用户名: 密码: 验证码:
金川高镁型低品位硫化镍矿生物浸出的应用基础与技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国金川公司(JNMC)拥有约400 Mt低品位硫化镍矿,平均品位为Ni 0.60%、Co 0.026%、Cu 0.30%、Fe 10.4%、S 2.2%、MgO 32%、CaO 0.80%、SiO2 39%和Al2O32.0%,是典型的高镁型低品位硫化镍矿。由于高昂的成本和日趋严紧的环保要求,采用处理富矿的生产工艺处理这些贫矿是不可行的。因此,有必要开发一种经济的低品位硫化镍矿处理工艺。另外,公司在处理冶炼烟气的过程中,会产生一些酸性废水,其pH值为0.0-0.3,这些酸性废水必须经过处理达标后才能排放,增加了生产成本,因此酸性废水的综合利用也势在必行
     本文选育了命名为Jc-1的A. ferrooxidans (FJ427686和FJ427687)、命名为Jc-2的A. thiooxidans (FJ427688)和编号为DSM2391的L. ferrooxidans混合菌(其中Jc-1和Jc-2来自金川尾矿坝,L.f.菌购自DSMZ),对金川高镁型低品位硫化镍矿的生物浸出进行了系统的试验研究,得到如下结论:
     (1)金川矿的脉石矿物为橄榄石、辉石、蛇纹石、绿泥石、透闪石和碳酸盐,MgO含量高,为30-35%;硫化物主要为磁黄铁矿黄铁矿和黄铜矿
     (2)金川尾矿坝代表了一个高度特异的人工地球化学环境。矿浆中含有少量硫化矿,矿浆pH为1-3,在适合细菌生长的同时,由于矿浆中富含高浓度的无机盐和浮选药剂残留,对细菌有较大的选择压力。故该极端环境仅检出A. ferrooxidans和A. thiooxidans,菌群相对比较简单。
     (3)野生的Jc-1经紫外线诱变处理后,亚铁氧化能力显著提高,但诱变育种不适合耐高镁浸矿菌的选育。
     (4)镁对于细菌生长是必需的,但是当Mg2+超过细菌的调节范围时,过高的渗透压会导致细菌死亡。在金川细菌浸出体系的所有离子中,对混合菌生长负面影响最大的是Mg2+。在驯化前,当溶液中的Mg2+浓度为0.6 mol/L (14.6 g/L)时,细菌的生长繁殖非常缓慢;当Mg2+浓度为0.8 mol/L (19.4 g/L)时,细菌开始死亡。因此采用15g/L为最初的Mg2+驯化浓度,通过逐渐提高培养基中Mg2+的浓度,逐步提高细菌对Mg2+的耐受力。经过2年的耐Mg2+驯化,浸矿混合菌的耐Mg2+能力为:当溶液中的Mg2+浓度在1.04 mol/L (25 g/L)时,细菌生长良好;但当溶液中Mg2+浓度升至1.25 mol/L (30 g/L)时,细菌生长非常缓慢;当溶液Mg2+浓度升至1.46 mmol/L(35 g/L)时,细菌开始死亡。随着Mg2+驯化浓度的提升,驯化时间明显延长,在15 g/L的Mg2+浓度下细菌驯化时间为8周,在25 g/L的Mg2+浓度下细菌驯化时间则需要37周,表明随着驯化浓度的不断升高,细菌耐Mg2+驯化难度不断加大。
     (5)采用Jc-1和镍黄铁矿、磁黄铁矿的纯矿物进行了一系列生物浸出试验研究。结果表明:在常温和pH 2.0的试验条件下,镍黄铁矿以接触浸出为主,磁黄铁矿以非接触浸出为主,细菌的存在大大加强了矿物的溶解。
     (6)采用混合菌进行了金川高镁型低品位硫化镍矿柱浸试验研究以考察其技术可行性。结果表明:在室温下,金川低品位硫化镍矿经过300天的浸出(包括55天的硫酸预浸和245天的细菌浸出),有价金属浸出率为Ni 90.3%、Co 88.6%和Cu 22.5%。在预浸阶段,采用高酸度硫酸尽可能多地浸出矿石中的MgO以减少MgO在细菌浸出阶段的浸出,在细菌浸出阶段采用经过耐Mg2+驯化的细菌并通过排液以减小溶液中Mg2+对浸矿细菌的抑制,以上3种方法联合使用可以有效降低矿石中MgO的浸出对细菌浸出过程的影响。
     (7)在细菌柱浸试验的基础上,对金川低品位硫化镍矿进行了0.5 Kt的细菌堆浸试验以考察细菌堆浸法处理金川矿的经济性。经过350天的堆浸试验(包括80天的硫酸预浸和270天的细菌浸出),有价金属浸出率分别为Ni 84.6%、Co 75.0%和Cu 32.6%,浓硫酸消耗总量为600 kg/t矿石,酸性废水处理量为1.06 m3/t矿石。该有价金属回收率表明试验室试验可以成功有效地转化为扩大的工业级试验。
     (8)细菌浸出液经除铁、CCD浓密洗涤和镍钴铜共沉,镍钴铜的总回收率均不低于96%。
     (9)经济可行性模型和环境友好性评价结果表明:如果能获得廉价硫酸,采用细菌浸出工艺处理金川低品位硫化镍矿不但经济可行,而且环保安全。
Jinchuan Groop (JNMC) has about 400 Mt of low-grade nickel sulfide ore. The average grades of the ore are Ni 0.60%, Co 0.026%, Cu 0.30%, Fe 10.4%, S 2.2%, MgO 31%, CaO 0.80%, SiO2 39% and Al2O3 2.0%, it is typically a low-grade nickel-bearing sulfide ore containing high levels of magnesium. Due to the high cost of fuels and the implementation and enforcement of stricter environmental regulations, the existing process for high grade ores is not feasible for low-grade ores. Therefore choosing an economical recovery process for the low-grade ore is necessary. In addition, a large quantity of acid wastewater (dilute sulfuric acid solution; pH 0.0-0.3) is produced by off-gas treating during smelting. This effluent is costly to treat so that it meets the discharge standards, it is therefore important to utilize the acid wastewater comprehensively.
     In this paper, breeding a mixture of mesophiles composed of A. ferrooxidans (FJ427686 and FJ427687) named Jc-1, A. thiooxidans (FJ427688) named Jc-2 and L.f. numbered DSM2391 (Jc-1 and Jc-2 were collected from the tailings dam of JNMC and DSM2391 was purchased from DSMZ), a systematic experimental study on the bioleaching of Jinchuan low-grade nickel-bearing sulfide ore contaning high levels of magnesium was carried out and coclusions are drawn as follows:
     (1) The gangue minerals of Jinchuan ore are olivine, pyroxene, serpentine, chlorite, tremolite and carbonate and the content of MgO is high (30-35%); the sulfide minerals of the ore mainly are pyrrhotite, pentlandite and chalcopyrite.
     (2) Jinchuan tailings dam represents a highly specific artificial geochemical environment. The pulp is suitable for the bacterial growth due to a low quantity of sulfide minerals at pH 1-3; but it also has a great selection pressure on the bacteria due to high concentrations of inorganic salts and flotation reagent residue. Therefore only a simple bacterial community was achieved in the extreme environment, which includes A. ferrooxidans and A. thiooxidans.
     (3) The capacity of the ferrous oxidation has significantly increased when the wild strains of Jc-lwas treated by ultraviolet mutagenesis, but the mutation breeding is not suitable for improving the resistant of the bacteria to high levels of magnesium.
     (4) Magnesium is indispensable in the growth of bacteria. However Mg2+ beyond the range of bacteria regulation will lead to exorbitant osmotic pressure which is lethal to bacteria. Of all the ions in the Jinchuan bacterial leaching system, the greatest negative impact on the growth of mixed bacteria is Mg2+.Before adaptation, the mixed bacteria reproduce very slowly when the concentration of Mg2+ is 0.6 mol/L (14.6 g/L) and the mixed bacteria die out when the concentration of Mg2+ is 0.8 mol/L (19.4 g/L). Thereafter, the adaptation of the mixed bacteria to 15 g/L Mg2+ as the initial adaptation concentration in the medium is performed through serial sub-culturing and gradually the Mg2+ concentration in the medium is increased over nearly 2 years. After adaptation, The mixed bacteria are eugenic under 1.04 mol/L (25 g/L) Mg2+, reproduce very slowly under 1.25 mol/L (30 g/L) Mg2+ and die out at a concentration of Mg2+ (1.46 mmol/L or 35 g/L). With the upgrading of the adaptation concentration of Mg2+, adaptation time is prolonged markedly:only 8 weeks'acclimation time is needed at the concentration of 15 g/L but 37 weeks'acclimation time is needed at the concentration of 25 g/L, which indicates that the adapatation of the bacteria to magnesium is becoming increasingly difficult with the the upgrading of the adaptation concentration of Mg2+.
     (5) Using Jc-1, a serial of experimental studies on the bioleaching of the pure mineral of pentlandite and pyrrhotite were carried out. The results show that the contact leaching plays an important role in the bioleaching of pentlandite while the non-contact leaching plays an important role in the bioleaching of pyrrhotite at room temperature and pH 2.0. The effects on the dissolution of the minerals were significantly strengthened at the presence of bacteria.
     (6) Column bioleaching was performed to investigate the technical feasibility to process Jinchuan low-grade nickel-bearing sulfide ore containing high levels of magnesium using a mixture of mesophiles. The results show that an extraction of nickel (90.3%), cobalt (88.6%) and copper (22.5%) were achieved within a 300 days leaching process including a 55 days acid pre-leaching stage and a 245 days bioleaching stage at the room temperature. The results of the valuable metals extraction indicate that three effective means are effective to successfully reduce the disadvantages of magnesia in the ore. They were preleaching to remove most leachable magnesia, adaptation of the mixed mesophiles to improve the tolerance and periodic bleeds of a portion of the pregnant leaching solution to control the Mg2+ concentration based on the tolerance of the mixed microorganisms.
     (7) Based on the results of the column bioleaching,0.5 Kt heap bioleaching of the Jinchuan low-grade nickel sulfide ore was performed to test the economical feasibility of using heap bioleaching to process the Jinchuan low-grade nickel sulfide ore. A nickel (84.6%), cobalt (75.0%) and copper (32.6%) extraction was achieved after 350 days of heap leaching, including 80 days of acid pre-leaching and 270 days of bioleaching. The overall concentrated sulfuric acid consumption was 600 kg per ton of the ore and the acid wastewater produced by off-gas treating during the smelt process was utilized efficiently with consumption of 1.06 m3 per ton of the ore. The results of the valuable metals extraction indicate that the process of translation of the basic lab achievements into a cost-effective, reliable and robust plant-scale operation is successful.
     (8) The respective overall recoveries of nickel, cobalt and copper are not less than 96% after the iron removal, CCD thickening wash and co-precipitation of Ni, Co and Cu from the bioleaching solution.
     (9) Economical feasibility model and overall evaluation show that the bioleaching process is profitable and eco-friendly if the cheap acid is available on site.
引文
[1]Weeks, Mary Elvira. The discovery of the elements:Ⅲ. Some eighteenth century metals. Journal of Chemical Education,1932,9:22.
    [2]Nickel-Wikipedia. http://en.wikipedia.org/wiki/Nickel.
    [3]Davis. ASM Specialty Handbook:Nickel, Cobalt, and Their Alloys (ISBN 9780871706850). Materials Park, Ohio:ASM International,2000.7-13.
    [4]Kuck, Peter H. Mineral Commodity Summaries 2006:Nickel. United States Geological Survey. http://minerals.usgs.gov/minerals/pubs/commodity/nickel/ mcs-2008-nicke.pdf.
    [5]Paola Costamagna, and Supramaniam Srinivasan. Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000:Part II. Engineering, technology development and application aspects. Journal of Power Sources,2001,102(1-2):253-269.
    [6]Barnes, S.,2005. Nickel market. http://www.em.csiro.au/news/facts/nickel/ni_market.htm.
    [7]ABARE,2007. http://www.abareconomics.com/interactive/ac_sept07/htm/nic-kel.htm.
    [8]USGS Minerals Information, n. Nickel statistics and information. http://minerals.usgs.gov/minerals/pubs/commodity/nickel/.
    [9]Pratt, R.. Australia's Nickel Resources. Canberra:Bureau of Resource Sciences,1996.52.
    [10]Geoscience Australia, in press. Australia's Identified Mineral Resources 2006. Canberra:Geoscience Australia,2006.
    [11]Elias, M.. 2002. Nickel laterite deposits—geological overview, resources and exploitation. In:Cooke, D.R., Pongratz, J. (Eds.), Giant Ore Deposits: Characteristics, Genesis, and Exploration. Centre for Ore Deposit Research Special Publication, vol.4. University of Tasmania, Hobart, pp.205-220.
    [12]Dean M. Hoatson, Subhash Jaireth, A. Lynton Jaques. Nickel sulfide deposits in Australia:Characteristics, resources, and potential. Ore Geology Reviews,2006,29:177-241.
    [13]周京英,孙延绵.中国铜镍资源储量-品位分布特征的研究.地质与勘探,2005,41(6):49-51.
    [14]彭亮,李俊,袁浩涛等.我国镍资源现状及可持续发展.矿业工程,2004, 2(6):1-2.
    [15]朱训.中国矿情(第二卷).北京:科学出版社,1999.312-331.
    [16]郭声馄,尚福山.中国有色金属现状及发展.中国矿业,1999,8(5):23-26.
    [17]张莓.我国镍的供应面临挑战.资源形势与投资环境,2004,10:23.
    [18]王恭敏.镍资源发展透视.有色金属工业,2005,2:9.
    [19]Ellis, R.需要更多的镍.国土资源情报,2004,10:48.
    [20]何焕华.世界镍工业现状及发展趋势.有色冶炼,2001,6:1.
    [21]杨显万,沈庆峰,郭玉霞.微生物湿法冶金.北京:冶金工业出版社,2003.2-3.
    [22]《浸矿技术》编委会编.浸矿技术.北京:原子能出版.1994.
    [23]Taylor J H and Whelan P F. The leaching of cuprous pyrite and the precipitation of copper at Rio Tinto. Spain, Trans. Inst. Min. Metal.,1943, 52:35-71.
    [24]Rudolfs W. Oxidation of pyrites by microorganisms and their use for making mineral phosphates available. Soil Sci.,1922,14:135-147.
    [25]Rudolfs W and Helbronner A. Oxidation of zinc sulfides by microorganisms. Soil Sci.,1922,14:459-464.
    [26]Colmer A R and Hinckle M E. The role of microorganisms in acid mine drainage. A Preliminary Report, Science,1947,106:253-256.
    [27]Temple K L and Delchamps E W. Autotrophic bacteria and the formation of acid in bituminous coal mines. Applied Microbiology,1953,1:255-258.
    [28]Leathen W W, Kinsel N A and Braley S A. Ferrobacillus ferrooxidans:A chemosynthetic autotrophic bacterium. Bacterial.,1956,72:700-704.
    [29]Bryner L C, et al. Microorganisms in leaching of sulfide minerals. Industrial and Engineering Chemistry,1954,46:2587-2592.
    [30]Zimmerly S R, Wilson D G and Prater D J. Cyclic leaching process employing Iron oxidizing bacteria. U. S. Patent,1958:2829964.
    [31]Malouf E E and Prater J D. Role of bacterial oxidation in leaching processes. Metals,1961,13:353-356.
    [32]Spedden H R, Malouf E E and Prater J D. Cone-type precipitators for improved copper recovery. Metals,1966,18:1137-1141.
    [33]Woodcock J T. Copper dump leaching. Proc. Austral. Inst. Min. Met.,1967, 224:47-66.
    [34]Shoemaker R S and Darrah R M. The economics of heap leaching, Mining Engineering.1968,20(12):90-92.
    [35]Fisher J R. Bacterial leaching of elliot lake uranium ore. Trans. Can. Min. Met. 1966,69:167-171.
    [36]McGregor R A. The bacterial leaching of uranium. Nuclear Applications, 1969,6.
    [37]Gow W A and Ritcey G M. The treatment of canadian uranium ores. A Review. Can. Min. Met.1969,2:1330-1339.
    [38]Silverman M P. Mechanism of Bacterial Pyrite Oxidation. Bacteriol., 1967,94:1046-1051.
    [39]Brock T D, et al. Thermophilic microorganisms and life at high temperatures. Arch Microbiol.,1972,84:54.
    [40]Brierley C L and Brierley J A. A chemoautotrophic and thermophilic Microorganism isolated from an acid hot spring. Canadian J. Microbiol.,1973, 19:183-188.
    [41]Golocheva R S and Karavaiko G I. A new genus of thermophilic spore-forming bacteria. Mikrobiologiya,1978,47:658-665.
    [42]Markosyan G E. A new acidophilic iron bacterium leptospirillum ferrooxidans. Biol. Zh. Arm.,1972,25:26-33.
    [43]Torma A E. The role of thiobacillus ferrooxidans in hydrometallurgical processes. Advances in Biochemical Engineering,1977,6:1-37.
    [44]Torma A E. Effects of carbon dioxide and particle surface area on the microbiological leaching of a zinc sulfide concentrate. Biotechnol. Bioeng., 1972,14:777-786.
    [45]McElroy R O and Bruynesteyn A. Continuous leaching of chalcopyrite concentrates:Demonstration and economic analysis, Metallurgical applications of bacterial leaching and related microbiological phenomena. Murr L E, Torma A E and Brierley J A. eds., New York, Academic Press,1978: 441-472.
    [46]Torma A E. Microbiological extraction of cobalt and nickel from sulfide ores and concentrates. Canadian patent,1975, No.960463.
    [47]Schwartz W. Conference bacterial leaching. Weinheim, Germany, Verlag Chemie,1977:1-270.
    [48]Murr L E, Torma A E and Brierley J A eds., Metallurgical applications of bacterial leaching and related microbiological phenomena. New York, NY, Acaedmic Press,1978:1-526.
    [49]Trudinger P A, Walter M R and Ralph B J. Biogeochemistry of ancient and modern envirnments. Canberra, Australia, Australian Academy of Science,1980: 1-723.
    [50]Rossi G and Torma A E. Recent progress in biohydrometallurgy. Iglesias, Italy, Associazione Mineraria Sarda,1983:1-752.
    [51]Lawrence R W, Branion R M R and Ebner H G. Fundamental and applied biohydrometallurgy. Amsterdam, The Netherlands, Elsevier,1986:1-501.
    [52]Norris P R and Kelly D P. Biohydrometallurgy. Kew Surrey, Great Britain, 1988:1-578.
    [53]Salley J, McCready R G and Wichlacz P L. Biohydrometallurgy. Ottawa, Ontario, Canada, CANMET Publication SP89-10,1989:1-771.
    [54]Bustos S, Castro S, Montealegre S. The sociedad mineral pudahuel bacterial thin-layer leaching process at Lo Aguirre. FEMS Microbol Revs,1993,11: 231-236.
    [55]Schnell H. A. Bioleaching of copper, In:D.E. Rawlings (eds). Biomining: Theory, Microbes and Industrial Processes, New York:Springer,1997.21.
    [56]Brierley J A, Brierley C L. Present and future commercial applications of biohydrometallurgy. Hydrometallurgy,2001,59:233-239.
    [57]Watling H R. The bioleaching of sulphide minerals with emphasis on copper sulphides—A review. Hydrometallurgy,2006,84:81-108.
    [58]Olson G J, Brierley J A, Brierley C L. Bioleaching review part B:Progress in bioleaching:applications of the microbial processes by the mineral industries. Applied Microbiology Biotechnology,2003,63:249-257.
    [59]Suzuki I. Microbial leaching of metals from sulfide minerals. Biotechnology Advances,2001,19:119-132.
    [60]Rawlings D E, Silver S. Mining with microbes. Bio/Technology,1995,13: 773-800.
    [61]Brierley C L. Bacterial succession in bioheap leaching. Hydrometallurgy,2001, 59:249-255.
    [62]Morin D, Lips A, Pinches T, et al. BioMinE-Integrated project for the development of biotechnology for metal-bearing materials in Europe. Hydrometallurgy,2006,83:69-76.
    [63]Rawlings D E. Microbially assisted dissolution of minerals and its use in the mining industry. Pure Appl. Chem.,2004,76(4):847-859.
    [64]裘荣庆.微生物冶金应用现状.国外金属矿选矿.1994,31(8):1-3.
    [65]李宏煦,邱冠周,胡岳华等.大宝山废铜矿细菌浸出铜的研究.矿产综合利用.2000,(5):31-33.
    [66]柳建设,邱冠周,王淀佐.硫化矿细菌浸出机理探讨.湿法冶金.1997,16(3):1-3.
    [67]邱冠周,王军,钟康年.银催化铜矿石的细菌浸出.矿冶一工程.1998,18(3):22-26.
    [68]李洪枚.细菌浸出含镍磁黄铁矿金矿.湿法冶金.2000,19(3):28-31.
    [69]童雄,郭学君.从活化能角度探讨细菌氧化硫化矿机理.有色金属.1998,50(2):76-80.
    [70]张维庆,魏德洲,沈俊.氧化亚铁硫杆菌对黄铜矿的氧化作用.矿冶工程.1999,19(3):32-33.
    [71]钟慧芳,李亚琴.细菌浸出中等低品位硫化镍矿.微生物学报.1980,20(1):82-87.
    [72]孙讽芹.难选低品位铜镍矿细菌浸出的研究.矿冶.2000,9(2):54-59.
    [73]常志东等.氧化亚铁硫杆菌对硫铁矿和含铜硫铁矿浸矿动力学研究.湿法冶金.1997,34(3):4-8.
    [74]裘荣庆等.含金硫化矿石的细菌氧化预处理.黄金科学技术.1994,(2):34-41.
    [75]Fernado A. Present and future of bioleaching in developing countries. Electronic Journal of Biotechnology,2002,5(2):196-199.
    [76]王淀佐.生物工程与矿物提取技术.中国科学技术前沿(中国工程院版).北京:高等教育出版社,1999.
    [77]王淀佐,李宏煦.硫化矿生物冶金的研究现状与进展.矿冶,2002,11(增).
    [78]李宏煦,王淀佐.生物冶金中的微生物及其作用.有色金属,2003,55(2):60-63.
    [79]Isamu Suzuki Microbial leaching of metals from sulfide minerals. Biotechnology Advances,2001,19:119-132.
    [80]李宏煦.硫化铜矿的生物冶金.北京:冶金工业出版社,2007.11-13.
    [81]邓敬石.中等嗜热菌强化镍黄铁矿浸出的研究:[博士学位论文].昆明:昆明大学,2002.
    [82]钱林.Acidithiobacilius ferrooxidans和Acidiphilium spp.细菌的分离鉴定及其 协同浸出黄铜矿能力研究:[硕士学位论文].长沙:中南大学,2008.
    [83]符波.硫氧化细菌的分离鉴定以及与铁氧化细菌混合浸出黄铜矿:[硕士学位论文].长沙:中南大学,2007.
    [84]高健.极端环境中嗜铁钩端螺旋菌的选择性分离、鉴定与特性研究:[博士学位论文].长沙:中南大学,2007.
    [85]李宏煦,王淀佐,陈景河等.细菌浸矿作用分析.有色金属,2003,55(3):68-71.
    [86]李宏煦,阮仁满,宋永胜等.矿物加工中的微生物技术.矿冶,2002,11(增)
    [87]Ann P. Wood and Don P Kelly. Autotrophic and mixotrophic growth of three thermoacidophilic iron-oxidizing bacteria. FEMS Microbiol Lett,1983,20:107-112.
    [88]P.R. Norris and D.W. Barr. Growth and iron oxidation by acidophilic modetate thermohiles. FEMS Microbiol Lett,1985,28:221-224.
    [89]R.M. Marsh and P.R. Norris. The isolation of some thermophilic, autotrophic, iron-and sulfur-oxidizing bacteria. FEMS Microbiol Lett,1983;17:311-315.
    [90]N.W. Le Roux, D.S. Wakerley and S.D. Hunt. J. Gen. Mirobiol,1977,100:201.
    [91]J.A. Brierley and S.J. Lockwood. FEMS Microbiol Lett,1977,2:163-165
    [92]J.A. Brierley. Appl. Environ. Microbiol,1978 36:523-525.
    [93]R.S. Golovacheva and G.I. Karavaiko. A new genus of thermophilic spore-forming bacteria. Microbiology(Moscow),1978,47(5):658-665.
    [94]J.A. Brierley, P.R. Norris, D.P. Kelly and N.W. Le Roux. Eur. J. Appl. Microbiol. Biotechnol,1978,5:291-299.
    [95]P.R. Norris, J.A. Brierley and D.P. Kelly. FEMS Microbiol Lett,1980, 7:119-122.
    [96]R.E. Rivera-Santillan, A. Ballester Perezb, M.L. Blazquez Lzquierdo and F. Gonzalez. Bioleaching of a copper sulphide flotation concentrate using mesophilic and thermophilic microorganisms. Biohydrometallurgy and the Environment Toward the Mining of the 21st Century,1999,PartA,149-158.
    [97]N.S. Vardanyan. Oxidation of chalcopyrite by strains of the thermoacidophilic bacterium sulfobacillus thermosulfidooxidans. Biol. Zh. Arm(Armenian),1999, 52(1):38-43.
    [98]N.S. Vardanyan. The effect of external factors on pyrite oxidation by sulfobacillus thermosulfidooxidans sulbsp asporogenes. Biotekhnologiya(Russ), 1998,(6):48-55.
    [99]Cwalina, Beata. Metal leaching from sulfide minerals by sulfur-and iron- oxidizing mixotrophic bacteria. Fizykochem.. Probl. Mineralurgii(Pol),1994,28: 145-152.
    [100]Cwalina, Beata. Adaptive simulation of resistance to copper and zinc ions in mixotrophic iron and sulfur-oxidizing bacteria. Bull. Pol. Acad. Sci.:Biol. Sci, 1994,42(2):177-181.
    [101]N.S. Vardanyan. A new thermoacidophilic bacterium belonging to the Sulfobacillus genus. Mikrobioloyiya(Russ),1988,57(2)268-274.
    [102]N.S. Vardanyan. The effect of organic compounds on the growth and oxidation of inorganic substrates by sulfobacillus thermosulfidooxidans asporogenes. Mikrobioloyiya(Russ),1990,59(3):411-417.
    [103]N.S. Vardanyan. The resistance of sulfobacillus thermosulfidooxidans sulbsp asporogenes against copper, zinc and nickel ions. Biotekhnologiya(Russ),1990, 59(4):587-594.
    [104]柳建设.硫化矿生物提取及腐蚀电化学研究:[博士学位论文].长沙:中南大学,2002.
    [105]M.A. Jordan and C.V Philips. Acidophilic bacteria-their potential mining and environmental applications. Min Eng,1996,9 (2):169-181.
    [106]D.A.Clark and P.R. Norris. Oxidation of mineral sulphides by thermophilic mcroorganisms. Min Eng,1996,9 (2):169-181.
    [107]Y Konishi, S. Toshido and S. Asai. Bioleaching of Pyrite by acidophilic thermophile Acidianus brierleyi. Biotechnol. Bioeng,1995,48:592-600.
    [108]Y Konishi, K. Kogasaki, and S. Asai. Bioleaching of Pyrite by Acidianus Brierley in a continuous-flow stirred-tank reactor. Min Eng,1997,52(24): 4525-4532.
    [109]C.J. Han and R.M. Kelly. Biooxidation capacity of the extremely thermoacidophilic archaeon Metallosphaera Sedula under bioeenergetic challenge. Biotechnol Bioeng,1998,58(6):617-624.
    [110]C.L. Brierley and L.E. Murr. Leaching:use of a thermophilic and chemoautotrophic microbe. Science,1973,179:488-490.
    [111]S.R. Hutchins, J.A. Brierley and C.L. Brierley. Microbial pretreatment of refractory sulfide and carbonaceous ores improves the economics of gold recovery. Min. Eng,1988,40:249-254.
    [112]Thomas D. Brock and Katherine M. Brock. Sulfolobus:Anew genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch. Mikrobiol,1972,84:54-68.
    [113]M. Nemati and STL Harrison. Effect of solid loading on thermophilic bioleaching of sulfide minerals. J Chem Technol Biotechnol,200,75:526-532.
    [114]张成桂.嗜酸氧化亚铁硫杆菌适应与活化元素硫的分子机制研究:[博士学位论文].长沙:中南大学,2008.
    [115]Bryant R D, McGroarty K M, Costeron J W, et al. Isolation and characterization of a new acidophillic Thiobacillus species (T. albertis). Can. J. Microbio,29: 1159-1170.
    [116]Brierley J A, Norris P R, Kelly D P, et al. Characteristic of a moderately thermophillc and acidophilic iron oxidizing Thiobacillus. Eur. J. Appl. Microbiol. Biotechnol,1978,5:291-299.
    [117]Tuovinen O H, Niemela S I, Gyllenberg HG. Tolerance of Thiobacillus ferrooxidans to some metals. Eur. J. Appl. Microbiol. Antonie van Leeuwenhoek Journal of Microbiology and Serology,1971,37:489-496.
    [118]Natarajan K A, Iwasaki I. Role of galvanic interactions in the bioleaching of Duluth gabbro copper-nickel sulfides. Separation Science and Technology,1983, 18:1095-1111.
    [119]Sampson M I, Phillips C V. Influence of base metals on the oxidising ability of acidophilic bacteria during the oxidation of ferrous sulfate and mineral sulfide concentrates using mesophiles and moderate thermophiles. Minerals Engineering,2001,14:317-340.
    [120]Li H M, Ke J J. Influence of Cu2+ and Mg2+ on the growth and activity of Ni2+ adapted Thiobacillus ferrooxidans. Minerals Engineering,2001,14:113-116.
    [121]Watling H R. The bioleaching of nickel-copper sulfides. Hydrometallurgy, 2008,91:70-88.
    [122]Wolfgang Sand, Tilman Gehrke, Peter-Georg Jozsa et al. (Bio) chemistry of bacterial leaching direct vs.-indirect bioleaching. Hydrometallurgy,2001, 59(2-3):159-175.
    [123]Helmut Tributsch. Direct versus indirect bioleaching. Hydrometallurgy, 2001,59 (2-3):177-185.
    [124]Isamu Suzuki. Microbial leaching of metals from sulfide minerals. Biotechology Advances,2001,19 (2):119-132.
    [125]GS. Hansford, T. Vargas. Chemical and electrochemical basis of bioleaching processes. Hydrometallurgy,2001,59 (2-3):135-145.
    [126]蓝卓越.高铁锌硫化矿的细菌浸出基础及其工艺研究:[博士学位论文].长沙:中南大学,2005.
    [127]Mebta A P. Kinetic study of sulfide leaching by galvanic interaction between chalcopyrite, pyrite and sphalerite in the presence of T. ferrooxidans (30℃) and thermophilic microorganism (55℃).Biotech. Bioeng,1982,24 (4):919-940.
    [128]Natarajan K A, wasaki I. Role of galvanic interactions in the bioleaching of Duluth gabbro copper-nickel sulfides. Sep. Sci. Tech.,1983,18:1095-1111.
    [129]邱冠周,王军,钟康年等.银催化铜矿石的细菌浸出.矿冶工程,1998,18(3):22-26.
    [130]Hayato Sato, Hiroshi Nakazawa, Yasuo Kudo. Effect of silver chloride on the bioleaching of chalcopyrite concentrate. Int. J. Miner. Process,2000,59 (1): 17-24.
    [131]Ballester A, Gonzalez F, Blazquez M L et al. The use of catalytic ions in bioleaching.Hydrometallurgy,1992,29:145-160.
    [132]Deng T L, Liao M X, Wang M H et al. Investigations of accelerating parameters for the biooxidation of low-grade refractory gold ores. Miner. Eng.,2000,13. (14-15):1543-1553.
    [133]杨显万,邱定蕃.湿法冶金.北京:冶金工业出版社,1998
    [134]Belzile N, Chen Y W, Cai M F et al. A review of pyrrhotite oxidation. Journal of Geochemical Exploration,2004,84:65-76.
    [135]Ward J C. The structure and properties of some iron sulphides. Reviews of Pure and Applied Chemistry,1970,20:175-206.
    [136]Plumb J J, Muddle R, Franzmann P D. Effect of pH on rates of iron and sulfur oxidation by bioleaching organisms. Minerals Engineering,2008,21:76-82.
    [137]Salo-Zieman V L A, Kinnunen P H M. Puhakka J A. Bioleaching of acid-consuming low-grade nickel ore with elemental sulfur addition and subsequent acid generation. Journal of Chemical Technology and Biotechnology,2006,81:34-40.
    [138]van Aswegen P, van Niekerk J, Olivier W. The BIOXTM Process for the treatment of refractory gold concentrates. In:Rawlings, D.E., Johnson, D.B. (Eds.), Biomining. Berlin:Springer,2007.1-33.
    [139]Rosenblum F, Spira P. Evaluation of hazard from self-heating of sulphide rock. CIM Bulletin,1995,88(989):44-49.
    [140]Hunter C. BioHeapTM leaching of a primary nickel-copper sulphide ore. Nickel/Cobalt-8 Technical Proceedings (Perth). Melbourne:ALTA Metallurgical Services,2002.11p.
    [141]Riekkola-Vanhanen M.Talvivaara black schist bioheapleaching demonstration plant. Advanced Materials Research,2007,20-21:30-33.
    [142]Norton A E, Crundwell F K.The HotHeapTM process for the heap leaching of chalcopyrite ores. Colloquium on Innovations in Leaching Technologies (Saxonwold). Johannesburg:SAIMM,2004,24p.
    [143]Maley M. The precipitation of copper species under sulphidic heap leach conditions:[PhD Thesis]. Perth:Curtin University of Technology, School of Applied Chemistry,2006.165p.
    [144]Torma A E. Microbiological oxidation of synthetic cobalt, nickel and zinc sulfides by Thiobacillus ferrooxidans. Revue Canadienne de Biologie,1971,30: 209-216.
    [145]Zhang G, Fang Z. The contribution of direct and indirect actions in bioleaching of pentlandite. Hydrometallurgy,2005,80:59-66.
    [146]Santos L R G, Barbosa A F, Souza A D et al. Bioleaching of a complex nickel-iron concentrate by mesophile bacteria. Minerals Engineering,2006,19: 1251-1258.
    [147]Dew D W, Van Buuren C, McEwan K et al. Bioleaching of base metal sulphide concentrates:A comparison of mesophile and thermophile bacterial cultures. In:Amils, R., Ballester, A. (Eds.), Biohydrometallurgy and the Environment Toward the Mining of the 21st Century (Madrid, Spain) Part A. Amsterdam:Elsevier,1999.229-238.
    [148]Norris P R. Parrott L. High temperature mineral concentrate dissolution with Sulfolobus. In:Lawrence, R.W., Branion, R.M.R., Ebner, H.G.(Eds.), Fundamental and Applied Biohydrometallurgy (Vancouver). Amsterdam: Elsevier,1986.355-365.
    [149]Zhao Y, Fang Z. Bioleaching of Ni-Cu sulfide with acidophilic thermophile Acidianus brierleyi. The Chinese Journal of Process Engineering,2003, 3:161-164.
    [150]Puhakka J, Tuovinen OH. Microbiological solubilisation of metals from complex ore material in aerated column reactors. Acta Biotechnologica,1986,6: 233-238.
    [151]Puhakka J, Tuovinen OH. Biological leaching of sulfide minerals with the use of shake flasks, aerated columns, air-lift reactor and percolation techniques. Acta Biotechnologica,1986,6:345-354.
    [152]Ahonen L, Tuovinen O H. Bacterial leaching of complex sulfide ore samples in bench scale column reactors. Hydrometallurgy,1995,37:1-21.
    [153]Wang Z, Zhao L. The acidic oxidizing pressure leaching of Jinchuan pyrrhotite concentrate. In:Fu C, He H, Zhang C (Eds.), Proceedings of the International Conference on Mining and Metallurgy of Complex Nickel Ores (Jinchang, China). Jinchang:International Academic Publishers,1993.267-273.
    [154]Nakazawa H, Hashizume T, Sato H. Effect of silver ions on bacterial leaching of flotation concentrate of copper-nickel sulfide ores. Shigen toSozai,1993, 109:81-85 (J. Mining and Materials Processing Institute of Japan).
    [155]Nakazawa H, Koizumi M, Sato H. Bacterial leaching of copper-nickel sulfide ores from Jinchuan Mine, China. Shigen to Sozai,1992,108:731-735 (J. Mining and Materials Processing Institute of Japan).
    [156]Chen Q, Fang Z. Bioleaching of Ni,Cu and Co froma low-grade Ni-Cu sulfide ore. The Chinese Journal of Process Engineering,2001,1:369-373.
    [157]Hunter C J, Williams T L, Purkiss S A R, Chung L W C, Connors E, Gilders R D. Bacterial oxidation of sulphide ores and concentrates. United States Patent No., US 7,189,527 B2,2007,8p.
    [158]Riekkola-Vanhanen M. Talvivaara black schist bioheapleaching demonstration plant. Advanced Materials Research,2007,20-21:30-33.
    [159]Halinen A K, Rahunen N, Maatta K, Kaksonen A H, Riekkola-Vanhanen M, Puhakka J. Microbial community of Talvivaara demonstration bioheap. Advanced Materials Research,2007,20-21:579.
    [160]Wen J K, Ruan R, Guo X J. Heap leaching-An option of treating nickel sulfide ore and laterite. Nickel/Cobalt Conference (Perth). Melbourne:ALTA Metallurgical Services,2006.9p.
    [161]中国矿床编委会.中国矿床.北京:地质出版社,1985.26-33.
    [162]Zhou J Z, Bruns M A, Tiedje J M. DNA recovery from soils of diverse composition. Applied and Environmental Microbiology,1996,62:316-322.
    [163]Marchesi J R, Sato A J, Weightman T A, et al. Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Applied and Envirornmental Microbiology,1998,64:23-33.
    [164]Saitou N, Nei M T. The neighbor-joining method:a new method for reconstructing phylogenetic trees. Mol. Bio. Evol,1987,4:406-425.
    [165]Felsenstein J. Confidence limits on phylogenies:an approach using the bootstrap. Evolution,1985,39:783-791.
    [166]Demergasso C S, Galleguillos P P A, Escudero G L V. Molecular characterization of microbial populations in a low-grade copper ore bioleaching test heap. Hydrometallurgy,2005,80:241-253.
    [167]Rohwerder T, Sand W. The sulfane sulfur of persulfides is the actual substrate of the sulfur-oxidizing enzymes from Acidithiobacillus and Acidiphilium spp. Microbiology,2003,149:1699-1709.
    [168]Starky R L. Isolation of some bacteria which oxidise thiosulphate. Soil Science, 1935,39:197-215.
    [169]Thompson J D, Gibson T J, Plewniak F. The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research,1997,24:4476-4488.
    [170]Johnson D B. Importance of microbial ecology in the development of new mineral technologies. Hydrometallurgy,2001,59,147-157.
    [171]Zhou, Q G, Bo F., Bo Z H, Xi L, Jian G, Fei L F, Hua C X.Isolation of a strain of Acidithiobacillus caldus and its role in bioleaching of chalcopyrite. World Journal of Microbiology & Biotechnology,2007,23,1217-1225.
    [172]Rawlings D E, Tributsch H and Hansford G S. Reasons why 'Leptospirillum'-like species rather than Thiobacillus ferrooxidans are the dominant iron-oxidizing bacteria in many commercial processes for the biooxidation of pyrite and related ores. Microbiology-Sgm,1999,145,5-13.
    [173]徐伟昌.生物技术在核工业中的应用[M].长沙:国防科技大学出版社,2002.
    [174]聂珍媛,张在海,夏金兰.高碱脉石低品位铜镍复合矿的诱变细菌浸出.有色矿冶,2002,18(5):16-19.
    [175]Solari J A, Huerta G, Escobar B, et al. Interfacial phenomena affecting the adhension of T.ferrooxidans of sulfide mineral surface. Colloids and surface, 1992,69:159-166.
    [176]Ohmura N, Kitamura K, Saiki H. Selective adhension of T.ferrooxidans to pyrite. Appl. Environ. Microbiol.,1993,59:4044-4050.
    [177]Van loosdrecht M C, Zehnder A J B. Energetics of bacterial adhesion. Experimentia,1990,46:817-822.
    [178]Karamanev D G, Nikolov L N and Mamatarkova V. Rapid simultaneous quantitative determination of ferric and ferrous ions in drainage waters and similar solutions. Minerals Engineering,2002,15:341-346.
    [179]Pradhan N, Nathsarma K C, Srinivasa R K. Heap bioleaching of chalcopyrite: A review. Minerals Engineering,2008,21(5):355-365.
    [180]Morin D, Lips A, Pinches T, Huisman J, Frias C, Norberg A, Forssberg E. BioMinE-integrated project for the development of biotechnology for metalbearing materials in Europe. Hydrometallurgy,2006,83:69-76.
    [181]Battaglia-Brunet F, Clarens M, d'Hugues P, Godon J J, Foucher S, Morin D. Monitoring of a pyrite-oxidising bacterial population using DNA single-strand conformation polymorphism and microscopic techniques. Appl. Microbiol. Biotechnol.,2002,60:206-211.
    [182]Norris P R, Barr D W, Hinson D. Iron and mineral oxidation by acidophilic bacteria:affinities for iron and attachment to pyrite. In:Norris P R, Kelly D P (Eds.), Biohydrometallurgy, Proceedings of the International Symposium. Kew: Science and Technology Letters,1988.43-59.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700