用户名: 密码: 验证码:
电镀金刚石线锯切割单晶硅技术及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,半导体材料广泛地应用于各种微电子领域,如计算机系统、电子通讯设备、汽车、消费电子系统和工业自动控制系统等,而绝大多数的半导体材料是采用硅晶片。切片是把单晶硅由硅棒变成硅片的一个重要工序,切片质量的好坏直接影响着后续工序的工作量和成本。固结磨料线锯切片技术以其锯切效率高、锯口损耗小、面形精度高和切割环境清洁等优点,有望成为单晶硅等硬脆材料切片的未来发展方向。本文对电镀金刚石线锯切割单晶硅技术进行了深入的试验研究与理论分析,以期为电镀金刚石线锯切片技术的进一步应用提供试验和理论依据。
     在理论上探讨了单晶硅各向异性材料特性对电镀金刚石线锯切割硅晶片过程影响。分析了锯丝沿不同的晶面、晶向锯切对晶片质量的影响规律,并推荐了首选的锯丝切入方向。研究发现,在确定的工艺参数下,当锯丝切入方向使锯切两边材料的弹性模量分布关于锯丝切入方向呈对称性时,可有效地提高晶片面形质量。锯丝切入方向与被锯切晶面内的易开裂方向一致时,可有效减少晶片表面破碎。综合锯丝切入方向对晶片面形质量和表面破碎两方面影响的分析结果,锯切(100)晶面时,首选锯丝切入方向为[001]、[010]、[00(?)]和[0(?)0];锯切(110)晶面时,首选锯丝切入方向为[1(?)0]和[(?)10];锯切(111)晶面,[1(?)0],[(?)10],[01(?)],[0(?)1],[(?)01]和[10(?)]为首选的锯丝切入方向。
     通过往复式电镀金刚石线锯加工单晶硅的试验,研究了锯丝速度,工件进给速度和切削液对锯切硅片表面形貌、表面粗糙度(SR)、翘曲度(Warp)、总厚度偏差(TTV)和亚表面损伤层厚度(SSD)的影响规律,并研究了锯丝磨损的形态和机理。在试验采用的工艺参数范围内,硅片的SR与SSD值随锯丝速度提高和工件进给速度降低而减小;硅片的Warp随锯丝速度和工件进给速度降低而减小;而综合考虑锯丝速度与进给速度的合理匹配关系是获得硅片低TTV值的原则。锯切试验中使用合成液做切削液改善晶片表面形貌,降低硅片的表面粗糙度、翘曲度和TTV的综合效果最好。研究发现电镀金刚石锯丝的磨损形式分为镀层磨损与磨粒磨损,主要磨损形式为磨粒的脱落,因此锯丝制造过程中应研究新措施来提高磨粒的把持力,从而提高锯丝的寿命。
     建立了锯丝表面周向分布的磨粒在锯切过程中的平均切削厚度理论模型,并结合观察加工表面形貌和切屑形态,研究了电镀金刚石线锯加工单晶硅的材料去除和加工表面形成机理,分析了加工表面材料去除方式与工艺参数的关系。锯丝表面周向分布的磨粒切深与磨粒所在的位置有关,位于锯丝底部的磨粒切深大,主要贡献于材料的去除,形成锯口,实现切片;而分布于靠近加工表面的磨粒切深小,主要贡献于晶片表面的形成。当使用同一种锯丝进行单晶硅的加工时,锯丝表面某一位置处的磨粒平均切削深度g和工件进给速度V_W与锯丝速度V_S的比值q之间存在着近似的非线性的单调递增关系,为g∝D·(V_W/V_S)~(4/9),其中D为常数。硅片表面的材料去除方式与q值相关,在本文的试验条件下,当q≤1.0μm/mm时,硅片表面的材料去除可实现准塑性域去除方式。
     建立了锯切硅片亚表面损伤层厚度预测的理论模型。该模型把线锯加工中磨粒的切削过程近似为受法向力与切向力共同作用的压头移动过程,综合考虑磨粒下方弹性应力场与残余应力场对中位裂纹扩展长度的影响。把中位裂纹扩展层深度看成是亚表层损伤层厚度,把磨粒下方横向裂纹产生深度看成是锯切后表面p-v粗糙度值,从而建立了亚表层损伤层厚度与表面粗糙度值之间的理论模型,用于预测损伤层厚度。锯切硅片的SSD值与加工表面的粗糙度值SR(R_z)之间存在非线性的单调递增的关系,即SSD—SR+χSR~(3/4)。采用此理论模型预测的SSD厚度值与试验测量值误差在12.78%内,说明理论预测结果与试验检测结果较为吻合,利用建立的理论模型能够快速、简便和准确预测线锯加工单晶硅的亚表面损伤层厚度。
     高性能的固结磨料金刚石锯丝的研制是线锯技术发展应用的关键,因此对电镀金刚石锯丝制造技术进行了初步的试验研究,研究及优化了电镀金刚石锯丝的制作工艺与电镀参数。试验选取φ200μm的琴钢丝为基体和平均磨粒粒度为20μm的金刚石磨粒制作锯丝。通过分析锯丝制作过程中镀底层、上砂等过程的电流密度与上砂时间对锯丝的外观质量、锯丝表面金刚石磨粒密度和镀层与基体间结合力的影响规律,得到了制作电镀金刚石锯丝的最佳工艺参数。上砂过程采用埋砂法,制作质量良好的电镀金刚石锯丝的最佳工艺参数为:电镀液温度为35~40℃,PH值为3.8~4.2,对应各阶段的电流密度分别为1.8、1.5和2.0A/dm~2,其镀底层、上砂与加厚镀的时间依次为6、8和18min。电镀后的锯丝在200℃环境内保温一小时进行除氢处理。试制锯丝直径为250μm,提高了加工材料的利用率。
Nowadays,semiconductors are widely used in microelectronic applications,such as computer systems,automobiles,industrial automation,telecommunications equipment,consumer electronics and industry control systems.The majority of semiconductors are built on silicon wafers.Wafer slicing process is a key technology to machine the silicon rod to wafer,and the machining quality of wafer can directly affect the workloads and costs of next working procedures.The fixed-abrasive diamond wire saw machining technology,which has some advantages of high machining efficiency, low kerf loss,clean working environment and high wafer surface quality for slicing,is supposed to be used for slicing silicon crystal widely in the future.The electroplated diamond wire saw(EDWS) machining single crystal silicon technology was studied by experimental and theoretical analysis in this paper,in order to supply the experimental and theoretical basis for further application of EDWS machining technology.
     The effects of single crystal silicon anisotropy on the wafer quality sliced by EDWS were studied theoretically.Then the recommendatory wire approach directions (WAD) were made by analyzing the influences of machining single crystal silicon along different crystal planes and orientations on wafer quality.The study results show that the wafer can get a better surface finish and reduce deviation from the desired surface normal by maintaining symmetry of the elastic modulus of silicon on the two sides of the wire.And the tendency of wafer breakage can be reduced by maintaining the same of the WAD and a cleavage direction in crystal planes.Synthesizing the research results of the effects of WADs on wafer surface shape quality and wafer breakage,when slicing (100) crystals,the preferred WAD are[001],[010],[001]and[010];when slicing (110) crystals,the preferred WADs are[110]and[110];And there are exactly preferred six WADs for slicing(111) crystals:[1(?)0],[(?)10],[01(?)],[0(?)1],[(?)01] and[10T].
     Through the reciprocating electroplated diamond wire saw slicing single crystal silicon experiments,the influences of wire saw speeds,ingot feed speeds and cutting fluids on the silicon wafers surface topography,surface roughness(SR),warp,total thickness variation(TTV) and subsurface damage(SSD) depth were studied,and the wear forms and wear mechanism of wire saw were studies.In the range of the experimental parameters adopted in this paper,the SR and SSD values of silicon wafers decrease along with the increase of wire saw speed and the decrease of feed speed;the wafers warp values decrease along with the decrease of wire saw speed and feed speed; and the wafer TTV values are closely related with the matching relations between wire saw speed and ingot feed speed.The experimental results show that the synthetic cutting fluid has a good effect to reduce the silicon wafer surface roughness,warp and TTV,and get a better wafer surface.The wear forms of EDWS include grain-abrasion and coating wear,which was observed by using the SEM.But the pulled-out of grits is the main wear form,therefore,the new approaches should be studied to improve the grits retaining strength,which can improve the service life of wire saws.
     Ignoring the lateral vibration of the wire,the geometrical model of wire saw machining process was founded to calculate the average cut depth of single grit on wire surface theoretically.Based on the geometrical mode and experimental observation of the machined surface topography and chip shapes,the material removal mechanism and wafer surface formation were studied.And the relationship between the material removal mode and process parameters was analyzed.The study results show that the single grit cut depth has a close relation with the grit position on the wire surface.The grits on the bottom of wire saw have deeper cut depths,contributing to main material removal to form the kerf;the grits near to silicon machined surface have lower cut depths,mainly contributing to wafer surface formation.When using the same wire to machining the single crystal silicon,the cut depth of any grit on wire surface has a monotone increasing non-linear correlation with the ratio r value of ingot feed speed and wire speed,is g∝D·(V_W/V_S)~(4/9),and D is an invariable value.The material removal mode can be changed through controlling and adjusting the r value.According to the experimental condition in this paper,when r≤1.0μm/mm,the material removal on wafer surface can be in a near-ductile removal mode.
     A theoretical model for predicting the silicon wafer SSD depth was founded.This model considered the abrasives machining in wire sawing process as a moving indention subjected to both normal force and tangential force.Based on indentation fracture mechanics theory,the propagation length of median crack was analyzed by synthetically considering the contributions of elastic stress field and residual stress field beneath the abrasive.Then the depth of median crack propagation layer was postulated as equal as the subsurface damage layer thickness(SSD),and the lateral crack depth was equal to the peak-to-valley surface roughness(SR),thereby a theoretical model of relationship between SSD and SR was founded for predicting the SSD depth.There exists monotone increasing non-linear correlation between SSD depth and SR(R_z) in wire saw slicing single crystal silicon process,that is,SSD - SR+χSR~(3/4).The results indicate that the errors between the experimental measure values and the theoretical prediction values are less than 12.78%,which shows the experimental measure and theoretical prediction values coinciding comparatively.So the theoretical model can be used for predicting SSD rapidly,expediently and accurately.
     The high performance diamond impregnated wire manufacture is the key of application for this technology,so the development of electroplated diamond wire was investigated briefly.The development process and electroplating parameters were studied and optimized.The piano wire with a 0.2mm diameter was selected as the saw matrix and the diamond grits with a 20um average size was selected to develop the EDWS.Some experimental studies were done to analyze the effects of cathode current density of pre-plating and electro-embedding of diamond grits(tack-on) and time at tack-on stage on the wire saw appearance,diamond grits density and adhesion between saw matrix and plating coating,then the optimum electroplating parameters for developing EDWS were obtained.Electro-embedding of diamond grits on the wire saw surface used the inter-sand method.And the optimum process parameters are as following:the temperature of the plating bath is 35~40℃,and the pH value is 3.8~4.2. The cathode current densities of pre-plating,tack-on and buildup process are 1.8,1.5 and 2.0A/dm~2 in turn,and the corresponding times at various stages are 6,8 and 18min. The wire saw is heat-treated for 1 hour at 200℃to remove hydrogen at last.The diameter of wire saw developed is about 0.25mm,which will increase the utilization rate of materials.
引文
[1]P.O.Hahn.The 300mm Silicon Wafer-A Cost and Technology Challenge[J].Microelectronic Engineering.2001,56(1-2):3-13
    [2]G.Ernst,O.Heinz.Wafer Thinning and Strength Enhancement to Meet Emerging Packaging Requirements[C].IEMT Europe 2000 Symposium,Munich,Germany,April 06-07
    [3]Z.J.Pei.A Study on Surface Grinding of 300mm Silicon Wafers[J].International Journal of Machine Tools & Manufacture.2002,42:385-393
    [4]郭东明,康仁科,金洙吉.大尺寸硅片的高效超精密加工技术[J].世界制造技术与装备市场.2003,(1):35-40
    [5]S.W.Jones.A Simulation Study of the Cost and Economics of 450 mm Wafers[J].Semiconductor International.2005,(8):13-15
    [6]吴明明,周兆忠,巫少龙.单晶硅的制造技术[J].新技术新工艺.2004,(5):7-9
    [7]魏昕.花岗岩锯切机理及可锯切加工性的研究[D].华南理工大学博士论文.1997:23-25
    [8]傅玉灿,徐鸿均.花岗岩锯切状态的识别与评价控制策略[J].石材.1999,(1):8-11
    [9]廉子丰.大直径硅片加工技术[J].电子工业专用设备.1997,(3):5-9
    [10]I.Kao,V.Prasad,J.Li,et al.Wafer Slicing and Wire Saw Manufacturing Technology[C].The NSF Grantees Conference 1997
    [11]樊瑞新,卢焕明.线切割单晶硅表面损伤的研究.材料科学与工程.1999,17(2):56-57
    [12]W.I.Clark,A.J.Shih,C.W.Hardin,R.L.Lemaster,S.B.McSpadden.Fixed Abrasive Diamond Wire Machining -Part Ⅰ:Process Monitoring and Wire Tension Force[J].International Journal of Machine Tools & Manufacture.2003,43:523-532
    [13]W.I.Clark,A.J.Shih,R.L.Lemaster,S.B.McSpadden.Fixed Abrasive Diamond Wire Machining -Part Ⅱ:Experiment Design and Results[J].International Journal of Machine Tools & Manufacture.2003,43:533-542
    [14]C.W.Hardin,J.Qu,A.J.Shih.Fixed Abrasive Diamond Wire Saw Slicing of Single-Crystal SiC Wafers[J].Materials and Manufacturing Processes.2004,19(2):355-367
    [15]Y.Chiba,Y.Tani,T.Enomoto,H.Sato.Development of a High-Speed Manufacturing Method for Electroplated Diamond Wire Tools[C].Annals of the CIRP.2003,1(52):281-284
    [16]I.Kao,M.Bhagavat,V.Prasad,J.Talbot,M.Chandra,K.Gupta.Integrated Modeling of Wiresaw in Wafer Slicing[C].The NSF Grantees Conference 1998
    [17]M.Bhagavat,V.Prasad,I.Kao.Elasto-Hydrodynamic Interaction in the Free Abrasive Wafer Slicing Using a Wiresaw:Modeling and Finite Element Analysis[J].Journal of Tribology.2000,122:94-404
    [18]沈岳文.游离磨粒线切割加工对硅晶圆品质之影响[D].台湾国立云林科技大学硕士论文.2003:20-58
    [19]T.Enomoto,Y.Shimazaki,Y.Tani,M.Suzuki,Y.Kanda.Development of a Resinoid Wire Containing Metal Powder for Slicing a Silicon Ingot[C].Annals of the CIRP.1999,48(1):273-276
    [20]http://www.diamondwiretech.com
    [21]http://www.meydrburger.com
    [22]http://www.Hct.com
    [23]J.Li,I.Kao,V.Prasad,Modeling Stresses of Contacts in Wire Saw Slicing of Polycrystalline and Crystalline Ingots:Application to Silicon Wafer Production[J].ASME Journal of Electronic Packaging.1998,120:123-128
    [24]M.Bhagavat.Computational Modeling of Free Abrasive Machining In wiresaw Slicing[D].The Ph.D.Dissertation of State University of New York.2000:15-21
    [25]T.Watanabe.Optimization Quartz Crystal Slicing Conditions Using Multi-wire-saw[C].IEEE International Frequency Control Symposium and PDA Exhibition.2002:386-393
    [26]T.Watanabe.Study of Quartz Crystal Slicing Technology by Using Unidirectional Multi-wire-saw[C].IEEE International Frequency Control Symposium and PDA Exhibition.2001:329-337
    [27]R.K.Sahoo,V.Prasad,I.Kao,et al.Towards an Integrated Approach for Analysis and Design of Wafer Slicing by a Wire Saw[C].ASME,Manufacturing Engineering Division.1996,4:131-140
    [28]S.Wei,I.Kao.Vibration Analysis of Wire and Frequency Response in the Modern Wiresaw Manufacturing Process[J].Journal of Sound and Vibration.2000,231(5):1383-1395
    [29]L.Zhu,I.Kao.Galerkin-based Model Analysis on the Vibration of Wire-slurry System in Wafer Slicing Using a Wiresaw[J].Journal of Sound and Vibration.2005,283:589-620
    [30]S.Nishijima,Y.Izumi,S.Takeda,et al.Recycling of Abrasives from Wasted Sslurry by Superconducting Magnetic Separation[J].IEEE Transactions on Applied Superconductivity.2003,13(2):1596-1599
    [31]C.W.Chang,C.R.Wu,C.T.Lin,H.C.Chen.Evaluating and Controlling Silicon Wafer Slicing Quality Using Fuzzy Analytical Hierarchy and Sensitivity Analysis[J].Int J Adv Manuf Technol.2008,36:322-333
    [32]C.T.Lin,C.W.Chang,C.-B.Chen.The Worst Ill-conditioned Silicon Wafer Slicing Machine Detected by Using Grey Relational Snalysis[J].Int J Adv Manuf Technol.2006,31:388-395
    [33]H.Mech.Machine and Method for Cutting Brittle Materials Using a Reciprocating Cutting Wire[P].US Patent,3,831,576.1974
    [34]H.Mech.Machine for Cutting Brittle Materials[P].US Patent,3,841,297.1974
    [35]F.Schmid,M.B.Smith,C.P.Khattak.The Low Cost Solar Array Wafering Workshop[C].Phoenix,AZ.1982,(6):111
    [36]Diamond wire saw[J].Cut Tool Eng.1995,59(12):123
    [37]M.B.Smith,F.Schmid,P.Khattak,L.Teale,J.G.Summers.Multi-wire Fast Slicing for Photovoltaic Applications[C].Proc.22nd IEEE photovoltaic Specialists conf.,Las Vegas,1991:979-981
    [38]F.Schmid,M.B.Smith,C.P.Khattak.Kerf Reduction Using Shaped Wire[C].Conference Record of the IEEE Photovoltaic Specialists Conference,1993:205-208
    [39]F.Schmid,M.B.Smith,C.P.Khattak.New Multiwire Fixed Abrasive Slicing Technology (FAST)[C].Proceedings of the SPIE.2003:41-43
    [40]陈秀芳,等.金刚石线锯切割大直径SiC单晶[J].功能材料.2005,36(10):1575-1577
    [41]张辽远,贾春德,吕玉山.电镀金刚石线锯的超声纵振动切割加工方法[J].兵工学报.2006,27(5):899-902
    [42]孙建章,吕玉山,刘兴文.往复自旋式电镀金刚石丝锯数控切割机的设计研究[J].机械设计与制造.2000,(3):52-53
    [43]孟剑峰.环形电镀金刚石线锯加工技术及加工质量研究[D].山东大学博士论文.2006:6-8
    [44]取访部仁.金刚石电镀环形金属钱材工具的开发—焊接法及焊接接头的评价[J].精密工学会志.1993,59:75-80
    [45]高伟.环形电镀金刚石线锯的制造及其切割技术与机理的研究[D].山东大学博士论文.2002:23-38
    [46]S.T.Buljan,R.M.Andrews.Brazed superabrasive wire saw and method therefore[P].US Patent,6,102,024.2000
    [47]郑嘉葳,左培伦.晶圆切割技术—固定磨粒钻石线锯切割研究[J].机械工业快讯2005,(5):37-41
    [48]J.Sugawara,H.Hara,A.Mizoguchi.Development of Fixed-Abrasive-Grain Wire Saw with Less Cutting Loss[J].SEI Technical Review.2004,(7):8-l1
    [49]http://www.allied-material.co.jp
    [50]本俊之.利用紫外线固化树脂开发树脂结合剂金刚石线锯[J].珠宝科技.2004,16(5):56-61
    [51]W.Peng,F.Q.Liu,C.Y.Yao.Research on the Ultraviolet-curing Resin Wire Saw[C].The Internat.onal Technology and Innovation Conference,Hangzhou,China,2006:2347-2350
    [52]F.Q.Liu,C.Y.Yao,T.Gao,W.Peng.Ultraviolet-curing Resin:A Novel Bond for Abrasive Tools[J].Advanced Materials Research.2007,24-25:289-294
    [53]夏子翔.固定磨粒线锯开发与锯切硬脆材料之特性研究[D].台湾国立云林科技大学硕士论文.2006:48-60
    [54]http://www.electronics.saint-gobain.com
    [55]http://www.welldiamondwiresaws.com
    [56]http://www.diamondwiretech.com/diamond_wire/diamond_wire.html
    [57]E.C.Lee,J.W.Choi.A Study on the Mechanism of Formation of Electrocode Posited Ni Diamond Coatings[J].Surface and Coating Technology.2001,148:234-240
    [58]千叶康雅.电镀金刚石线切工具高速生产[J].超硬材料与宝石.2003,15(4):36-40
    [59]石川宪一.金刚石电沉积绞合线锯的开发[J].超硬材料与宝石.2004,16(2):34-38
    [60]张国林,陈玉全.电镀金刚石丝锯的开发研究[J].哈尔滨科学技术大学学报.1992,16(2):8-11
    [61]孙建章,吕玉山,李艳杰.电镀金刚石长丝锯制造的试验研究[J].机械设计与制造.1999,(6):56-57
    [62]B.R.Law,M.V.Swain.Microfracture Beneath Point Indentation in Brittle Solids[J].J.Mater.Sci.1975,(10):113-122
    [63]P.W.Bridgeman.Effects of very High-pressure on Glass[J].Journal of Applied Physics,1953,(24):405-413
    [64]B.R.Law,M.R.Swain Indentation Fracture:Principles and Applications[J].Journal of Materials Science.1975,10(6):1049-1081
    [65]M.V.Swain,J.T.Haqan,J.E.Field.Indentation Induced Strength Degradation and Stress Corrosion of Tempered Glasses[J].Clays and Clay Minerals.1978,(3):231-243
    [66]K.E.Puttick,A.Franks.The Physics of Ductile-regime Machining Transitions Single Point Theory and Experiment[J].Journal of the Japan Society of Precision Engineering.1990,56(5):788-792
    [67]B.R.Lawn,D.B.Marshall,et al.Mechanics of Strength-degrading Contact Flaws in Silicon[J].Journal of Materials Science.1981,(16):1769-1775
    [68]G.B.Sinclair,P.S.Follansbee,K.L.Johnson.Quasi-static Normal Indentation of All Elastic-plastic Half-space by a Rigid Sphere.II Results[J].International Journal of Solids and Structures.1985,21(8):865-888
    [69]罗熙淳,梁迎春,董申,李广慧.单晶硅纳米加工机理的分子动力学研究[J].航空精密制造技术.2000,36(3):21-24
    [70]唐玉兰,梁迎春,霍德鸿,程凯.基于分子动力学单晶硅纳米切削机理研究[J].微细加工技术.2003,(2):76-80
    [71]林滨,吴辉,于思远,徐燕申.纳米磨削过程中加工表面形成与材料去除机理的分子动力学仿真[J].纳米技术与精密工程.2004,2(2):136-140
    [72]W.C.D Cheong,L.C Zhang.Molecular Dynamics Simulation of Phase Transformations in Silicon Monocrystals due to Nano-indentation[J].Nanotechnology.2000,(11):173-180
    [73]L.C Zhang.Plasticity in Monocrystalline Silicon:Experimental and Modeling[J].Key Engineering Materials.2004,274-276:1-9
    [74]K.Mylvaganam,L C Zhang.Effect of Oxygen in Silicon due to Nano-indention[J].Nanotechnology.2002,(13):623-626
    [75]C.Y.Tang,L.C.Zhang.A Molecular Dynamics Analysis of the Mechanical Effect of Water on the Deformation of Silicon Monocrystals Subjected to Nnano-indentation[J].Nanotechnology.2005,(16):15-20
    [76]B.R.Lawn,A.G.Evans,D.B.Marshall.Elastic/Plastic Indentation Damage in Ceramics:the Median/Radial Crack System[J].Journal of the American Ceramic Society.1982,63(9/10):574-581
    [77]D.B.Marshall,B.R.Lawn,A.G.Evans.Elastic/Plastic Indentation Damage in Ceramics:The Lateral Crack System[J].Journal of the American Ceramic Society,1982,65(11 ):561-566
    [78]T.G Bifano,T.A.Dow,R.O.Scattergood.Ductile-regime Grinding:A New Technology for Machining Brittle Materials[J].Journal of Engineering for Industry.1991,(113):184-188
    [79]C.L.Chao,K.J.Ma,D.S.Liu,C.Y.Bai,T.L.Shy.Ductile Behavior in Single-point Diamond-turning of Single-crystal Silicon[J].Journal of Materials Processing Technology.2002,127:187-190
    [80]B.P.O'Connor,E.R.Marsh,J.A.Couey.On the Effect of Crystallographic Oientation on Ductile Material Removal in Silicon[J].Precision Engineering.2005,29:124-132
    [81]K.Liu,X.P.Li,M.Rahman,X.D.Liu,L.C.Lee.Study of Topography in Nanometric Ductile Cutting of Silicon Wafers[C].Electronics Packaging Technology Conference,Singapore,2002:200-205
    [82]X.P.Li,C.C.Chan,K.Liu,M.Rahman,X.D.Liu.Effect of Cutting Edge Radius on Ductile-brittle Transition in Cutting of Silicon-wafers[J].Materials and Manufacturing Processes.2003,18(4):257-262
    [83]赵清亮,陈明君,等.金刚石车刀前角与切削刃钝圆半径对单晶硅加工表层质量的影响[J].机械工程学报.2002,38(12):54-59
    [84]陈明君,董申等.单晶硅脆性材料塑性域超精密磨削加工的研究[J].航空精密制造技术. 2004,36(2):8-11.
    [85]霍凤伟.硅片延性域磨削机理研究[D].大连理工博士论文.2006:36-43
    [86]N.Ikawa,S.Shimada,H.Tanaka.Minimum Thickness of Cutting in Micromaching[J].Nanotechnology.1992,3(1):6-9
    [87]S.Shimada,N.Ikawa,T.Inamura.Brittle-Ductile Transition Phenomena in Microindentation and Micromachining[J].Annals of the CIRP.1995,44(1):523-525
    [88]张银霞.单晶硅片超精密磨削加工表面层损伤的研究[D].大连理工博士论文.2006:10-80
    [89]吴东江,曹先锁,王强国,王奔,高航,康仁科.KDP晶体加工表面的亚表面损伤检测与分析[J].光学精密工程.2007,15(11):1721-1726
    [90]S.Agarwal,P.V.Rao.Experimental Investigation of Surface/Subsurface Damage Formation and Material Removal Mechanisms in SiC Grinding[J].International Journal of Machine Tools and Manufacture,2008,48(6):698-710
    [91]W.Qu,K.Wang,M.H.Miller,Y.Huang,A.Chandra.Using Vibration-assisted Grinding to Reduce Subsurface Damage[J].Precision Engineering.2000,24:329-337
    [92]H.Huang,Y.C.Liu.Experimental Investigations of Machining Characteristics and Removal Mechanisms of Advanced Ceramics in High Speed Deep Grinding[J].International Journal of Machine Tools & Manufacture.2003,43:811-823
    [93]W.Kanematsu.Subsurface Damage in Scratch Testing of Silicon Nitride[J].Wear 2004,256:100-107
    [94]李改灵,吴宇列,王卓,李圣怡.光学材料亚表面损伤深度破坏性测量技术的试验研究[J].航空精密制造技术.2006,42(6):19-22
    [95]王卓,吴宇列,戴一帆,李圣怡.光学材料磨削加工亚表面损伤层深度测量及预测方法研究[J].航空精密制造技术.2007,43(5):1-5
    [96]王卓,吴宇列,戴一帆,李圣怡,周旭升.光学材料研磨亚表面损伤的快速检测及其影响规律[J].光学精密工程.2008,16(1):16-21
    [97]W.Zhang,J.Q.Zhu.Subsurface Damage of Nd-doped Phosphate Glasses in Optical Fabrication[J].Optik.November 2008,119(15):738-741
    [98]J.C.Lambropoulos,S.D.Jacobs,J.Ruchman.Material Removal Mechanisms from Grinding to Polishing[J].Ceramic Transactions.1999,102:113-128
    [99]S.Y.Li,Zh.Wang,Y.L.Wu.Relationship between Subsurface Damage and Surface Roughness of Optical Materials in Grinding and Lapping processes[J].Journal of Materials Process Technology.2008,205(1-3):34-41
    [100]S.Zhang,H.Xie,X.T.Zeng.Residual Stress Characterization of Diamond-like Carbon Coating by an X-ray Diffraction Method[J].Surface and Coating Technology.1999,122:219-224
    [101]陈俊,尤政,周兆英.硅基材料纳米级体缺陷检测技术的研究[J].仪器仪表学报.1996,17(1):104-108
    [102]J.M.Zhang,J.G.Sun,Z.J.Pei Subsurface Damage Measurement in Silicon Wafers by Laser Scattering[C].The thirtieth North American Manufacturing Research Conference,West Lafayette,2002,5:22-24
    [103]R.G Sparks,M A.Paesler.Micro-Raman Analysis of Stress in Machined Silicon and Germanium[J].Precision Engineering.1998,10(4):191-198
    [104]Y.X.Zhang,R.K.Kang,D.M.Guo,Z.J.Jin.Raman Microspectroscopy Study on the Ground Surface of Monocrystalline Silicon Wafers[J].Key Engineering Materials.2006,304-305:241-245
    [105]蔡传荣,张琼.单晶硅硬度压痕裂纹的特征[J].电子显微学报.1996,6:562
    [106]董申,赵奕,周明,等.尖锐压头划刻脆性材料的断裂机理研究[J].航空精密制造技术.1998,34(2):23-26
    [107]W.C.D.Cheong and L.C.Zhang.A Stress Criterion for the β-Sn Transformation in Silicon under Indentation and Uniaxial Compression[J].Key Engineering Materials.2003,233-236:603-608
    [108]李小成,吕晋军,杨生荣.单晶硅滑动磨损性能及其相变研究[J].摩擦学学报.2004,24(4):326-331
    [109]R.Komandrui,N.Chandrasekaran,L.M.Raff.Molecular Dynamics Simulation of the Nanometric Cutting of Silicon[J].Philosophical Magazine.2001,81(12):1989-2019
    [110]Z.J.Pei,S.R.Billingsley.Grinding Induced Subsurface Cracks in Silicon Wafers[J].International Journal of Machine Tools & Manufacture.1999,39:1103-1116
    [111]张源.内圆切割硅片表面损伤层的结构[C].第十三届全国半导体集成电路、硅材料学术会,深圳,2003,12:133-134
    [112]J.M.Kim,Y.K.Kim.Saw-Damage-Induced Structural Defects on the Surface of Silicon Crystals[J].Journal of the Electrochemical Society.2005,152:189-192
    [113]A.Mueller,N.Cherradi,P.M.Nasch.The Challenge to Implement Thin Wafer potential with Wire Saw Cutting Technology[C].3rd World Conference on Photovoltaic Energy Conversion,Osaka.Japan,2003,5:1475-1478
    [114]孟剑峰,葛培琪,李剑峰,等.硅晶体线锯切片损伤层厚度的有限元分析[J].中国机械工程.2007,18(10):1189-1192
    [115]赵奕.脆性材料超精密车削脆塑转变及影响表面质量因素的研究[D].哈尔滨工业大学博士学位论文.1999:48-65
    [116]史国权.金刚石超精密车削光学晶体材料的研究[D].吉林工业大学博士学位论文.1996:20-40
    [117]周宏伟,赵永成,邓春霞.光学晶体材料的各向异性对金刚石车削表面粗糙度的影响[J].长春理工大学学报.2004,27(3):44-46
    [118]韩红玉,董申,赵奕.应用AFM研究单晶硅、锗的超精密车削表面微观形貌[J].工具技术.2000,34(2):22-25
    [119]赵清亮,董申,赵奕.脆性单晶材料的各向异性对金刚石切削表面质量影响的研究[J].中国机械工程.2000,11(8):855-860
    [120]王明海,卢泽生.单晶硅超精密切削表面质量各向异性的研究[J].航空精密制造技术.2007,43(1):13-16
    [121]S Bhagavat,I.Kao.Theoretical Analysis on the Effects of Crystal Anisotropy on Wiresawing Process and Application to Wafer Slicing[J].International Journal of Machine Tools &manufacture.2006,46(5):531-541
    [122]Ogawa H,Nakai M.Method and Device for Cutting Single Crystal Sapphire Substrate[P]:Japan Patent,320521.2003
    [123]田业冰.硅片超精密磨削表面质量和材料去除率的研究[D].大连理工硕士论文.2006:22-26
    [124]P.J.Slikkerveer,P.C.P.Bouten,F.H.in'tVoid,H.Schotten.Erosion and Damage by Sharp Particles[J].Wear.1998,217:237-250
    [125]G.Puneet,S.K.Milind.Warp of Silicon Wafers Produced from Wire Saw Slicing:Modeling,Simulation,and Experiments[J].ECS Transactions.2006,2(2):123-134
    [126]Y.Toshiro,K.Fumiaki,I.Takesh,et al.Warpage Analysis of Silicon Wafer in Ingot Slicing by Wire-saw Machine[C].Proceedings of the 8th International Conference on Numerical Methods in Industrial Forming Processes.Ohio:American Institute of Physics,2004:1459-1463
    [127]S.Bhagavat,I.Kao.A Finite Element Analysis of Temperature Variation in Silicon Wafers during Wiresaw Slicing[J].International Journal of Machine Tools and Manufactur.2008,48(1):95-106
    [128]Y.Abe,K.Ishikawa,H.Suwabe.Effects of Thermal Deformation of Multi-Wire Saw's Wire Guides and Ingot on Slicing Accuracy[J].Key Engineering Materials.2009,389-390:442-447
    [129]廖立兵.晶体化学及晶体物理学[M].北京:地质出版社,2003:127-130
    [130]王季陶,刘明登.半导体材料[M].北京:高等教育出版社,1990:123-124
    [131]桑波.单晶硅线锯切片过程中的流体动压效应[D].山东大学硕士论文.2006:45-53
    [132]M.Buijs,K.K.Houten.A Model for Lapping of GIass[J].Journal of Materials Science.1993,28(11):3014-3020
    [133]M.A.Younis,H.Alawi.Probabilistic Analysis of the Surface Grinding Process[J].Transaction of the CSEM.1984,8(4):208-211
    [134]徐芝纶.弹性力学简明教程[M].北京:人民教育出版社,1980:232-240
    [135]龚江宏.陶瓷材料断裂力学[M].北京:清华大学出版社,2001:89-94
    [136]王秦生.超硬材料电镀制品[M].北京:中国标准出版社,2001:13-14
    [137]H.J.Zhao,L.Liu,J.H.Zhu.Microstructure and Corrosion Behavior of Electrodeposited Nickel Prepared from a Sulphamate Bath[J].Materials Letters.2007,61(7):1605-1608

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700