西藏甘底斯地块尼木地区新第三纪构造热史的磷灰石裂变径迹约束.原子能科学技术,42(6):570-573.
    袁万明,董金泉,汤云晖,等,2004a.新疆阿尔泰铁热克提岩体热历史的磷灰石裂变径迹法研究.地球学报,25(2):199-204.
    袁万明,董金泉,王世成,等,2005b.东昆仑南部带磷灰石裂变径迹分析的地质意义.核技术,28(9):707-711.
    袁万明,侯增谦,李胜荣,等,2002a.雅鲁藏布江逆冲带活动的裂变径迹定年证据.科学通报,47(2):147-150.
    袁万明,王世成,杨志强,等,2002b.北喜马拉雅带构造活动的裂变径迹定年证据.核技术,25(6):451-454.
    袁万明,张雪亭,董金泉,等,2004c.东昆仑隆升作用的裂变径迹研究.原子能科学技 术,38(2):166-168.
    张秉良,向宏发,虢顺民,等,2000.六盘山东麓断裂断层泥的组构特征及其意义.地震地质,22(1):47-52.
    张广良,2006.青藏高原东北缘六盘山-马东山地区晚新生代构造变形综合研究.中国地震局地质研究所博士学位论文.
    张进,2004.宁夏中南部第三系沉积相分析及与青藏高原演化之间的关系.北京大学博士后研究工作报告.
    张进,马宗晋,任文军,2004.鄂尔多斯盆地西缘逆冲褶皱带构造特征及其南北差异的形成机制.地球学报,78(5):600-609.
    张进,马宗晋,任文军,2005.宁夏中南部新生界沉积特征及其与青藏高原演化的关系.地质学报,79(6):757-773.
    张抗,1989.鄂尔多斯断块构造和资源.西安:陕西科学技术出版社.
    张培震,郑德文,尹功明,等,2006.有关青藏高原东北缘晚新生代扩展与隆升的讨论.第四纪研究,26(1):5-13.
    张毅,2006.新生代以来四川盆地及龙门山的剥蚀作用:来自裂变径迹和镜质体反射率的证据.成都理工大学硕士学位论文.
    张毅,李勇,周荣军,等,2006.晚新生代以来青藏高原东缘的剥蚀过程:来自裂变径迹的证据.沉积与特提斯地质,26(1):97-102.
    张志诚,郭召杰,吴朝东,等,2007.天山北缘侏罗系地层热历史演化及其地质意义:磷灰石裂变径迹和镜质体反射率证据.岩石学报,23(7):1683-1695.
    张忠奎,陈祥高,藏文秀,1986.西藏康马多得乡花岗岩的裂变径迹年龄和上升速度研究.岩石学报,2(1):45-49.
    张仲石,郭正堂,2005.根据地质记录恢复渐新世和中新世不同时期环境空间特征及其意义.第四纪研究,25(4):523-530.
    张倬元,陈叙伦,刘世青,等,2000.丹棱-思濛砾石层成因与时代.山地学报,18(增刊):8-16.
    赵红格,2003.鄂尔多斯盆地西部构造特征及演化.西北大学博士学位论文.
    赵红格,刘池洋,姚亚明,等,2007.鄂尔多斯盆地西缘差异抬升的裂变径迹证据.西北大学学报(自然科学版),37(3):470-474.
    郑德文,2001.青藏高原东北缘中新生代FT、40Ar/39Ar热年代学研究.国家地震局地质 所博士学位论文.
    郑德文,张培震,万景林,等,2003.青藏高原东北边缘晚新生代构造变形的时序——临夏盆地碎屑颗粒磷灰石裂变径迹记录.中国科学(D辑),33(增刊):190-198.
    郑德文,张培震,万景林,等,2005.六盘山盆地热历史的裂变径迹证据.地球物理学报,48(1): 157-164.
    郑德文,张培震,万景林,等.2006.构造、气候与砾岩一以积石山和临夏盆地为例.第四纪研究,26(1):63-69.
    钟大赉,丁林,1996.青藏高原的隆起过程及其机制探讨.中国科学(D辑),26(4):289-295.
    周鼎武,赵重远,李银德,等,1994.鄂尔多斯盆地西南缘地质特征及其与秦岭造山带的关系.北京:地质出版社.
    周玲琦,仲新,张有龙,2005.六盘山地区白垩纪沉积盆地层序地层及盆地演化动力学分析.甘肃地质学报,14(2):43-52.
    周宇章,陈汉林,2002.新疆库车坳陷晚白垩世隆升的裂变径迹证据.资源调查与环境,23(3): 179-184.
    周祖翼,郭彤楼,许长海,等,2005.广西十万大山盆地中生代地层的裂变径迹研究及其地质意义.地质学报,79(3):395-401.
    朱文斌,舒良树,万景林,等,2006.新疆博格达-哈尔里克山白垩纪以来剥露历史的裂变径迹证据.地质学报,80(1):16-22.
    朱文斌,万景林,舒良树,等,2004.吐鲁番-哈密盆地中新生代热历史:磷灰石裂变径迹证据.自然科学进展,14(10):1194-1198.
    朱文斌,万景林,舒良树,等,2005.裂变径迹定年技术在构造演化研究中的应用.高校地质学报,11(4):593-600.
    朱文斌,张志勇,舒良树,等,2007.塔里木北缘前寒武基底隆升剥露史:来自磷灰石裂变径迹的证据.岩石学报,23(7):1671-1682.
    An Z, Wu X, Liu T, et al.,1991. Asian monsoon:A link between the loess-red clay formation in central China and the uplift of the Tibetan Plateau (abstract).13th International Congress of International Union of Quaternary Research,1991.
    An Z S, Kutzbch J E, Prell W L, et al.,2001. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan Plateau since Late Miocene times. Nature,411:62-66.
    Berner R A, Lasaga A C, Garrels R M,1993. The carnonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. American Journal of Science,283:641-683.
    Boggs S.1969. Relationship of size and composition in pebble counts. Journal of Sedimentary Research,39(3):1243~1247.
    Brandon M T, Mary K, Roden-Ticc, et all.,1998. Late Cenozoic exhμmation of the Cascadia accretionary wedge in the Olympic Mountains, northwest Washington state. Geo. Soc. Am. Bull.,110(8):985-1009.
    Broccoli A J and Manabe S,1992. The effects of orography on midlatitude northern hemisphere dry climates. Journal of Climate,5:1181-1201.
    Bull J M and Scrutton R A,1990. Fault reactivation in the central Indian Ocean and the rheology of oceanic lithosphere. Nature,344:855-858.
    Bullen M E, Burbank D W, Garver J I, et al.,2001. Late Cenozoic tectonic evolution of the northwestern Tien Shan:New age estimates for the initiation of mountain building. Geological Society of America Bulletin,113:1544-1559.
    Burchfiel B C, Zhang P Z, Wang Y P, et al.,1991. Geology of the Haiyuan fault zone, Ningxia-Hui Autonomous Region, China, and its relation to the evolution of the northeastern margin of the Tibetan Plateau. Tectonics,10(6):1091-1110.
    Cant D J, Stockmal G S,1989. Stratigraphy of the Alberta foreland basin:an interpretation in terms of cordilleran tectonics. Can. J. Earth Sci.,26:1964-1975.
    Cederbom C E,2001. Phanerozoic, pre-Cretaceous thermotectonic events in southern Sweden revealed by fission track thermochronology. Earth and Planetary Science Letters,188: 199-209.
    Cederbom C E, Larson S A, Tullborg E L, et al.,2000. Fission track thermochronology applied to Phanerozoic thermotectonic events in central and southern Sweden. Tectonophysics,316: 153-167.
    Cerling T E, et al.,1997. Global vegetation change through the Miocene/Pliocene boundary. Nature,389:153-158.
    Chen M H, Wang R J, Yang L H, et al.,2003. Development of east Asian sμmmer monsoon environments in the late Miocene:radiolarian evidence from Site 1143 of ODP Leg 184. Marine Geology,201:169-177.
    Cheng X R, Zhao Q H, Wang J L, et al.,2004. Data Report:Stable isotopes from sites 1147 and 1148. In:Prell, Wang, Blμm et al. (eds.). Proceedings of the Ocean Drilling Program, Scientific Results, Vol.184:1-12.
    Clark M K, Royden L H,2000. Topographic ooze:Building the eastern margin of Tibet by lower crustal flow. Geology,28(8),703-706.
    Coleman M & Hodges K,1995. Evidence for Tibetan plateau uplift before 14 Myr ago from a new minimμm age for east-west extension. Nature,374:49-52.
    Copeland P, Harrison T M, Kidd W S F, et al.,1987. Rapid early Miocene acceleration of uplift in the Gangdese Belt, Xizang (southern Tibet), and its bearing on accommodation mechanisms of the India-Asia collision. Earth and Planetary Science Letters,86:240-252.
    Corrigan J,1991. Inverse of apatite fission track data for thermal history information. Journal of Geological Research,96(B6):10347-10360.
    Cowgill E,2001. Tectonic evolution of the Altyn Tagh-western Kunlun fault system, northwestern China. Los Angeles:University of California, dissertation.
    Currie B S, Rowley D B, Tabor N J,2005. Middle Miocene paleoaltimetry of southern Tibet: Implications for the role of mantle thickening and delamination in the Himalayan orogen. Geology,33(3):181-184.
    DeCelles P G, Quade J, Kapp P, et al.,2007. High and dry in central Tibet during the late Oligocene. Earth and Planetary Science Letters,253(3-4):389-401.
    Ding G Y, Chen J, Tian Q J, et al.,2004. Active faults and magnitudes of left-lateral displacement along the northern margin of the Tibetan Plateau. Tectonophysics,380:243-260.
    Ding Z L, Sun J M, Liu T S, et al.,1998. Wind-blown origin of the Pliocene red clay formation in the central Loess Plateau, China. Earth Planet. Sci. Lett.,161:135-143.
    Ding Z L, Xiong S F, Sun J M,1999. Pedostratigraphy and paleomagnetism of a-7.0 Ma eolian loess-red clay sequence at Lingtai, Loess Plateau, north-central China and the implications for paleomonsoon evolution. Palaeogeography, Palaeoclimatology, Palaeoecology,152:49-66.
    Dμmitru T A,2000. Fission-track geochronology. In:Quaternary Geochronology:Methods and Applications. Noller J S, Sowers J M, Lettis W R (eds) Am. Geophys. Union Ref Shelf 4, Washington, DC, American Geophysical Union,131-155.
    Edmond J M,1992. Himalayan tectonics, wearthering processes and the strontiμm isotope record in marine limestones. Science,258:1594-1597.
    Edward R S, Nicolas A, Marc J, et al.,2001. Jurassic to Cenozoic exhμmation history of the Altyn Tagh range, NW China:constrained by 40Ar/39Ar and apatite fission track thermochronology. In:Hendrix M, Davis G.Paleozoic and Mesozoic tectonics of central Asia-from continent assembly to intra-continental deformation. Geological Society of Ameraica Memoir 194:293-316.
    Edward R S, Trevor A D,1997. Thrusting and exhμmation around the margins of the western Tarim basin during the India-Asia collision. Journal of Geophysical Research,102(B3): 5043-5063.
    Edwards M A, Harrison T M,1997. When did the roof collapse? Late Miocene north-south extension in the high Himalaya revealed by Th-Pb monazite dating of the Khula Kangri granite. Geology,25(6):543-546.
    England P and Searle M,1986. The Cretaceous-Tertiary deformation of the Lhasa block and its implications for crustal thickening in Tibet. Tectonics,5:1-14.
    England P C, Houseman G A,1986. Finite strain calculations of continental deformation 2. Comparison with the India-Asia collision. Journal of Geophysical Research 91,3664-3676.
    Fielding E J,1996. Tibet uplift and erosion. Tectonophysics,260:55-84.
    Fleischer R L, Price P B, Walker R M,1975. Nuclear tracks in solids:principles and techniques. University of California Press, Berkeley.
    Fletcher B J, Brentnall S J, Anderson C W, et al.,2008. Atmospheric carbon dioxide linked with Mesozoic and early Cenozoic climate change. Nature Geoscience,1:43-48.
    Folk R L and Ward W C,1957. Brazos River bar:a study in the significance of grain size parameters. Journal of Sedimentary Petrology,27:3-26.
    France-Lanord C & Derry L A,1997. Organic carbon burial forcing of the carbon cycle from Himalayan erosion. Nature,390:65-67.
    Frostick L E & Reid I,1980. Sorting mechanisms in coarse-grained alluvial sediments:fresh evidence from a basalt plateau gravel, Kenya. Journal of the Geological Society of London, 137:431~441.
    Gallagher G, Brown R, Johnson C,1998. Fission track analysis and its applications to geological problems. Ann. Rev. Earth Planet. Sci.,26:519-572.
    Garzione C N,2008. Surface uplift of Tibet and Cenozoic global cooling. Geology, 36(12):1003-1004.
    Garzione C N, Dettman D L, Quade J, et al.,2000. High times on the Tibetan Plateau: Paleoelevation of the Thakkhola graben, Nepal. Geology,28(4):339-342.
    Garzione C N, Quade J, DeCelles P G, et al.,2000. Predicting paleoelevation of Tibet and the Himalaya from δ18O vs. altitude gradients in meteroric water across the Nepal Himalaya. Earth and Planetary Science Letter,183:215-229.
    George A D, Marshallsea S J, Wyrwoll K-H, et al.,2001. Miocene cooling in the northern Qilian Shan, northeastern margin of the Tibetan Plateau, revealed by apatite fission-track and vitrinite-reflectance analysis. Geology,29(10):939-942.
    Gleadow A J W, Belton D X, Kohn B P, et al.,2002. Fission track dating of phosphate minerals and the thermochronology of aatite. Rev. Mineral Geochem.,48:579-630.
    Green P F, Duddy I R, Gleadow A J W, et al.,1985. Fission track annealing in apatite:track length measurements and the form of the Arrhenius plot. Nucl. Tracks,10:323-328.
    Guo Z T, Peng S Z, Hao Q Z, et al.,2001. Origin of the Miocene-Pliocene red-earth formation at Xifeng in northern China and implications for paleoenvironments. Palaeogeogr. Palaeoclimatol. Palaeoecol.,170:11-26.
    Guo Z T, Ruddiman W F, Hao Q Z, et al.,2002. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature,416:159-163.
    Hahn D G and Manabe S,1975. The role of mountains in the south Asian monsoon circulation. Journal of the Atmospheric Sciences,32:1515-1541.
    Harrison T M, Copeland P, Kidd W S F, et al.,1992. Raising Tibet. Science,255:1663-1670.
    Hendrix M S, Dμmitr T A, Graham S A,1994. Late Oligocene-early Miocene unroofing in the Chinese Tian Shan:An early effect of the India-Asia collision. Geology,22:487-490.
    Huigen Y, Andriessen P,2004. Thermal effects of Caledonian foreland basin formation, based on fission track analyses applied on basement rocks in central Sweden. Physics and Chemistry of the Earth,29:683-694.
    Hunter RE,1977. Basic types of stratification of small Aeolian sand dunes. Sedimentology,24: 361-388.
    Hurford A J, Green P F,1983. The zeta age calibration of fission-track dating. Isotope Geoscience 1:285-317.
    Irving E,2008. Why Earth became so hot 50 million years ago and why it then cooled. Proceeding of the National Academy of Sciences,105(42):16061-16062.
    Jiang H C, Ding Z L,2008. A 20 Ma pollen record of Eart-Asian sμmmer monsoon evolution from Guyuan, Ningxia, China. Palaeogeography, Palaeoclimatology, Palaeoecology,265: 30-38.
    Jiang HC, DingZL, XiongSF,2007. Magnetostratigraphy of the Neogene Sikouzi section at Guyuan, Ningxia, China. Palaeogeogr. Palaeoclimatol. Palaeoecol.,243:223-234.
    Jin X C, Wang J, Chen B W, et al.,2003. Cenozoic depositional sequences in the piedmont of the west Kunlun and their paleogeographic and tectonic implications. Journal of Asian Earth Sciences,21:755-765.
    Jolivet M, Brunel M, Seward D, et al.,2001. Mesozoic and Cenozoic tectonics of the northern edge of the Tibetan Plateau:fission-track constrains. Tectonophysics,343:111-134.
    Kapp P, Yin A, Harrison T M, et al.,2005. Cretaceous-Tertiary shortening, basin development, and volcanism in central Tibet. Geological Society of America Bulletin,117(7-8):865-878.
    Kennett J P,1986. Miocene to early Pliocene oxygen and carbon isotope stratigraphy of the Southwest Pacific, DSDP Leg 90, in Init. Rep. DSDP (eds. Kennett JP, von der Borch CC), 90(pt.2):1383-1411.
    Kent D V and Muttoni Q 2008. Equatorial convergence of India and early Cenozoic climate trends. Proceeding ofthe National Academy of Sciences,105(42):16065-16070.
    Ketcham R A, Donelick R A, Carlson W D,1999. Variability of aoatite fission-track annealing kinetics:Ⅲ. Extrapolation to geological time scales. Am. Mineral,84:1235-1255.
    Ketcham R A, Donelick R A, Donelick M B,2000. AFTSolve:Aprogram for multi-kinetic modeling of apatite fission-track data. Geological Materials Research,2(1):1-32.
    Kitoh A,2004. Effects of mountain uplift on east Asian sμmmer climate investigated by a coupled atmosphere-ocean GCM. Journal of Climate,17:783-802.
    Krμmbein W C,1934. Size frequency distributions of sediments. Journal of Sedimentary Petrology,4:65~77.
    Kukla G, An Z S, Melice J L, et al.,1990. Magnetic susceptibility record of Chinese loess. Trans. R. Soc. Edinb. Earth Sci.,81:263-288.
    Laslett G M, Green P F, Duddy IR, et al.,1987. Thermal annealing of fission tracks in apatite:2. A quantitative analysis. Chemical Geology,65:1-13.
    Lewis C L E.,1990. Thermal history of the Kunlun batholith, N. Tibet, and implications for uplift of the Tibetan Plateau. Nucl. Tracks Radiat. Meas.,17 (3):301-307.
    Li J J,1995. Uplift of the Qinghai-Tibet Plateau and global change. Lanzhou:Lanzhou University Press.
    Li J J, Fang X M, van der Voo R, et al.,1997. Magnetostratigraphic dating of river terraces: Rapid and intermitternt incision by the Yellow River of the northeastern margin of the Tibetan Plateau during the Quaternary. Journal of Geophysical Research,102(B5):10121-10132.
    Liu M and Yang Y Q,2003. Extensional collapse of the Tibetan Plateau:Results of three-dimensional finite element modeling. Journal of Geophysical Research,108(8):1-15.
    Liu T S,1985. Loess and the environment. Beijing:China Ocean.
    Liu X D, Yin Z-Y,2002. Sensitivity of East Asian monsoon climate to the uplift of the Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology,183:223-245.
    Lu H Y, Wang X Y, An Z S, et al.,2004. Geomophologic evidence of phased uplift of the northeastern Qinghai-Tibet Plateau since 14 million years ago. Science in China (Series D), 47(9):822-833.
    Lu Y C, Wang X L, Wintle A G,2007. A new OSL chronology for dust accμmulation in the last 130,000 years for the Chinese Loess Plateau. Quaternary Res.,67:152-160.
    Ma Y Z, Li J J, Fang X M,1998. Pollen assemblage in 30.6-5.0 Ma redbeds of Linxia region and climate evolution. Chinese Sci. Bull.,43:301-304.
    Maher B A,1986. Characterization of soils by mineral magnetic measurements. Phys. Earth Planet. Inter.,42:76-92.
    Manabe S and Broccoli A J,1990. Mountains and arid climates of middle latitudes. Science,247: 192-195.
    McKee E D, Douglass J R & Rittenhouse S,1971. Deformation of lee-side laminae in eolian dunes. Bull. Geol. Soc. Am.,82:359-378.
    McLaren P and Bowles D.1985. The effects of sediment transport on grain-size distributions. Journal of Sedimentary Petrology,55(4):457~470.
    Miller M G,Mountain G S, et al.,1996. Drilling and dating New Jersey Oligocene-Miocene sequence:Ice volμme, global sea level, and Exxon records, Science,271:1092-1095.
    Mitchell M M, Hill K C, Foster D A, et al.,1994. Thermal variations in a passive margin, from apatite fission track analysis in the western Otway Basin, Australia, abstracts of the eighth international conference on geochronology, cosmochronology, and isotop geology, U. S. Geological Survey Circular,221.
    Molnar P & England P,1990. Late Cenozoic uplift of mountain ranges and global climate change:chicken or egg? Nature,346:29-34.
    Molnar P,2005. Mio-Pliocene growth of the Tibetan Plateau evolution of East Asian climate. Palaeontologia Electronica,8(1):1-23.
    Molnar P, and Chen W-P,1983. Focal depths and fault plane solutions of earthquakes under the Tibetan plateau. Journal of Geophysical Research,88:1180-1196.
    Molnar P and Tapponnier P,1978. Active tectonics of Tibet. Journal of Geophysical Research, 83:5361-5375.
    Molnar P and Tapponnier P,1975. Cenozoic tectonics of Asia:Effects of a continental collision. Science,189:419-426.
    Molnar P, England P, Martinod J,1993. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian monsoon. Reviews of Geophysics,31(4):357-396.
    Murrell G R, Andriessen P A M,2004. Unravelling a long-term multi-event thermal record in the cratonic interior of southern Finland through apatite fission track thermochronology. Physics and Chemistry of the Earth,29:695-706.
    Naeser C W,1967. The use of apatite and sphene for fission track age determinations. Bull. Geol. Soc. Am.,78:1523-1526.
    Naeser N D, Naeser C W, McCulloh T H,1989. The application of fission track dating to the depositional and thermal history of rock in sedimentary basin. Thermal History of Sedimentary Basin:New York, Springer Verlag,157-180.
    Ni J, and York J E,1978. Late Cenozoic extensional tectonics of the Tibetan Plateau. Journal of Geophysical Research,83:5377-5387.
    Pan Y, Copeland P, Roden M K, et al.,1993. Thermal and unroofing history of the Lhasa area, southern Tibet-evidence from apatite fission track thermochronology. Nucl. Tracks Radiat. Meas.,21(4):543-554.
    Pearson P N & Palmer M R,2000. Atmospheric carbon dioxide concentrations over the past 60 million years. Nature,406:695-699.
    Platt P J, England P G,1993. Convective removal of lithosphere beneath mountain belts: Thermal and mechanical consequences. American Journal of Science,293:307-336.
    Poupeau G,1980. Fission track dating, recebido para publicacao em 17/4/1980.
    Prell W L.& Kutzbach J E.,1992. Sensitivity of the Indian monsoon to forcing parameters and implications for its evolution. Nature,360:647-651.
    Price B P and Walker R M,1963. Fossil tracks of charged particles in mica and the age of minerals. J. Geophys. Res.,68:4847-4862.
    Quade J, Cerling T E, Bowman J R,1989. Development of Asian monsoon revealed by marked ecological shift in the latest Miocene of northern Pakistan. Nature,342:163-166.
    Ramstein G,Fluteau F, Besse J, et al.,1997. Effect of orogeny, plate motion and land-sea distribution on Eurasian climate change over the past 30 million years. Nature,386:788-795.
    Raymo M E & Ruddiman W F,1992. Tectonic forcing of late Cenozoic climate. Nature,359: 117-122.
    Raymo M E, Ruddiman W F and Froelich P N,1988. Influence of late Cenozoic mountain building on ocean geochemical cycles. Geology,16:649-653.
    Rea D K, Leinen M, Janecek T R,1985. Geologic approach to the long-term history of atmospheric circulation. Science,227:721-725.
    Rea D K, Snoeck H, Joseph L H,1998. Late Cenozoic eolian deposition in the North Pacific: Asian drying, Tibetan uplift, and cooling of the Northern Hemisphere. Paleoceanography,13: 215-224.
    Rowley D B and Currie B S,2006. Palaeo-altimetry of the late Eocene to Miocene Lunpola Basin, central Tibet. Nature,439:677-681.
    Rowley D B, Pierrehμmbert R T, Currie B S,2001. A new approach to stable isotope-based paleoaltimetry:implications for paleoaltimetry and paleohypsometry of the Hing Himalaya since the Late Miocene. Earth and Planetary Science Letters,188:253-268.
    Royden L H, Burchfiel B C, King R W, et al.1997. Surface deformation and lower crustal flow in eastern Tibet. Science,276:788-790.
    Royden L H, Burchfiel B C, van der Hilst R D,2008. The geological evolution of the Tibetan Plateau. Science,321:1054-1058.
    Schleyer R,1987. The goodness-of-fit to ideal Gauss and Rosin distributions:a new grain-size parameter. Journal of Sedimentary Petrology,57(5):871~880.
    Seeber L, Ambruster J G,1981. Great detachment earthquakes along the Himalayan arc and long-term forecasting. Maurice Ewing Series 4, Earthquake Prediction-An International Review, American Geophysical Union,259-277.
    Sobel E R and Dμmitru T A,1997. Thrusting and exhμmation around the margins of the western Tarim basin during the India-Asia collision. Journal of Geophysical Research,102: 5043-5063.
    Song Y G, Fang X M, Li J J, et al.,2001. The Late Cenozoic uplift of the Liupan Shan, China. Sci. China Ser. D.,44(Supple.):176-184.
    Spicer R A., Harris N B W, Widdowson M, et al.,2003. Constant elevation of southern Tibet over the past 15 mullion years. Nature,421:622-624.
    Stein C A, Cloetingh S, and Wortel R,1990. Kinematics and mechanics of the Indian Ocean diffuse plate boundary. Proc. Ocean Drilling Program, Sci. Results.,116:261-277.
    Stockmal G S, Cant D S, Sebastion J B,1992. Relationship of the stratigraphy of the western Canada foreland basin to cordilleran tectonics:Insights from geodynamic models. Leckie, D.A. and MacQueen, R.W. Foreland Basins and Fold Belts. Tulsa:AAPG Memoir,55: 107-124.
    Sun D H, An Z S, Shaw J, et al.,1998a. Magnetostratigraphy and paleoclimatic significance of Late Tertiary Aeolian sequences in the Chinaese Loess Plateau. Geophys. J. Int.,134: 207-212.
    Sun D H, Shaw J, An Z S, et al.,1998b. Magnetostratigraphy and paleoclimatic interpretation of a continuous 7.2 Ma late Cenozoic eolian sediments from the Chinese Loess Plateau. Geophys. Res. Lett.,25:85-88.
    Sun D H, Bloemendal J, Rea D K, et al.2002. Grain-size distribution function of polymodal sediments in hydraulic and Aeolian environments, and nμmerical partitioning of the sedimentary components. Sedimentary Geology,152:263~277.
    Sun J M,2005. Long-term fluvial archives in the Fen-Wei graben, central China, and their bearing on the tectonic history of the India-Asia collision system during the Quaternary. Quaternary Science Reviews,24(10-11):1279-1286.
    Sun X J, Wang P X,2005. How old is the Asian monsoon system?-Palaeobotanical records from China. Palaeogeography, Palaeoclimatology, Palaeoecology,222:181-222.
    Tapponnier P, Xu Z, Roger F, et al.,2001. Oblique stepwise rise and growth of the Tibet Plateau. Science,294:1671-1677.
    Van den haute P, De Corte F (eds),1998. Advances in fission-track geochronology. Kulwer Academic Publishers, Dordrecht.
    Wagner G A,1968. Fission track dating of apatites. Earth Planet. Sci. Lett.,4:411-415.
    Wagner G A,1969. Spuren der spontanen kernspaltung des 238Urans als Mittel zur Datierung von Apatiten und ein Beitrag zur Geochronologie des Odenwaldes. N. Jahrb Mineral Abh., 110:252-286.
    Wagner G A, Van den haute P,1992. Fission-track dating. Kulwer Academic Publishers, Dordrecht.
    Walker J C G, Hays P B and Kasting J F,1981. A negative feedback mechanism for the long-term stabilization of Earth's surface temperature. Journal of Geophysical Research,86: 9776-9782.
    Wallis S, Tsujimori T, Aoya M, et al.2003. Cenozoic and Mesozoic metamorphism in the Longmengshan orogen:Implications for geodynamic models of eastern Tibet. Geology,31(9): 745-748.
    Wang C S, Zhao X X, Liu Z F, et al.,2008. Constraints on the early uplift history of the Tibetan Plateau. Proceedings of the National Academy of Sciences,105(13):4987-4992.
    Wang J, Wang Y J, Liu Z C, et al.,1999. Cenozoic environmental evolution of the Qaidam Basin and its implications for the uplift of the Tibetan Plateau and the drying of central Asia. Palaeogeography, Palaeoclimatology, Palaeoecology,152:37-47.
    Wang P X,1984. Progress in late Cenozoic palaeoclimatology of China:a brief review. In: Whyte RO (Ed.), The evolution of the east Asian environment,1. Hongkong University, 165-187.
    Wang P X,1990. Neogene stratigraphy and paleoenvironments of China. Palaeogeography, Palaeoclimatology, Palaeoecology,77:315-334.
    Wanger G A, Hejl E,1991. Apatite fission-track age-spectrμm based on projected track length analysis. Chemical Geology (Isotope Geoscience Section),87:1-9.
    Whalley W B, Marshall J R & Smith B J,1982. Origin of desert loess from some experimental observations. Nature,300:433-435.
    Williams H, Turner S, Kelley S, et al.,2001. Age and composition of dikes in Southern Tibet: New constraints on the timing of east-west extension and its relationship to postcollisional volcanism. Geology,29(4):339-342.
    Wolcott J,1988. Nonfluvial control of bimodal grain-size distributions in river-bed gravels. Journal of Sedimentary Petrology,58(6):979~984.
    Wright J D, Miller N G,1992. Miocene stable isotope stratigraphy, Site 747, Kerguelen Plateau, in Proc. ODP, Sci. Res. (eds. Wise SW, Jr Schlich R, Palmer AA, et al.),120:855-866.
    Yin A and Harrison T M.,2000. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences,28:211-280.
    Yin A, Harrison T M, Ryerson F J, et al.,1994. Tertiary structural evolution of the Gangdese thrust system, southeastern Tibet. Journal of Geophysical Research,99:18175-18201.
    Yin A, Murphy M A, Harrison T M, et al.,1995. Significant crustal shortening in the Lhasa block (southern Tibet) predates the Indo-Asian collision. GSA abstract with program,27:335.
    Yin A, Rμmrlhart P, Bulter R, et al.,2002. Tectonic history of the Altyn Tagh fault system in northern Tibet inferred from Cenozoic sedimentation. Geological Society of America Bulletin, 114:1257-1295.
    Yuan W M, Dong J Q, Wang S C, et al.,2006. Apatite fission track evidence for Neogene uplift in the eastern Kunlun Mountains, northern Qinghai-Tibet Plateau, China. Journal of Asian Earth Sciences,27:847-856.
    Yuan W-M, Zhang X-T, Dong J-Q, et al.,2003. A new vision of the intracontinental evolution of the eastern Kunlun Mountains, Northern Qinghai-Tibet Plateau, China. Radiation Measurements,36:357-362.
    Zachos J, Pagani M, Sloan L, et al.,2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science,292:686-693.
    Zachos JC and Kμmp LR,2005. Carbon cycle feedbacks and the initiation of Antarctic glaciation in the earliest Oligocene. Global and Planetary Change,47:51-66.
    Zeitler P K, Johnson N M, Naeser C W, et al.,1982. Fission-track evidence for Quaternary uplift of the Nanga Parbat region, Pakistan. Nature,298:255-257.
    Zhang P Z, Burchfiel B C, Molnar P, et al.,1991. Amount and style of late Cenozoic deformation in the Liupan Shan area, Ningxia Autonomous Region, China. Tectonics,10(6): 1111-1129.
    Zhang P Z, Molnar P & Downs W R,2001. Increased sedimentation rates and grain sizes 2-4 Myr ago due to the influence of climate change on erosion rates. Nature,410:861~897.
    Zhang Z S, Wang H J, Guo Z T, et al.,2007.What triggers the transition of palaeoenvironmental patterns in China, the Tibetan plateau uplift or the Paratethys Sea retreat? Palaeogeography, Palaeoclimatology, Palaeoecology,245:317-331.
    Zheng D W, Zhang P-Z, Wan J L, et al.,2006. Rapid exhμmation at ~8 Ma on the Liupan Shan thrust fault from apatite fission-track thermochronology:Implications for growth of the northeastern Tibetan Plateau margin. Earth and Planetary Science Letters,248:198-208.
    Zhu W B, Wan J L, Shu L S, et al.,2005. Mesozoic-Cenozoic thermal history of Trupan-Hami Basin:apatite fission track constrains. Progress in Natural Science,15(3):331-336.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700