用户名: 密码: 验证码:
蛋白质色谱过程强化的应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以色谱技术的两大要素——色谱柱和色谱介质——为研究对象,开展了蛋白质色谱过程强化的应用基础研究,包括制备型二维电场电色谱的构建和应用,超孔琼脂糖色谱介质的制备、接枝修饰和色谱性能表征两部分。
     在电色谱研究方面,首先构建了二维电色谱技术,即在填料室的横向和纵向同时外加电场,以在色谱柱内产生二维电动传递现象。然后分别以色素亲和色谱和金属螯合亲和色谱为研究对象,考查外加电场对介质动态吸附容量的影响。结果表明:在二维电色谱中可以获得比在一维电场中更高的蛋白质动态吸附容量。最后,利用填充Zn-Sepharose FF的二维电色谱柱,从酵母菌中纯化乙醇脱氢酶。与无电场作用时相比,生产能力提高一倍,进一步证明二维电色谱是一种有效的蛋白质色谱过程强化技术。
     在电色谱应用研究的基础上,开展电色谱传质机理的研究。首先利用甲基丙烯酸缩水甘油酯对TOYOPEARL HW-65介质进行接枝修饰,制得具有良好尺寸排阻色谱分离性能的“熵作用色谱”(EIC)介质。然后利用该介质研究了横向交变电场EIC中溶质的电色谱保留机理。结果表明,在接枝密度较小的固定相中,所有溶质分子均为电泳起主导作用;在接枝密度较高的固定相中,小分子溶质电泳起主导作用,而对于大分子溶质,则是浓差极化起主导作用。最后建立数学模型,求解溶质分子在不同体系中的浓差极化系数和固定相孔内电泳迁移率,说明浓差极化程度与溶质分子量和自由电泳迁移率成正相关性,而与分配系数和扩散系数成反相关性。
     在色谱介质研究方面,首先采用布尔马金式搅拌桨,在带有挡板的反应釜内实现超孔琼脂糖凝胶色谱介质从实验室小试规模到中试规模的放大制备。然后对超孔琼脂糖色谱介质进行了葡聚糖接枝修饰,考查其吸附和传质性能。研究结果表明:接枝式超孔色谱介质不仅具有较高的静态吸附容量,而且具有超高的孔扩散速率,在高流速色谱过程中仍保持很高的动态吸附容量和吸附效率,说明对超孔色谱介质进行接枝修饰,是一种非常有效的的改性方法。
This thesis is focused on the process intensification of protein chromatography towards the objective of high performance preparation. The main approaches proposed here are the preparative electrochromatography and the superporous agarose gel. The development and application of preparative two-dimensional electrochromatography (2DEC) as well as the fabrication, grafting modification and adsorption performance of superporous agarose gel were all investigated in this work. The details are summarized as follows:
     A novel preparative 2DEC column with seven compartments was developed. The design gave promise to provide transverse and longitudinal electric field on the column in order to induce two-dimensional electrokinetic transports in the central gel compartment. The dye-ligand affinity chromatography and immobilized metal affinity chromatography (IMAC) were performed in the 2DEC respectively. It was confirmed that the dynamic binding capacity (DBC) of protein in 2DEC was promoted more efficiently than that in one-dimensional electrochromatography. Moreover, the results indicated that the electroosmotic flow on the charged adsorbent surface was the predominant electrokinetic transport in the affinity electrochromatography. The effect of ionic strength proved that low-salt concentration was more suitable for the electrochromatography. Then, alcohol dehydrogenase was purified by the 2DEC packed with Zn-Sepharose FF at loading volume which was 2-fold higher than that by the traditional IMAC. The results have proved that the 2DEC is an efficient technique for the process intensification of protein chromatography and promising for the high capacity protein separation in the downstream processing.
     The entropic interaction chromatographic (EIC) resins were fabricated by the grafting of glycidyl methacrylate to TOYOPEARL HW-65. The resins gave a high resolution of solutes during the separation range of 0.67 kD to 158 kD. The EIC resins of different grafting densities were used to investigate the transport mechanism in EIC with an oscillatory electric field perpendicular to mobile phase flow driven by pressure. The results demonstrated that the electrophoresis was the dominante electrokinetic transport in the EIC resin with a low grafting density for all the solutes employed in this research and in the resin with a high grafting density for the solutes of low molecular weights. However, the concentration polarization played a key role in the retention behaviors for the solutes of high molecular weights. The concentration polarization parameters and the electrophoretic mobilities in the station phase of solutes were calculated by a mathematical model developed. The concentration polarization parameters would increase with the increasing molecular weight and free electrophoretic mobilities but decrease with the increasing partition coefficient and free solution diffusivity.
     The scaling-up of the fabrication of superporous agarose gel (SA) was accomplished in a reactor of 10 L with Brumagin agitator and four baffles in it. Dextran chains of 40 kD were grafted into the pores of SA in order to improve the adsorption properties. Besides the increase of adsorption capacity led by the grafting of dextran chains, the protein uptake rate was also greatly increased. So, the grafted SA resin showed the high DBC and adsorption efficiency even at a high flow rate. Hence, it is considered that grafting modification was a prominent approach to improve the properties of superporous agarose gel.
引文
[1]孙彦,生物分离工程(第二版),北京:化学工业出版社,2005,1-3
    [2]田亚平,生化分离技术,北京:化学工业出版社,2006,1-5
    [3]严希康,生化分离工程,北京:化学工业出版社,2001,1-7
    [4]熊宗贵,生物技术制药,北京:高等教育出版社,1999
    [5]赵彦鼎,郭立安,我国生物分离介质自主产业化进展,生物产业技术,2008,03:90-93
    [6]师治贤,王俊德.生物大分子的液相色谱分离和制备.北京:科学出版社, 1992, 1~8
    [7] Geng XD, Wang LL. Liquid chromatography of recombinant proteins and protein drugs. J Chromatogr B, 2008, 866: 133-153
    [8] Cuatrecasas P, Wilchek M. Single-step purification of avidin from egg white by affinity chromatography on biocytin-Sepharose column. Biochem Biophys Res Commun, 1968, 33: 235-239
    [9] Azarkan M, Huet J, Baeyens D, et al. Affinity chromatography: A useful tool in proteomics studies. J Chromatogr B, 2007, 849: 81-90
    [10] Barth HG, Boyes BE, Jackson C. Size exclusion chromatography and related separation techniques. Anal Chem 1998, 70: 251-278
    [11] Locascio GA, Tigier HA, Batlle AMdC. Estimation of molecular weights of proteins by agarose gel filtration. J Chromatogr, 1969, 40: 453-457
    [12] Himmelhoch SR. Chromatography of proteins on ion-exchange adsorbents. Meth Enaymol, 1971, 22: 273-286
    [13] Carta BG, Ubiera AR, Pabst TM. Protein mass transfer kinetics in ion exchange media: measurements and interpretations. Chem Eng Technol, 2005, 28: 11252-1264
    [14] Hjerten S. General aspects of hydrophobic interaction chromatography. J Chromatogr, 1973, 87: 325-331
    [15] Miyabe K. Influence of mobile phase composition on surface diffusion in reversed-phase liquid chromatography. J Chromatogr A, 2008, 1194: 184-191
    [16] Gorbunoff MJ. Protein chromatography on hydroxyapatite columns. Methods In Enzymology, 1990, 182: 329-339
    [17] Denizli A, Piskin E. Dye-ligand affinity system. J Biochem Biophys Methods, 2001, 49: 391-461
    [18] Porath J, Olin B. Immobilized metal ion affinity adsorption and immobilized metal ion affinity chromatography of biomaterials. Serum protein affinity for Gel-immobilized iron and Nickel ions. Biochem, 1983, 22: 1621-1630
    [19] Liu FF, Dong XX, Wang T, et al. Rational design of peptide ligand for affinity chromatography of tissue-type plasminogen activator by the combination of docking and molecular dynamics simulations. J Chromatogr A, 2007, 1175: 249-258
    [20] Irvine GB. Size exclusion high performance liquid chromatography of peptides: a review. Analytical Chimica Acta, 1997, 352: 387-397
    [21]赵永芳,生物化学技术原理及应用(第三版),北京:科学出版社,2002,101-123
    [22] Kempe H, Persson P, Axelsson A, et al. Determination of diffusion coefficients of proteins in stationary phase by frontal chromatography. Biothechnol Bioeng, 2006, 93: 656-664
    [23]刘国诠,色谱柱技术,北京:化学工业出版社,2006,246-247
    [24] Sun Y, Liu FF, Shi QH. Approaches to high-performance preparative chromatography for proteins. Adv Biochem Engin/Biotechnol, DOI: 10.1007/10_2008_32
    [25] Mant CT, Hodges RS. Mixed-mode hydrophilic interaction/cationexchange chromatography (HILIC/CEX) of peptides and proteins. J Sep Sci, 2008, 31: 2754-2773
    [26] Nerenberg ST, Pogojeff G. Preparative electrochromatography and electrophoresis using adopted sephadex and other columns. Amer J Clin Path, 1969, 51: 728-740
    [27]邹汉法,刘震,叶明亮等,毛细管电色谱及应用,北京:科学出版社,2001,8-12
    [28]张维冰,毛细管电色谱理论基础,北京:科学出版社,2006,3-18
    [29] Rathore AS. Theory of electroosmotic flow, retention and separation efficiency in capillary electrochromatography. Electrophoresis, 2002, 23: 3827-3846
    [30] Cikalo MG, Bartle KD, Myers P. Influence of the electrical double-layer on electroosmotic flow in capillary electrochromatography. J Chromatogr A, 1999, 836: 35-51
    [31] Rathore AS, Horváth C. Capillary electrochromatography: theories on electroosmotic flow in porous media. J Chromatogr A, 1997, 781: 185-195
    [32] Rudge SR, Basak SK, Ladisch MR. Solute retension in electrochromatography by electrically induced sorption. AIChE J, 1993, 39: 797-808
    [33] Basak SK, Ladisch MR. Mechanistic description and experimental studies of electrochromatography of proteins. AIChE J, 1995, 41: 2499-2507
    [34] Tallarek U, Rapp E, Sann H, et al. Quantitative study of electrokinetic transport in porous media by confocal laser scanning microscopy. Langmuir, 2003, 19: 4527-4531
    [35] Chen GF, Tallarek U. Effect of Intraparticle Porosity and Double Layer Overlap on Electrokinetic Mobility in Multiparticle Systems. Langmuir, 2003, 19: 10901-10908
    [36] Leinweber FC, Tallarek U. Nonequilibrium electrokinetic effects in beds of ion-permselective particles. Langmuir, 2004, 20: 11637-11648
    [37] Stachowiak TB, Svec F, Fréchet JMJ. Chip electrochromatography. J Chromatogr A, 2004, 1044: 97-111
    [38] Pumera M. Microchip-based electrochromatography: design and application. Talanta, 2005, 66: 1048-1062
    [39] Ross D, Locascio LE. Microfluidic temperature gradient focusing. Anal Chem, 2002, 74: 2556-2564
    [40] Huber DE, Santiageo JG. Taylor-Aris dispersion in temperature gradient focusing. Electrophoresis, 2007, 28: 2333-2344
    [41] Howrd AG, Shafik T, Moffatt F, et al. Electroosmotically driven thin-layer electrochromatography on silica media. J Chromatogr A, 1999, 844: 333-340
    [42] Nurok D, Koers JM, Novotny AL, et al. Apparatus and Initial Results for Pressurized Planar Electrochromatography. Anal Chem, 2004, 76: 1690-1695
    [43] Novotny AL, Nurok D, Replogle RW, et al. Results with an Apparatus for Pressurized Planar Electrochromatography. Anal Chem, 2006, 78: 2823-2831
    [44] Dzido TH, Ptocharz PW, Slazak P. Apparatus for Pressurized Planar Electrochromatography in a Completely Closed System. Anal Chem, 2006, 78: 4713-4721
    [45] Cole KD, Cabezas H-Jr. Recent progress in the electrochromatography of proteins. Appl Biochem Biotechnol, 1995, 54: 159-172
    [46] Cole KD, Cabezas H-Jr. Improved preparative electrochromatography column design. J Chromatogr A, 1997, 760: 259-263
    [47] Tellez CM, Cole KD. Preparative electrochromatography of proteins in various types of porous media. Electrophoresis, 2000, 21: 1001-1009
    [48] Cole KD. Preparative concentration and size fractionation of DNA by porous media using a combination of flow and low electric field strength. Biotechnol Prog, 1997, 13: 289-295
    [49] Keim C and Ladisch MR. New system for preparative electrochromatography of proteins. Biotechnol Bioeng, 2000, 70: 71-81
    [50]王东海,刘诤,交变电场下离子交换色谱分离过程,化工学报,2001,52:311-315
    [51]殷钢,李琛,詹劲等,羟基磷灰石电色谱中电渗流动与分离过程特性,化工学报,2001,52:666-671
    [52] Liu Z, Yin G, Feng SH, et al. Oscillatory electroosmosis-enhanced intra/inter-particle liquid transport and its primary applications in the preparative electrochromatography of proteins. J Chromatogr A, 2001, 921: 393–399
    [53] Liu Z, Huang Z, Cong JY, et al. Continuous separation of proteins by multichannel flow electrophoresis. J Sep Sci, 1996, 31: 1427-1442
    [54] Liu Z, Yang H, Huang Z, et al. Multichannel flow electrophoresis in an alternating electric field. J Sep Sci, 1996, 31: 2257-2271
    [55]谭国民,横向交变电场中的蛋白质电色谱研究,博士学位论文,天津大学,2005
    [56]苑巍,离子交换电色谱纯化蛋白质的研究,硕士学位论文,天津大学,2005
    [57] Tan G.M, Shi QH, Sun Y. Retention behavior of proteins in size-exclusion electrochromatography with a low-voltage electric field perpendicular to the liquid phase streamline. Electrophoresis, 2005, 26: 3084-3093
    [58] Tan GM, Dong XY, Sun Y. Oscillatory transverse electric field enhances protein resolution and capacity of size-exclusion chromatography. J Sep Sci, 2006, 29: 684-690
    [59] Tan GM, Shi QH, Sun Y. Oscillatory transverse electric field enhances mass transfer and protein capacity in ion-exchange electrochromatography. J Chromatogr A, 2005, 1098: 131-137
    [60] Yuan W, Zhao GF, Dong XY. High-capacity purification of hen egg-white proteins by ion-exchange electrochromatography with an oscillatory transverse electric field. J Sep Sci, 2006, 29: 2383-2389
    [61]苑巍,横向交变电场电色谱的传递理论和应用研究,博士学位论文,天津大学,2008
    [62] Liapis AI, McCoy MA. Theory of perfusion chromatography. J Chromatogr, 1992, 599: 87-104
    [63] Liapis AI, Xu Y, Crosser OK. The effect of intraparticle convective velocity and micro-sphere size on column performance. J Chromatogr A, 1995, 702: 45-57
    [64] Tallarek U, Paces M, Rapp E. Perfusive flow and intraparticle distribution of a neutral analytes in capillary electrochromatography. Electrophoresis, 2003, 24: 4241-4253
    [65] Rathore AS, Reynolds KJ, Colón LA. Joule heating in packed capillaries used in capillar yelectrochromatography. Electrophoresis, 2002, 23: 2918-2928
    [66] Rathore AS. Joule heating and determination of temperature in capillary electrophoresis and capillary electrochromatography columns. J Chromatogr A, 2004, 1037: 431-443
    [67] Cohen AS, Paulus A,Karger BL. High-performance capillary electrophoresis using open tubes and gels. Chromatographia, 1987, 24: 15-24
    [68] Chen GF, Tallarek U, Seidel-Morgenstern A, et al. Influence of moderate Joule heating on electoosmotic flow velocity, retention, and efficiency in capillary electrochromatography. J Chromatogr A, 2004, 1044: 287-294
    [69] Keim C, Ladisch M. Model for temperature profiles in large diameter electrochromatography columns. AIChE J, 2003, 49: 402-410
    [70] Jungbauer A. Chromatographic media for bioseparation. J Chromatogr A, 2005, 1065: 3-12
    [71] Janson JC. The Development of Gel Media and Columns for Large-Scale Chromatography of Proteins, a Historical Review. Chinese J Chem Eng, 2002, 10: 690-695
    [72] Sober HA, Peterson EA. Chromatography of proteins on cellulose ion-exchangers. J Am Chem Soc, 1954, 76: 1711-1712
    [73] Peterson EA, Sober HA. Chromatography of proteins. I. Cellulose ion-exchange adsorbents. J Am Chem Soc, 1956, 78: 751-755
    [74] Porath J, Flodin P. Gel filtration: a method for desalting and group separation. Nature, 1959, 47:1657
    [75] Hjerten S. The preparation of agarose spheres for chromatography of molecules and particles. Biochem Biophys Acta, 1964, 79: 393-398.
    [76] Bengtsson S, Philipson L. Chromatography of animal viruse on pearl-condensed agarose. Biochem Biophys Acta, 1975, 79: 399-406
    [77] Afeyan NB, Regnier FE, Dean RC. Perfusion chromatography. US Pat 5019270, 1991
    [78] Zhang ML, Sun Y. Cooperation of solvent and solid granule as porogenic agents: Novel porogenic mode of biporous media for protein chromatography. J Chromatogr A, 2001, 922: 77-86
    [79] Shi Y, Dong XY, Sun Y. Development of rigid biporous polymeric adsorbent for protein chromatography. Chromatographia, 2002, 55: 405-410
    [80] Shi Y, Sun Y. Fabrication and characterization of a novel biporous spherical adsorbents for protein chromatography. Chromatographia, 2003, 57: 29-35
    [81] Wu L, Bai S, Sun Y. Development of rigid bidisperse porous microspheresfor high-speed protein chromatography. Biotechnol Prog, 2003, 19: 1300-1306
    [82] Zhou X, Xue B, Sun Y. Enhancing protein capacity of rigid macroporous polymeric adsorbent. Biotechnol Prog, 2001, 17: 1093-1098
    [83] Zhou X, Xue B, Bai S, et al. Macrporous polymeric ion exchanger of high capacity for protein adsorption. Biochem Eng J, 2002, 11: 13-17
    [84] Wang DM, Hao G, Sun Y. Fabrication and characterization of superporous cellulose bead for high speed protein chromatography. J chromatogr A, 2007, 1146: 32-40.
    [85] Wang DM, Sun Y, Fabrication of superporous cellulose beads with grafted anion-exchange polymer chains for protein chromatography. Biochem Eng J, 2007, 37: 332-337
    [86] Staby A, Sand MB, Hansen RG, et al. Comparison of chromatographic ion-exchange resins . Strong cation-exchange resins. J Chromatogr A, 2004, 1034: 85-97
    [87] Staby A, Sand MB, Hansen RG, et al. Comparison of chromatographic ion-exchange resins . Strong and weak cation-exchange resins and heparin resins. J Chromatogr A, 2005, 1069: 65-77
    [88] Hubbuch J, Linden T, Knieps E, et al. Mechanism and kinetics of protein transport in chromatographic media studied by confocal laser scanning microscopy. Part I. The interplay of sorbent structure and fluid phase conditions. J Chromatogr A, 2003, 1021: 93-104
    [89] Hubbuch J, Linden T, Knieps E, et al. Mechanism and kinetics of protein transport in chromatographic media studied by confocal laser scanning microscopy. Part II. Impact on chromatographic separations. J Chromatogr A, 2003, 1021: 105-115
    [90] Harinarayan C, Mueller J, Ljungl?f A, et al. An exclusion mechanism in ion exchange chromatography. Biotechnol Bioeng, 2006, 95:775–787
    [91] Ljungl?f A, Lacki KM, Mueller J, et al. Ionexchange chromatography of antibody fragments. Biotechnol Bioeng, 2007, 96: 514-524
    [92] Zydney AL, Hsrinarayan C, Reis RV, et al. Modeling electrostatic exclusion effects during ion exchange chromatography of monoclonal antibodies. Biotechnol Bioeng, 2009, 102: 1131-1140
    [93] Th?mmes J. Investigatios on protein adsorption to agarose-dextran composite media. Biotechnol Bioeng, 1999, 62: 358-362
    [94] Müller E. Comparison between mass transfer properties of weak-anion-exchange resins with graft-functionalized polymer layers and traditional ungrafted resins. J Chromatogr A, 2003, 1006: 229-240
    [95] Stone MC, Carta, G. Protein adsorption and transport in agarose and dextran-grafted agarose media for ion exchange chromatography. J Chromatogr A, 2007, 1146: 202-215
    [96] Stone MC, Carta, G. Patterns of protein adsorption in chromatographic particles visualized by optical microscopy. J Chromatogr A, 2007, 1160: 206-214
    [97] Bankston TE, Stone MC, Carta, G. Theory and applications of refractive index-based optical microscopy to measure proteins mass transfer in spherical adsorbent particles. J Chromatogr A, 2008, 1188: 242-254
    [98] Tao YY, Carta G. Rapid monoclonal antibody adsorption on dextran-grafted agarose media for ion-exchange chromatography. J Chromatogr A, 2008, 1211: 70-79
    [99] Ubiera AR, Carta G. Radiotracer measurements of protein mass transfer: kinetics in ion exchange media. Biotechnol J, 2006, 1: 665-674
    [100] Brooks DE, Haynes CA, Hritcu D. Size exclusion chromatography does not require pores. PNAS, 2000, 97: 7064-7067
    [101] Pang P, Koska J, Coad B et al. Entropic interaction chromatography separating proteins on the basis of size using end-grafted polymer brushes. Biothechnol Bioeng, 2005, 90: 1-13
    [102] Coad BR, Steel BM, Brooks DE, et al. The influence of grafted polymer architecture and fluid hydrodynamics on protein separation by entropic interaction chromatography. Biotechnol Bioeng, 2007, 97, 3: 574-587
    [103] Brooks DE, Müller W. Size-exclusion phases and repulsive protein-polymer interaction/recognition. J Mol Recognit, 1996, 9: 697-700
    [104] Steels BM, Koska J, Haynes CA. Analysis of compression of polymer mushrooms using self-consistent-field theory. J Chromatogr B, 2000, 743: 31-40
    [105] Steels BM, Koska J, Haynes CA. Analysis of brush-particle interactions using self-consistent-field theory. J Chromatogr B, 2000, 743: 41-56
    [106]张松平,蛋白质色素亲和色谱理论研究,博士学位论文,天津大学,2002
    [107] Zhang SP, Sun Y. Further studies on the contribution of electrostatic and hydrophobic interaction to protein adsorption on dye-ligand adsorbents. Biotechnol Bioeng, 2001, 75: 710-717
    [108] Zhang SP, Sun Y. Ionic strength dependence of protein adsorption to dye-lignand adsorbents. AIChE J, 2002, 48: 178-186
    [109] Zhang SP, Sun Y. Study on protein adsorption kinetics to a dye-ligand adsorption by the pore diffusion model. J Chromatogr A, 2002, 964: 35-46
    [110] Yarmush ML, Olson WC. Electrophoretic elution from biospecific adsorbents: Principles, methodology, and applications. Electrophoresis, 1988, 9: 111-120
    [111] Zhang SP, Sun Y. Study on protein adsorption kinetics to a dye-ligand adsorption by the pore diffusion model. J Chromatogr A, 2002, 964: 35-46
    [112] Liu Z, Feng SH, Yin J, et al. Experimental sydies on affinity chromatography in an electric field. J Chromatogr A, 1999, 852: 319-324
    [113] Chen GF, Pa?es M, Marek M, et al. Dynamic of capillary electrochromatography: experimental study of flow and transport in particulate beds. Chem Eng Technol, 2004, 27: 417-428
    [114] Banerjee AL, Swanson M, Mallik S, et al. Purification of recombinant human carbonic anhydrase- by metal affinity chromatography without incorporating histidine tags. Protein Expres Purif, 2004, 37: 450-454
    [115] Willoughby NA, Kirschner T, Smith MP, et al. Immobilised metal ion affinity chromatography purification of alcohol dehydrogenase from baker’s yeast ustin an expanded bed adsorption system. J Chromatogr A, 1999, 840: 195-204
    [116] Cabrera N, Rangel P, Hernandez-Munoz R, et al. Purification of alcohol dehydrogenase form Entamoeba histolytica and saccharomyces cerevisiae. Protein Expres Purif, 1997, 10: 340-344
    [117] Shibusawa Y, Fjjiwara T, Shindo H, et al. Purification of alcohol dehydrogenase form Bovine liver crude extract by dye-ligand affinity counter-current chromatography. J Chormatogr B, 2004, 199: 239-244
    [118] Chang YK, Chen JP, Sheu JR, et al. Direct recovery of alcohol dehydrogenase from unclarified yeast cell homogenate by IDEBAC using an improved scheme from elution. Biochem Eng J, 2006, 30: 1-10
    [119]霍丹群,张云茹,侯长军, Acetobacter Z1 27乙醇脱氢酶的纯化及酶学性质, 2006,29:65-68
    [120]周德璧,刘丹平,胡丹等,乙醇脱氢酶在聚苯胺-聚丙烯酸修饰电极上的固定及表征,中南大学学报(自然科学版),2006,37:714-719
    [121] Hidayat C, Nakajima M, Takagi M, et al. Development of new dye-metal agarose-coated alumina matrix and elution strategy for purification of alcohol dehydrogenase. J Biosci Bioeng, 2003, 95: 133-138
    [122] Matsumoto I, Mizuno Y, Seno N. Activation of Sepharose with epichlorohydrin and subsequent immobilization of ligand for affinity adsorbent. J Bichem, 1979, 85: 1091-1098
    [123] Jurado L A, Mosley J, Jarrett H W. Cyanogen bromide activation and coupling of ligands to diol-containing silica for high-performance affinitychromatography optimization of conditions. J Chromatogr A, 2002, 971: 95-104
    [124] Porath J, Carsson J, Olsson I, et al. Metal chelate affinity chromatography, a new approach to protein purification. Nature, 1975, 258: 598-599
    [125]廉德君,李林,许根俊,酵母醇脱氢酶ADH的纯化及动力学研究,生物化学与生物物理学报,1996,28:396-402
    [126] Smith PK, Krohn RI, Hermanson GT, et al. Measurement of protein using bicinchoninic acid. Anal Biochem, 1985, 150: 76-85
    [127] Jacobs RA, Probstein RF. Two-dimensional model of electroremediation. AIChE J, 1996, 42: 1685-1696
    [128] Westerhuis WHJ, Sturgis JN, Niederman RA. Reevaluation of the electrophoretic migration behavior of soluble globular proteins in the native and detergent-denatured states in polyacrylamide gels. Anal Biochem., 2000, 284: 143–152
    [129]王东梅,新型超大孔纤维素介质的研制及基在蛋白质色谱中的应用,博士学位论文,天津大学,2007
    [130] Sundberg L, Porath J. Preparation of adsorbents for biospecific affinity chromatography: ?. Attachment of group-containing ligands to insoluble polymers by means of bifunctional oxiranes. J Chromatogr, 1974, 90: 87-93
    [131] Striegel AM. Ehermodynamic equilibrium of the solute distribution in size-exclusion chromtogarphy. J Chromatogr A, 2004, 1033: 241-245
    [132] Aimin Z, Chao L. Chemical initiation mechanism of maleic anhydride grafted onto styrene-butadien-styrene block copolymer. Euro Poly J, 2003, 39: 1291-1295
    [133] Chowdhury P, Pal CM. Graft gopolymerization of methyl acrylate onto polyvinyl alcohol using Ce(
    [139]王国祥,聂峰光,苏志国,琼脂糖凝胶偶联DEAE基团的影响因素,化学反应工程与工艺,2002,18:80-85
    [140] Shi QH, Zhou Y, Sun Y. Influence of pH and ionic strength on the steric mass-action model parameters around the isoelectric point of protein. Biotechnol Progress, 2005, 21: 516-523
    [141]杨坤,蛋白质离子交换色谱的吸附和传质动力学研究,博士学位论文,天津大学,2008
    [142] Yang K, Shi QH, Sun Y. Modeling and simulation of protein uptake in cation exchanger visualized by confocal laser scanning microscopy. J Chromatogr A, 2006, 1136: 19-28
    [143] Rengnier M, Vega DL, Chenou C, et al. Mass transfer mechanisms in Hyper D media for chromatographic protein separation. Biochem Eng J, 1998, 1: 11-23
    [144]陈志平,章序文,林兴华,搅拌与混合设备设计选用手册,北京:化学工业出版社,2004,46-47
    [145]王凯,冯连芳,混合设备设计,北京:机械工业出版社,2000,20-21
    [146]陆书来,李恒光,赵彦强,丁苯吡乳液聚合的工程放大问题,化工科技,1999,7:21-27
    [147]方仁江,王凯,潘祖仁,乳液聚合瞬时乳胶粒径大小和分布及其控制策略,合成树脂及塑料,1994,11:3-6
    [148]王怀玉,董利民,昝青峰,乳化交联法制备壳聚糖微球粘连原因分析,功能材料,2007,38:1923-1935
    [149] Wang MY, Xu J, Zhou X, et al. Modification with DEAE-dextran, an alternative way to prepare anion-exchange monolithic column with lower presser drop. Biochem Eng J, 2007, 34: 76-81
    [150] Sakai K, Teng TC, Katada A, et al. Designable size exclusion chromatography columns based on dendritic polymer-modified porous silica particles. Chem Mater, 2003, 15: 4091-4097
    [151] Lu DN, Liu ZX, Zhang ML, et al. Dextran-grafted-PNIPAAm as an artificial chaperone for protein refolding. Biochem Eng J, 2006, 27: 336-343
    [152] Hagel L, ?stberg M, Andersson T. Apparent pore size distributions of chromatography media. J Chromatogr A, 1996, 743: 33-42
    [153] Burton SC, Harding DRK. Bifunctional etherification of a bead cellulose for ligand attachment with allyl bromide and allyl glycidyl ether. J Chromatogr A, 1997, 775: 29-38
    [154] Burton SC, Harding DRK. High-density ligand attachment to brominated allyl matrices and application to mixed mode chromatography of chymosin. J Chromatogr A, 1997, 75: 39-50
    [155] Dismer F, Petzold M, Hubbuch J. Effects of ionic strength and mobile phase pHon the binding orientation of lysozyme on different ion-exchange adsorbents. J Chromatogr A, 2008, 1194: 11-21

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700