用户名: 密码: 验证码:
污水污泥页岩建筑材料制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市生活污水处理将产生大量含水率非常高的污水污泥,已成为城市化快速发展过程中必须面临的重大环境问题之一。现有的污水污泥填埋、堆肥、焚烧等处置方式要么无害化不彻底,要么成本过高,难以处置排放量迅速增长的污水污泥,因此研究新的污水污泥资源化利用方式非常必要。本论文根据页岩建筑材料对原材料的要求和烧制过程的特点,将高含水率污水污泥与来源广泛的页岩进行混合,以污水污泥中的水分作为页岩建筑材料制品生产过程中必须外加的水分,同时利用污水污泥中有机物来补充页岩建筑材料制品烧制过程中的热值,使得污水污泥用于页岩建筑材料制备具有技术经济和环保优势。
     本文研究首先根据页岩陶粒和烧结砖制备对于原材料的要求,选择了不同处理工艺的污水处理厂经过压滤脱水后得到的高含水率污水污泥,研究了污泥粒径分布范围、化学与矿物组成等,并与页岩进行对比,还研究了污水污泥与页岩混合后的塑性指数,另外,还采用TG-DTA对污水污泥的热值进行了分析。结果显示污水污泥的化学、矿物组成与页岩比较接近,颗粒非常细小,主要集中0.15mm以下,且具有较高的塑性指数,与页岩混合后可以明显改善页岩的塑性,适合页岩陶粒的成球和页岩烧结砖坯的制备,页岩陶粒料球抗冲击性能明显增强。另外,污水污泥放热量较大,在250℃~550℃的升温过程放出热量可超过3000J/g。
     本文进行了污水污泥页岩烧结砖的研究,先固定污泥掺量,变化烧成温度、升温速率和保温时间等因素,进行实心和多孔污泥页岩烧结砖的烧制。结果表明污泥掺量30%时可以烧制出体积密度1600 kg/m3左右,抗压强度10MPa以上的实心砖,掺加污水污泥可明显降低烧结砖的体积密度,但也同时增加烧结砖的收缩。通过测定不同污泥掺量和不同烧成温度下的烧结砖收缩率变化,同时采用SEM进行微观结构分析,结果表明污水污泥掺入后,较低温度下页岩烧结砖的微观结构从致密的块状转为较为分散的层片状结构,密实程度较低,随着温度升高到900℃时,颗粒堆积紧密程度明显增加,但温度过度升高则产生的液相完全浸润包裹固体颗粒,微观上表现为致密的板状结构,宏观上表现非常大的体积收缩。因此,污水污泥掺入后控制页岩烧结砖的烧成温度非常重要。对污水污泥页岩砖性能分析还发现当污泥掺量过高时会出现比较严重的泛霜。
     本文重点研究了污水污泥用于页岩陶粒的烧制,通过改变污水污泥掺量、预热温度和时间、焙烧温度和时间等因素,研究了陶粒的颗粒表观密度、强度和吸水率等性能。结果显示,污水污泥将明显提高页岩陶粒的烧胀性能,含水率80%左右的污水污泥掺量为20%~30%,烧胀温度达到1150℃时,可获得颗粒表观密度500kg/m3左右的超轻陶粒。还进一步研究烧制工艺参数对陶粒性能的影响,结果表明预热时适当降低温度和缩短时间,焙烧时适当提高温度和延长时间有利于获得轻质污泥页岩陶粒。
     为了更好了解污水污泥在页岩陶粒烧胀过程中的作用,本文还采用SEM、XRD、IR和TG-DTA手段,研究了掺加污水污泥的页岩陶粒的内部结构、矿物组成、Si-O四面体聚合度以及高温焙烧熔融变化情况。结果显示,污水污泥页岩陶粒的主要矿物为α-石英(α-SiO2)、蓝晶石(Al2O3·SiO2)及钙长石(CaO·2Al2O3·2SiO2)等,随着污水污泥掺量增加时,陶粒中Fe的价态由赤铁矿(Fe2O3)向方铁矿(FeO)转变,反映了陶粒料球焙烧时还原环境的增强,此时,陶粒矿物中的Si-O对称伸缩振动波数降低明显,Si-O四面体的聚合度明显降低,架状结构的桥氧大量断裂,从而表现为焙烧时陶粒的熔融温度降低和熔融程度增加;污水污泥能促使陶粒内部产生大量孔结构,污泥掺量过多时会出现孔结构的连通和坍缩,随预热温度提高,陶粒表层壳结构增厚,焙烧温度越高,焙烧时间越长,陶粒内部孔结构尺寸变大,并逐渐由孤立到连通,最后合并成大孔。
     本文最后研究了污水污泥中的重金属在陶粒和烧结砖烧制过程中的挥发情况以及在使用过程中的浸出情况。考虑到污水污泥中重金属可能的含量范围,选取具有代表性的重金属Zn、Cu、Cr、Pb、Ni,通过外掺重金属化合物以扩大污水污泥中的重金属含量,研究最为不利条件下污水污泥页岩建筑材料生产和使用过程中的环境特性。结果显示,在相同烧成温度下,与纯污水污泥焚烧相比,污水污泥页岩陶粒和烧结砖的重金属挥发量明显降低;另外,污水污泥页岩陶粒和烧结砖中的重金属浸出浓度都非常低,符合浸出毒性的安全标准;相比而言,陶粒比烧结砖对污水污泥中的重金属有更好的固化能力。
     可以认为高含水率的污水污泥与页岩混合制备陶粒和烧结砖不仅可以充分消纳污水污泥,还能提高页岩建筑材料制品的性能,是污水污泥资源化最为有效和最为环保的技术途径;本研究条件下,污水污泥用于烧制页岩陶粒优势更为明显。
The great amount of sewage sludge with high water content, which comes from municipal sewage treatment process, has already become one of the critical environmental problems in rapid urbanization. The sewage sludge treatment methods, landfilling, composting, incination, etc., are either unthorough in harmless treatment or high in costs, thus, it is hard to handle all the surging sewage sludge. Therefore, it is critical to develop new ways of utilization. In this paper, the property requirements of raw materials to make shale building materials and their burning characteristics were fully considered. High water content sewage sludge was well mixed with widely available shale, and the water in sewage sludge can be used as the imperative water source of making shale building material. Meanwhile, the organics in sewage sludge can act as extra heat supplier in the manufacture process. Both these factors make it technically, economically and environmently advantageous of using sewage sludge to produce shale building materials.
     According to the property requirements of raw materials used in manufactures of expanded shale and sintered brick, the pressure dewatered sludges of high water content from different sewage treatment plants were used. The particle size distribution, chemical and mineral compositions of the sludge were investigated and compared with those of shale. The plasiticity index of the mixture prepared with sludge and shale was also studied. In addition, the heat value of the sludge was examined by TG-DTA. The results shown that the sewage sludge has a similar chemical and mineral compositions with shale, and its particle size is very small - most of which are smaller than 0.15mm, and it has a high plasticity index. The plasticity of shale can be significantly improved. When sewage sludge was mixed in, the mix will be suitable for the balling of expanded shale and the preparation of adobe brick. It also shown that the impact resistance of expanded shale can be obviously improved. Meanwhile, the sewage sludge has a large potential of heat release, releasing more than 3000J/g during the heating process from 250℃to 550℃.
     The investigation of sewage sludge shale sintered brick was performed. The influence of sintering temperature, heating rate and heat preservation time on the performance of the solid and porous bricks were investigated at a constant sewage dosage. The results shown that the solid brick with a bulk density of about 1600 kg/m3 and compressive strength of up to 10MPa can be obtained when 30% sewage sludge was added. The presence of sewage sludge could significantly decrease the bulk density. On the contrary, the sintering contraction will be strengthened as the increase of sludge dosage. The determinations of SEM microstructure analysis and changes in sintering contraction occurred under different sludge dosages and sintering temperatures shown that the densified block structure turned into a loose layer structure. When the temperature was up to 900℃, the microstructure tended to be significantly denser. But when the temperature was extensively high, the solid paticals would be thoroughly trapped by liquid phase, which will result in a high contraction of the product. Therefore, it is very important to fix sintering temperature when sewage sludge is added into shale sintered brick. Further study on the influence of sludge dosage on the property of sintered brick revealed that a high sludge dosage will cause a very severe scumming.
     The calcining of expanded shale was priorally investigated. The relations of bulk density, particle strength and water absorption ration of expanded shale with factors such as sewage sludge dosage, preheating temperature and preheating time, calcining temperature and calcining time were studied. Results shown that sewage sludge will significantly improve the calcining expantion property of expanded shale. The ultra-light expanded shale with a bulk density of about 500kg/m3 can be obtained at the calcining expantion temperature of 1150℃when 20%~30% of sewage sludge with a water contend of 80% were added. The influence of calcining parameters on properties of expanded shale were further studied, the results revealed that a proper lowing of preheating temperature and preheating time and a moderate raising of calcining temperature and calcining time would benefit for the formation of light sewage sludge expanded shale.
     To understand the effects of sewage sludge plays in the calcining expansion process of the expanded shale, SEM, XRD, IR and TG-DTA were used to analyze the internal structure, mineral compositions, polymerization degree of Si-O tetrahedron and high temperature sintering/melting changes of sewage sludge expanded shale. It shown that main mineral compositions of the sewage sludge expanded shale wereα-quartz(α-SiO2), kyanite(Al2O3·SiO2), anorthite(CaO·2Al2O3·2SiO2) and so on. With the increase of sewage sludge, the valency of Fe in adobe particle converted from hematite(Fe2O3)to wustite(FeO), which reflected that the reducing atmosphere was strengthened during the calcining process. At this time, the Si-O symmetric stretching vibration wave number and the Si-O tetrahedron polymerization degree were significantly decreased and a large number of bridging oxygen bindings in framework structure was disruptured. All these factors contributed to the lowering of sintering temperature and strengthening of melting degree. The sewage sludge is beneficial for the formation of large quantity of pore structure, while an excessive dosage will result in a connective pore structure and a collapse of the structure. The shell of the expanded shale will become thicker when the preheating temperature was raised; a higher calcining temperature and a longer calcining time will enlarge the size of the inner pore structure of expanded shale, which will eventually form a big pore from the isolated ones.
     Finally, this paper investigated the volatility and leachability of heavy metal in sewage sludge during the burning and in-situ using processes of expanded shale and sintered brick. Regarding the possible content of heavy metals contained in the sewage sludge, we studied several representive heavy metals, i.e., Zn、Cu、Cr、Pb、Ni, to study the environmental characteristics of manufacture and utilization of building materials from sewage sludge and shale in the most severe condition. And the results shown that the amount of volatilization duiring burning processes of sintered brick and expanded shale made of sewage sludge, compared to that of pure sewage sluge, decreased obviously. Besides, the leaching amount of heavy metals in both materials was very small, and it could meet the corresponding leaching toxicity security standards. Comparatively, expanded shale can solidify heavy metals more efficiently than sintered brick.
     It is believed that using high water content sewage sluge and shale to produce expanded shale and sintered brick could not only consume sewage sluge sufficiently, but also improve the performance of shale building materials. This is the best techenic method of recyling sewage sludge due to its advantages in effectiveness and environment protection. The advantage is more obvious to produce expanded shale in the presented condition of this paper.
引文
[1]何品晶,顾国维,李笃中.城市污泥处理与利用[M].北京:科学出版社, 2003.
    [2]王绍文,秦华.城市污泥资源利用与污水土地处理技术[M]. 2007,北京:中国建筑工业出版社.
    [3]张自杰.排水工程[M].北京:中国建筑工业出版社,2000.
    [4]张义安,高定.城市污水污泥不同处理处置方式的成本和效益分析[J].生态环境,2006. 15(2): 234-238.
    [5]中华人民共和国住房和城乡建设部, 2007年城市、县城和村镇建设统计公报. 2007.
    [6]钱觉时,邓成,陈平.三峡库区生活污水污泥的建材利用途径分析[J].三峡环境与生态, 2009. 2(1): 17-21.
    [7]尹军,谭学军.污水污泥处理处置与资源化利用[M].北京:化学工业出版社. 2005.
    [8]黄雅曦.污泥处理与资源化利用现状分析[J].农业环境科学学报, 2003. 22(6): 765-768.
    [9]赵丽君,张大群.污泥处理与处置技术的进展[J].中国给水排水, 2003. 17(6): 23-25.
    [10]丁文川,郝以琼.重庆市城市污水厂污泥的处理与处置[J].重庆环境科学, 2000.22(2): 14-17.
    [11]邓晓林,王国华.上海城市污水处理厂的污泥处置途径探讨[J].中国给水排水, 2000. 16(5): 19-22.
    [12] E, H.J.Sewage Sludge Production, Treatment and Dis-posal in the European Union[J]. JCIWEM, 1995: 335-343.
    [13]王静,卢宗文,田顺.国内外污泥研究现状及进展[J].市政技术, 2007. 24(3): 140- 142.
    [14] Babel, A., D, and M. Dacera.Heavy metal removal from contaminated sludge for land application:A review[J]. Waste management, 2006. 26: 988-1004.
    [15] P, M.S., A.C. Chang, and A.L.P.e. al..Land application of sewagesluge: scientific perspetives of heavy metal loading loimits in Europe and the United States[J]. Environ. rev., 1994. (2): 108-118.
    [16] B, M. Sludge to land: a Case of Storing up Trouble[J]. Water Services, 1997. 101(12): 16-18.
    [17]石吉.城市污水污泥的处理利用及发展[J].中国资源综合利用, 2004. 2: 15-17.
    [18] Hong J L, Hong J M, Otaki M,etal. Environmental and economic life cycle assessment for sewage sludge treatmentprocesses in Japan[J]. Waste Management, 2009. 29: 696-703
    [19] Jan N, MichalK. Co-combustion of sludge with coal[J]. Applied Energy, 2003.75(34): 239-248
    [20] Lee D H, Yan R, Shao JG,etal. Combustion characteristics of sewage sludge in a bench-scale fluidized bed reactor[J]. Energy & Fuels, 2008.22(1): 2-8
    [21] Lopes, M.H, P. Abela. The behaviour of hes and heay metals during the cocombustion of sewage sludges in a fluidized bed[J]. Waste Management, 2003.(23): 859-870.
    [22]姚刚.德国的污泥利用和处置(Ⅰ) [J].城市环境与城市生态,2003.13(1):45
    [23]周少奇.城市污泥处理处置与资源化[M].广州,华南理工大学出版社. 2002, 123-124.
    [24]朱小山,孟范平.城市污泥的处理技术及资源化展望[J].四川环境, 2002. 21(4): 8-12.
    [25]李天宝,熊正为.城市污泥处理方法综述[J].南华大学学报. 17(4): 87-90.
    [26]李月琴.三峡库区污水厂污水污泥处置技术筛选[D]. 2007.
    [27]张晓锋,闫澍旺.添加生石灰/土、粉煤灰改善污泥填埋特性的研究[J].中国给水排水, 2007. 23(3): 88-91.
    [28] KoeningA, K. JN, W. IM. Physical properties of de-watered wastewater sludge for landfill [J]. Water SciTechno, 1996. 34(3-4): 533-540.
    [29] A A Tatsi, A I Zoubulis. A field investigation of the quantity and quality of leachate from a mumicipal solid waste landfill in a mediterranean climate [J]. Advances in Environmental Research, 2002,6:207-208.
    [30]朱英,赵由才.污泥生物反应器填埋场中PAHs、PCBs含量变化及其影响因素[J].生态环境学报, 2009. 18(3): 880-884.
    [31]曾广德.多元综合好氧堆肥工艺在城市污泥处置工程中的应用[J].给水排水, 2009. 35(100): 42-45.
    [32]占新华,周立祥.城市污泥堆肥中水溶性有机物的理化特性变化[J].中国环境科学, 2003. 23(4): 390~394.
    [33]潘飞,陈悟.多环芳烃在污泥与菜籽饼堆肥中的降解规律[J].环境科学, 2009. 30(12): 3718-3722.
    [34] Y, C.Q., M.C. H,e.a. Wu Q. T.Bioremediation of polycyclic aromatic hydrocarbons (PAHs)- contaminated sewage sludge bydifferent composting processes [J]. J Hazzard Mater, 2007. 142: 535-542.
    [35] E, M., R.A. S, e.a. Maqueda C.Soil pollution by PAHs in urban soils: a comparison of three European cities[J]. Environ Monit, 2007. 9: 1001-1008.
    [36] QY, C., M. CH, and e.a. WuQT. Polycyclic aromatic hydrocarbons and phthalic acid esters in the soil-radish (Raphanus sativus) system with sewage sludge and compost application [J]. Bioresour Technol, 2008. 99: 1830-1836.
    [37] S, K., A. L, and e.a. Zhang S. Accumulation of polycyclic aromatic hydrocarbons and heavy metals in lettuce grown in the soils contaminated with long-term wastewater irrigation [J]. JHazzard Mater, 2008. 152: 506-515.
    [38]周东兴,于颍.城市污泥及其堆肥对土壤重金属的影响[J].东北农业大学学报, 2009. 40(6): 36-39.
    [39] T, Q.A., FaisalM, e.a. Kang K. Low-molecular- weight carboxylic acids produced from hydrothermal treat-mentoforganicwastes[J]. Journal of Hazardous Materials, 2002. 93(2): 209- 220.
    [40]刘洪涛,高定.造纸污泥堆肥对葡萄的肥效及其重金属风险评价[J].中国给水排水, 2009. 25(15): 122-124.
    [41]林云琴,王德汉.造纸污泥堆肥与赤红壤模拟培养中活性铝的释放特性[J].环境化学, 2009. 28(5): 706-710.
    [42] Dewil, R., J. Baeyens, L. Appels. Enhancing the use of waste activated sludge as bio- fuel through selectively reducing its heavy metal content[J]. Journal of Hazardous Materials, 2007. 2003. 16: 54-57.
    [43] P, H. and L. S. Extractabilities of heavy metals in chemically-fixed sewage sludges[J]. J Hazard Mater, 1998. 58: 73-82.
    [44] Sanchez-Hervas JM, Armesto L.Ruiz-Martinez E.PCDD /PCDF emissions from co-combustion of coal and PVC in a bubbling fluidized bed boiler[ J].Fuel, 2005, 84(17): 2149-2157.
    [45] Hatanaka T, ImagawaT, Takeuchi M. Formation of PCDD/Fs in artificial solid waste incineration in a laboratory-scale fuidized-bed reactor: Influence ofcontents and forms of chlo-rine sources in high-temperature combustion[ J].Environ-mental Science and Technology, 2000, 34 (18): 3920-3924.
    [46]俞锐,叶青.城市污水污泥建材化的相关测试及研究[J].中国给水排水, 2004. 20(11): 1-4.
    [47]汪靓,朱南文.污水污泥建材利用现状及前景探讨[J].给水排水, 2005. 31(3): 40-44.
    [48] Kae-Long Lin, Chung-Yi Lin. Hydration characteristics of waste sludge ash utilized as cement raw material[J]. Cement and Concrete Research, 2005,. 35: 1999-2005
    [49] Lin, K.-L. and C.-Y. Lin. Hydration characteristics of waste sludge ash utilized as cement raw material[J]. Cement and Concrete Research, 2005. 35: 1999-2005.
    [50] Zabaniotou, A. and C. Theofilou. Green energy at cement kiln in Cyprus-Use of sewage sludge as a conventional fuel substitute[J]. Renewable & Sustainable Energy Reviews, 2008. 12: 531~ 541.
    [51]马培东,王里奥.水泥旋窑并行处理城市污水厂污泥的污染物排放研究[J].环境工程学报, 2009. 3(9): 1683-1686.
    [52]杨立远,许艳丽.污水污泥配料煅烧水泥对重金属固化行为影响[J].硅酸盐通报, 2008. 27(5): 1024-1027.
    [53]陈萌,韩大伟.城市污水处理厂污泥热值及影响因素分析[J].给水排水, 2008. 34(4): 37-40.
    [54]范锦忠.陶粒混凝土墙材的节能优势[J].新型墙材, 2005. 6: 26-29.
    [55]钱晓倩,邱勇.陶粒增强加气砌块外墙自保温体系[J].新型建筑材料, 2007. 5: 56-58.
    [56]甄精莲,段仲源.陶粒性质对陶粒混凝土性能的影响[J].建筑结构, 2007. 37(7): 119-120.
    [57] H, A.T. and A.S. H. Stress-strain relationship of normal, high-strength and lightweight concrete [J]. Magazine of Concrete Research, 1995. 47(70): 39-44.
    [58]李南生.剩余污水污泥用于粉煤灰陶粒的研究[J].建筑节能, 1993(2): 10-13.
    [59]许韶波.城市生活污泥制取陶粒的研究[D],福州大学. 2004.
    [60]张云峰.城市污水厂污泥资源化利用研究_污泥陶粒的研制及其应用[D],福州大学,环境与资源学院. 2004.
    [61]许国仁,邹金龙.污水污泥作为添加剂制备轻质陶粒的实验研究[J].哈尔滨工业大学学报, 2007. 39(4): 557-560.
    [62] Mun, K.J., Development and tests of lightweight aggregate using sewage sludge for nonstructural concrete[J]. Construction and Building Materials, 2007(21): 1583-1588.
    [63]蔡昌凤,徐建平.粉煤灰/污水污泥烧结陶粒的研究与应用[J].环境污染与防治, 2007. 29(1): 26-29.
    [64]黄德志,何少先.污水处理厂脱水污水污泥制作轻质陶粒添加剂的研究[J].环境科学学报. 20(9): 129-133.
    [65]岳敏,岳钦艳,城市污水厂污水污泥制备陶粒滤料及其特性[J].过程工程学报, 2008. 8(5): 972-977.
    [66] Chiou, I.-J. and K.-S. Wang. Lightweitht aggregate made from sewage sludge and incinerated ash[J]. Waste Management, 2006. 26: 1453-1461.
    [67]王兴润,金宜英.城市污水厂污水污泥烧结陶粒的可行性研究[J].中国给水排水, 2007. 23(4): 11-15.
    [68] Tsai, C.-C. and C.-S. Wang, Effect of SiO2-Al2O3-flus ratio change on the bloating characteristics of lightweight aggregate material produced from recycled sewage sludge[J]. Journal of Hazardous Materials, 2006. 134: 87-93.
    [69]公德华,魏朝晖.污水污泥的资源化-制轻质陶粒的优化条件[J].环境科学与管理, 2007. 6: 86-89.
    [70]张静文,徐淑红,电镀污水污泥制备陶粒的正交试验分析[J].砖瓦, 2008. 8: 12-14.
    [71]张云峰,盛金聪,均匀设计法在污水污泥陶粒配方试验中的应用[J].环保科技, 2007.13(3): 7-12.
    [72]刘莲香.污水处理厂污水污泥用于陶粒生产中的综合利用[J].陶瓷研究与职业教育, 2003. 1: 35-40.
    [73]严捍东.电镀污水污泥与海滩淤泥符合烧制陶粒重金属固化效果的实验分析[J].化工进展, 2005. 24(4): 383-386.
    [74] Weng, C.-H. and D.-F. Lin. Utilization of sludge as brick materials[J]. Advances in Environmental Research, 2003. 7: 679-685.
    [75]李旺,王晨.高含量城市污水污泥制备轻质微孔砖的研究[J].新型建筑材料, 2008. (3): 45-48.
    [76]林子增,王军.城市污泥为掺料烧结砖的生产性试验研究[J].环境工程学报, 2009. 3(10): 1875-1878.
    [77] Liew, A., A. Azni Idris, E. Samad. Reus-ability of sewage sludge in clay bricks[J]. J. Mater Cycles WasteManagement, 2004. 6: 41~47.
    [78]任伯帜,龙腾锐.粉煤灰-粘土砖烧制过程处理城市污水污泥的试验研究[J].环境科学学报, 2003. 23(3): 414-416.
    [79]梁启斌,周俊.王焰新,利用湖泊底泥和粉煤灰制备瓷质砖的实验研究[J].中国地质大学学报, 2004. 29(3): 347 - 351.
    [80]胡明玉,彭金生.利用城市污泥和湿排粉煤灰制备轻质高强烧结砖[J].新型建筑材料, 2008. 8: 22-24.
    [81]陈岚岚,颜桂炀.不同污水处理厂脱水污泥烧制建筑瓷砖的初步研究[J].福建师范大学学报, 2008. 24(4): 61-65.
    [82]于衍真,管丽攀.污泥渗水砖的制备研究[J].环境工程学报, 2008. 2(12): 1691-1694.
    [83] Lin, D.-F, Chih-Huang Weng. Use of sludge ash as brick material [J]. Journal of Environmental Engineering, 2001. 127(10): 922~927.
    [84]伊军,谭学军.污水污泥处理处置与资源化利用[M].北京:化学工业出版社,2004.
    [85]马学文,翁焕新.温度与颗粒大小对污泥干燥特性的影响[J].浙江大学学报, 2009. 43(9): 1661-1666.
    [86]杨时元.重庆市、四川省陶粒页岩矿产资源分布及开发方向初探[J].砖瓦世界, 2007. (6): 36-40.
    [87]于乾.页岩烧结砖的优势及发展方向[J].砖瓦世界, 2006. (1): 24-25.
    [88]刘发荣.新型墙体材料用页岩资源一般特征及开发利用前景[J].中国非金属矿工业导刊, 2005. 4(48): 21-23.
    [89]李寿德.陶粒与固体废弃物资源化利用[J].砖瓦, 2006. (10): 108-111.
    [90]彭晓峰.陈剑波,污泥特性及相关热物理研究方向.中国科学基金, 2002. 5.
    [91]周亚栋.无机材料物理化学[M]. 2003:武汉工业大学出版社.
    [92]唐敏,邓寅生,城市污水处理厂污泥的资源化利用研究[J].河南理工大学学报,2009,28(3): 369-372
    [93]王绍文,秦华.城市污泥资源利用与污水土地处理技术[M].北京:中国建筑工业出版社,2007.
    [94]胡明玉,彭金生.利用城市污泥和湿排粉煤灰制备轻质高强烧结砖[J].新型建筑材料, 2008(8): 22-24.
    [95] Binici, H , O.A. etal. Thermal isolation and mechanical properties of fibre reinforced mud bricks as wall materials. Construction and Building Materials[J], 2007. 21: 901-906.
    [96] Shinogiy , Kanriy, Pyrolysis of plant nimaland humanwaste: physical and chemical characterization of pyrolytic product. Bioresource Technology[J], 2003. 90(3): 241-247.
    [97]李海英,张书廷,.城市污水污泥热解试验及产物特性[J].天津大学学报, 2003. 39(6): 741-744.
    [98]华北油建一公司.粘土烧胀机理探讨及劣质粘土烧制陶粒工艺[J]. 1988(1): 36-39.
    [99]邵靖邦,邵旭新.煤中矿物成分对粉煤灰性质的影响[J].煤炭加工与综合利用, 1996(6): 37-41.
    [100]李宝霞,张济宇.煤灰渣熔融特性的研究进展[J].现在化工, 2005. 25(5): 22-26.
    [101]郭玉顺,刘元鹤.斜发沸石[1]岩轻骨料的膨胀机理[J].硅酸盐学报, 1985. 13(1): 13-17.
    [102]张明华,张美琴.煤矸石陶粒的膨化机理及其研制[J].吉林地址, 1999(4): 8-14.
    [103]陈烈芳.烧胀粉煤灰陶粒的膨胀机理研究[J].砖瓦, 2005(11): 7-11.
    [104]张学亮,邬文斌.粘土质页岩陶粒膨胀机理的研究[J].红外研究, 1983. 2: 281-284.
    [105]王顺元,陈豪吉.水库淤泥烧制轻集料的膨胀机理研究[J].建筑砌块与砌块建筑, 2005(6): 42-47.
    [106] KariusV , HamerK. pH and grain-size variation in leac-hing tests with bricks made of harbour sediments com-pared to commercial bricks [J]. Sci Total Environ, 2001. 278(13): 73-85.
    [107] J, C , T. JM. Incineration of doped sludges influidized bed. Fate and partitioning of six targeted heavymetals. I. Pilotplantused and results[J]. JHazard-ousMaterials, 2000. 80(13): 81-105.
    [108]胡小英,田书磊.氯化剂对垃圾焚烧飞灰中重金属挥发特性的影响[J]. 28, 2008. 7: 614-619.
    [109]胡建杭,王华.垃圾焚烧过程重金属的氯化转化与挥发[J].材料与冶金学报, 2008. 7(1): 69-74.
    [110]王学涛,金保升.气氛对焚烧飞灰熔融过程中重金属行为的影响[J]. 2006. 26(7): 47-52.
    [111]王雷,金宜英, CaO /SiO2对流化床焚烧飞灰熔融过程中重金属挥发的影响[J].污染治理与防治, 2009. 30(8): 16-19.
    [112]刘淑静,李爱民.温度对污泥焚烧残渣中重金属形态分布及残渣综合毒性的影响[J].安全与环境学报, 2008. 8(1): 43-47.
    [113]李宝霞,张济宇.现在化工.煤灰渣熔融特性的研究进展[J], 2005. 25(5): p. 22-26.
    [114]胡小英,田书磊.氯化剂对垃圾焚烧飞灰中重金属挥发特性的影响[J].中国环境科学, 2008. 28(7): 614-619.
    [115] T, W.Q., N. P, M. Cehui. Removal of heavy metal from sewage sludge by low costing chemical method and recycling in agriculture [J]. J of Environ Sci, 1998. 10(1): 122-128.
    [116] J, W.D , H.J.Y. C. Variables affecting metals removal from sludge [J]. J Water Pollut Control Fed, 1982. 54(12): 42-48.
    [117] D., T.R , T.F. T,. Bacterial leaching of metal from digested sewage sludge by indigenous iron2oxidizing[J]. Environmental Pollution, 1993. 82: 9-12.
    [118] Y, Z.D., L.Y. Q, S.Y. K. Feasibility study on biological processing technology of metal material[J]. Science in china ( Series C), 1997. 27(5): 410-414.
    [119] D., T.R., M. J., B.J. F. Simultaneous sewage sludge digestion and metal leaching: Effect of temperature[J]. Application Microbiology Biotechnology, 1996. 46: 422-431.
    [120]王学涛,金保升.气氛对焚烧飞灰熔融过程中重金属行为的影响[J].中国电机工程学报, 2006. 26(7): 47-52.
    [121]王陆军,金明吉,富田太平.城市固体废物焚烧炉飞灰中重金属酸溶出研究[J].西南师范大学学报, 2006. 31(6): 90-94.
    [122]丁世敏,幸元会.重庆垃圾焚烧飞灰中重金属浸出特征研究[J].西南师范大学学报, 2009. 34(1): 146-150.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700