用户名: 密码: 验证码:
歧口凹陷第三系高精度层序地层格架下的油气藏预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以翔实的地质、岩芯、测井、试油数据以及覆盖研究区大面积的高分辨率三维地震资料为工作基础,以层序地层学、沉积学、构造地层学、油气地质学等理论做指导,在新建立的全区古近系与新近系的层序地层格架下,从已知油气藏出发,统计、分析并总结油气藏在层序格架下的富聚特征,结合构造、沉积、油气地质分析,探讨油气藏富集规律成因,提炼油气藏在层序格架下的富聚规律,指出有利勘探层位和方向;在优选有利区带、理顺油气藏分布规律的基础上,以高精度层序地层学理论作指导,以深湖中发育的某一目标地质体为刻画对象,探索在高频层序地层格架下(四级层序),地质与地球物理技术相结合,多手段多层次多角度精细刻画地质体、预测有利圈闭范围的研究方法,为歧口凹陷下一步勘探部署提供科学依据。并在对歧口凹陷研究的基础上,总结在层序格架下分析油气藏富聚规律的研究思路与方法,从另一个视角、以不同的研究思路提炼分析油气藏富聚规律的研究思想。
     论文主要内容包括如下几个部分:
     第一章主要讨论了论文选题的目的与意义,总结了层序地层学、陆相层序地层学、构造地层学以及隐蔽油气藏国内外研究现状和前沿。根据歧口凹陷勘探研究现状,以及研究区地震、地质等资料情况,并结合层序地层学和隐蔽油气藏研究热点,提出了在高精度层序格架下分析讨论油气藏富聚规律、地质与地球物理方法相结合精细刻画地质体、预测有利区带的研究思路,并论证了在歧口凹陷开展本次研究的可行性和重要意义。根据拟定的研究思路,确立了本次研究内容、研究方法和技术路线。总体上,以歧口凹陷古近系和新近系地层为研究对象,运用“点、线、面、体、时”相结合的思路,在建立的全区第三系层序地层格架基础上,分析已知油气藏在层序格架中的富集特征,探讨富集因素,探索对目标地质体进行精细刻画的研究方法和思路,以达到指导油气勘探的目的。
     第二章介绍了歧口凹陷的基本地质概况,歧口凹陷位于渤海湾盆地黄骅坳陷中部,是渐新世以来长期发育的断陷盆地,其凹陷东部为沙垒田隆起,西面为沧县隆起,南面为埕宁隆起,北面为燕山褶皱带前缘,东北面与南堡凹陷相邻,其勘探面积约为5,280 km2。歧口凹陷是大港油田未来勘探突破、增储上产的主要凹陷。就整个盆地结构而言,垂向上,自下而上一般由4个不同结构的构造层叠置而成,它们分别是:(1)前古近系盆地基底构造层;(2)由始新统孔店组—沙三段组成的盆地下部构造层;(3)由渐新统沙一段—东营组组成的盆地中部构造层;(4)由新近系组成的盆地上部构造层。平面上,在凹陷边缘及内部发育了五个正向构造单元(埕北断阶带、南大港潜山构造带、北大港潜山构造带、滨海构造带、塘沽一新港潜山构造带)和五个负向构造单元(歧口主凹、北塘次凹、板桥次凹、歧北次凹、歧南次凹)。歧口凹陷作为黄骅坳陷内长期继承发育的凹陷,发育了巨厚的第三系沉积,包括古近系孔店组、沙河街组、东营组和新近系馆陶组和明化镇组。受北部燕山物源、西北部沧县物源、南部埕宁隆起物源以及凹陷内部低隆起物源供给,主要发育扇三角洲、辫状河三角洲、滨岸沉积以及湖盆中心的密度流,并发育了沙三段、沙二段、沙一段和东营组下部多套烃源岩系。受凹陷发展阶段、区域构造特征以及物源区的控制,歧口凹陷发育多种类型的储集体。
     第三章以Exxon层序地层学理论为指导,根据研究区钻井岩性、测井曲线形态变化,地震反射终止方式以及合成记录的标定,识别出层序界面。本次研究在全区3150km2的面积上选择了100单井进行了合成记录标定工作,将单井界面识别与地震剖面界面识别相结合,各自论证,相互验证,最终确定层序界面。并在全区内选取了11口单井(包括歧南次凹2口、歧北次凹2口、板桥次凹2口、歧口主凹5口)进行单井层序地层分析,并以板深35井单井为例进行单井层序地层详细分析。根据地震剖面解释与单井分析的分析,重新确定单井分层方案,在对各单井进行层序地层分析的基础上,建立连井剖面层序地层格架,精细刻画凹陷内主要构造带的同沉积断面图,开展构造-沉积-层序分析,分析层序内部特征和垂向演化特征,在全区内选取了10条连井剖面做连井剖面的分析,以NE02线为例做详细分析。并根据单井层序界面的判定,单井合成地震记录标定,结合层序界面在地震剖面上的反射终止现象,识别各级层序界面,确立层序划分方案,在全区连片三维地震数据中,进行全区的追踪闭合,解释密度达到了800m×800m,局部达到了400m×400m,建立全区第三系层序地层格架,并以北东走向的T2564线、东南走向的Line1968线为例对层序格架特征和内部结构做精细解释。根据以上多方法的运用,确立层序界面,系统划分和追踪闭合,在歧口凹陷第三系地层中,共识别出了两个一级层序界面,四个二级层序,17个三级层序界面,以及11个最大湖泛面(新近系没有识别最大湖泛面),建立了歧口凹陷古近系和新近系层序地层格架,并且研究发现盆地演化具有明显的阶段性和多幕性。可以划分为断陷期和坳陷期,而断陷期可进一步划分为三个断陷幕,每一个断陷幕对一个二级层序。
     第四章提出了本论文在层序地层格架下研究油气藏规律的研究思路,即从层序地层学的角度出发,将歧口凹陷已发现的油气藏投影到已建立的全区层序地层格架下,进行数据统计,分析油气藏分布特征,结合构造、沉积体系、成藏等方面分析,探讨油气藏在层序格架内富集规律的成因,试图从另一个角度和视野提出油气藏富集规律。本次研究对歧口凹陷1340口钻井进行筛选,选取研究区内厚度大于或等于3m的油层数据进行油气藏分布规律研究,同时选取层厚大于等于3m的油层和油水同层数据作为有利储集层分析。经过筛选,总共筛选了155口钻井、304层共计1836.2m的油层,筛选了207口钻井、384层油层与油水同层的有利储集层,共计2593.9m。分析发现:二级层序界面附近为油气主要富集带(Es1x占30.59%,Es2占14.47%,Ng占6.91%),所占比例高达52%,并且,离二级层序界面越近,油气藏越集中,即二级层序界面以上,油藏主要分布在层序内部最大湖泛面以下的湖扩体系域与低位体系域(EST+LST)中,而二级层序界面以下,油藏主要分布在层序内部最大湖泛面以上的高位体系域中,但总体上油气藏主要富集在最大湖泛面以下的湖扩体系域与低位体系域(EST+LST)中。平面上,根据凹陷边缘断层的剖面样式、平面组合以及成因,将歧口凹陷边缘划分为断裂陡坡带、多级断阶带、断阶陡坡带以及挠曲坡折带等坡折类型,盆缘坡折类型影响着层序样式和沉积体系以及砂分散体系的空间展布,进而影响油气藏在空间上的富集。本次研究,在平面上筛选了188口出油井,全部投影到平面上,根据坡折带划分区域,对各个区带钻井数进行统计,研究发现:断控陡坡带富集了40%的油气藏,断阶陡坡带富集了28%的油气藏,多级断阶带富集了25%的油气藏,而在挠曲坡折带仅仅只富集了7%的油气藏,总体上,有利储层和油气藏主要集中于陡坡带(断控陡坡带40%+断阶陡坡带28%),虽然挠曲坡折带只富集了7%的已知油气藏,但据构造与沉积背景分析,其岩性隐蔽油气藏的勘探潜力巨大。并结合构造、沉积、层序及成藏成果探讨了油气藏如此分布特征的成因,提出二级层序界面上下+相应三级层序体系域+可类比的坡折带类型=油气勘探有利场所的“三元联控”有利区带的思想,并据此预测歧口凹陷勘探有利区带。
     第五章在高精度层序地层格架下对特殊地质体进行精细刻画并指出有利区带,其总体思路:以高精度层序地层学理论和本文总结提出的“三元联控”控有利区带宏观思路作指导,在对有利区带进行优选的基础上,在高频层序格架下,对目标地质体进行进行精细刻画,采用单井识别与标定、地震识别与追踪(四级)、地震属性分析(三级+四级)、连井分析(五级)、钻井约束反演,多层次多角度精细刻画地质体,结合构造-古地貌、沉积体系分析,开展地质体成因分析与空间展布规律研究,对比已知油气藏,预测有利区带和隐蔽油气藏。在高精度层序地层格架下,开展地质体识别与对比,提高砂体横向对比准确性,避免砂体横向对比的穿时性,有利于正常理解储集层横向变化特征,进一步提高储层预测可靠性。此次精细刻画的目标地质体,此类地质体主要发育于湖泊中心,斜坡边缘、盆缘边界断层根部,地质体中发育的砂体具有上超,上倾尖灭(下超,下倾尖灭),或是双向上超,或是砂体一侧受断层控制,断层封堵,另一侧上超形成上倾尖灭。该类地质体一般直接发育于深湖-半深湖泥岩中,具备很好的上下封闭条件,并直接与优质烃源岩接触,有近水楼台优势,容易形成岩性油气藏。在精细刻画的基础上,对比已知油气藏,精细预测目标地质体有利区带。在高精度层序地层格架下,精细刻画地质体,对歧口凹陷深湖和斜坡带普遍发育的砂泥薄互层的精细勘探具有现实的借鉴和推广意义,具有巨大的实际价值,将为歧口凹陷隐蔽油气藏勘探取得新突破作出贡献。
     第六章回顾与对比前人提出的油气藏理论,提出在层序地层格架下开展油气藏分布规律分析的研究思路:对研究区目标层建立精细的层序地层格架,从已知油气藏出发,将已知油气藏厘定于层序地层格架中,分析总结油气藏分布特征,结合构造、沉积、成岩、油气成藏等控制因素分析油气成藏成因,提炼油气成藏规律,结合实例进行佐证和修正,并预测和优选有利区带,在高精度层序地层格架下对目标地质体进行精细刻画,以达到精细预测功能。该思路从另一个视角来分析油气藏富集规律。
     而本文的创新点主要体现以下几点:
     1.从层序地层学的角度出发,通过数据统计和实例证明:首次提出二级层序界面或是构造转换面是油气富集的一个重要带,界面以上主要富集在最大湖泛面以下的湖扩体系域与低位体系域中,而界面以下主要富集在高位体系域中;在平面上,油气主要富集在凹陷边缘断层控制的陡坡带附近,而凹陷内的挠曲坡折带主要富集岩性油气藏,且勘探潜力巨大。总结出“三元联控”有利区带的思想:二级层序界面、相应的三级层序内的体系域和可类比的坡折带类型,三者共同控制油气空间分布特征!
     2.提出了在层序地层格架下分析油气分布规律的研究新思维:在对研究区目标层建立精细的层序地层格架基础上,将已知油气藏重新厘定在层序地层格架中,分析总结油气藏分布特征,结合构造、沉积、油气成藏等控制因素分析油气成藏成因,提炼油气成藏规律,结合实例进行佐证和修正,预测和优选有利区带,并在高精度层序地层格架下对目标地质体进行精细刻画,以达到精细预测功能。
On the basis of thorough geological data, cores, log data and high-resolution 3D seismic data, the theories of sequence stratigraphy, sedimentology, oil and gas geology are used synthetically in this paper. Proceeding from known hydrocarbon reservoir, statistical analysis and summarization on the enrichment regularity are conducted in the sequence stratigraphic framework of Paleogene and Neogene. Combination of structure, sedimentation, oil and gas geological analysis to explore the causes of accumulation of the oil and gas reservoirs under the sequence stratigraphic framework and point out that horizon and direction of the favorable exploration. Characterize specific geologic bodies such as basin floor fan, slope fan, and turbidity body and wedge body in highstand system tract under the guidance of high-resolution sequence stratigraphy. The identification and contradistinction of subtle lithologic trap are simultaneously carried out in high-resolution sequence stratigraphic framework (fourth level sequence). Comprehensively utilize geology and geophysical technology to characterize geology bodies in application of multi-approaches and multi-angle analysis methods, on the basic of which forecast favorable trap range, and finally provide a scientific basis for the the deployment of further exploration of Qikou Sag. Summarize the enrichment regularity of Qikou Sag in sequence stratigraphic framework and propose the thinkings and methods of meticulous depiction, epurate the enrichment regularity with different approaches from another angle of view.
     This paper is comprised of six chapters:
     The first chapter mainly discusses the purpose and significance of the thesis, summarized the recent and front international research about the sequence stratigraphy, continental sequence stratigraphy, tectonic stratigraphy, as well as subtle reservoirs. According to the current exploration of Qikou sag and all sorts of available datas, such as seismic and geology, combined with the hot topics of sequence stratigraphy and subtle reservoirs, the study includes the following aspects: First analyzing distribution law of oil and gas reservoirs in the high-resolution sequence stratigraphic framework, moreover, depicting precisely geological bodies by combination of geological methods and geophysical methods, finally to predict the favorable areas. In addition, the feasibility and significance of study in this area is also demonstrated. Under the proposed research ideas, research content, research methods and technical line can be established. In general, this study takes Paleogene and Neogene strata of Qikou Sag as its research object, using the idea of combining "point-line-surface-body-time". Moreover, to get the study advanced, the most essensial work is to establish the region's Tertiary sequence stratigraphic framework, then analyze enrichment disciplines of the known hydrocarbon reservoirs under this framework, and investigate the spatial distribution rules and controlling factors of the favorable reservoirs, and, meanwhile, probe the methods and ideas of fine characterization of objective geobodies. After all of the above studies, it is ultimately to direct the exploration of subtle reservoirs for its final goals
     The second chapter describes the basic geological Qikou sag profile. Qikou Sag, located in Huanghua Depression central, Bohai Bay Basin, Eastern China, is a long-term development rift basin since Eocene. The sag is bounded by the Shaleitian uplift to the east, the Cangxian uplift to the west, the Chennin uplift to the south and Yanshan fold belt front to the north. The sag is adjacent to Nanpu sag. Its exploration area is approximately 5,280km2.
     Qikou sag is major region for exploration breakthrough in the future in Dagang Oilfield. For the whole basin structure, the structural framework is composed vertically by four different structures layer, which are:(1) pre-Tertiary basin basement structural layer, (2) the basin bottom structural layer from Eocene Kongdian Formation (Ek) to the third member of Shahejie Formation (Es3); (3) the central basin structural layer from Oligocene the first member of Shahejie Formation (Esl) to Dongying Formation(Ed); (4)the basin upper structural layer of Neogene. Five positive tectonic units(Chenbei step-fault zone, Nandagang buried hill, Beidagang buried hill, Binhai fault tectonic belt, Tanggu-Xingang buried hill) and five negative tectonic units(Qikou main sag, Beitang sub-sag, Banqiao sub-sag, Qibei sub-sag, Qinan sub-sag) developed in the margin and interior of sag.
     The Qikou sag is a successive developing sag, with deeper sedimentation, including Kongdian, Shahejie, Dongying, Guantao and Minhuazheng Formation. There developed fan delta, braided river delta, littoral sediments and density current, controlled by Yanshan provenance in Northern part, Changxian provenance in North-West, Cengning uplift provenance in Southern part and low uplift provenance inner depression. There are many hydrocarbon systems, such as, third, second and first member of Shahejie Formation and Dongying Formation, and there also developed various types of reservoir.
     The third chapter mainly builds the sequence stratigraphic framework of Tertiary in Qikou sag. Guiding by Exxon model of sequence stratigraphy, and according to the drilling, lithology, well-logs, the way of stratal terminations in seismic profiles, and seismogram synthesis, the paper identifies sequence boundaries.100 wells have synthetic seismogram in area about 3150 km2, and based on the synthetic seismogram, seismic profiles, sequence stratigraphy have been rebuilt and explained preciously. For NE02 as example, recognizing the sequence boundary, building division scheme, tracing and closing to 800 m* 800 m. Sequence framework character and inner texture have been explained precisely, for Trace 2564 and Line 1968 as examples.
     In the Tertiary strata of Qikou sag, the paper has identified one interface of first-order sequence, four interfaces of second-order sequence,17 interfaces of third-order sequence, and 11 interfaces of the largest lake flooding surface (the paper hasn't identified the largest lake flooding surface in the Neogene stratra), and established the sequence stratigraphic framework of Paleogene and Neogene in Qikou Sag. The study found that a significant phase of basin evolution, and multi-screen sex, and the process can be divided into fault-depression period and the depression period, while the faulted phase can be further divided into three fault-screen, each screen was a the second-order sequence.
     The forth chapter put forward the research thinking, that is, based on sequence stratigraphy framework, project the reservoir to the framework and make data statistic to analyze the distribution, illuminate the enrichment mechanism.1340 drill holes in Qikou Sag have been used in the research. We select oil layers data of 3m thick or thicker to study the distribution rules of hydrocarbon reservoirs, and select oil layers and oil-water layers data of 3m thick or thicker to analyze favorable reservoirs.304 layers in 155 drill holes, totally 1836.2m oil layers have been selected, and 384 layers of oil and oil-water favorable reservoirs in 207 drill holes, totally 2593.9m have been selected, to analyze distribution rules of favorable reservoirs. It is found that these layers are almost all around the secondary sequence boundary (Eslx:30.59%), Es2:14.47%, Ng: 6.91%), account almost 52%, and the nearer to sequence boundary, the reservoir became richer, that is:reservoirs always developed in EST and LST upper the sequence boundary, while developed in HST lower the sequence boundary. In summary, the reservoirs almost developed in EST and LST.
     According to the border fault's contributing factor, pattern in profile and association on the surface, the boundary of Qikou depression are divided into fault steep slope zone, fault multi-level zone, fault-terrace steep slope zone, flexure slope break zone and so on. Basin margin slope-break type impacts pattern of sequence, sedimentary systems, and sand distributed system spatial distribution. According to the slope break division,188 wells have been classified and statistics. The result showed, fault-controlled steep slope belt enriched 40 percent reservoir, fault step steep slope belt enriched 28 percent, multi-fault step enriched 25 percent, and twist slope break just only 7 percent. Based on structure, sedimentary, sequence stratigraphy and reservoir study, illustrate distribution reason and put forward the research thinking, that is, second-order sequence boundary+relevant third-order system tract+slope break type=favorable proposed triple-coupled control zone.
     The main contents of Chapter five is that the author depicted the special geological bodies in the high-resolution sequence stratigraphic framework preciously and pointed out that favorable zone. The general idea is that:under the guidance of the high-resolution sequence stratigraphy theory and the macroscopic ideas of a favorable proposed triple-coupled control zone concluded in front, in the high-frequency sequence stratigraphic framework (fourth-order sequences), we could look for the special geological bodies, carry out the analytical work of the geological bodies'formation cause and the study on the law of spatial distribution, compare to the known oil and gas reservoirs, predicted favorable zone and subtle oil and gas reservoirs, using single-well's identification and calibration, seismic identification and tracking (fourth-order sequences), seismic attribute analysis (third-order+fourth-order sequences), even the crosswell analysis (parasequence), drilling constrained inversion, multi-level and multi-angle fine portray geological body, combined with structure-the ancient landforms, depositional system analysis. There has been conducive to a proper understanding of lateral changes in reservoir characteristics, and further improve the reservoir predicted reliability, through the carrying out geologic body identification and contrast to improve the accuracy of sand body horizontal comparison, avoiding sand body when wearing horizontal contrast in the high-resolution sequence stratigraphic framework,.
     The author used the basin-floor fan, slope fan, and the highstand systems tract of high turbidite body and wedge as the research object, such geologic bodies mainly developed in the lake center, the slope edge,the root of the boundary fault basin margin, sand bodies developed in the geological bodies share quite a few characteristics including that the onlap, toplap (updippinchout) (the downlap, truncation), or two-way onlap, or sand bodies' oneside controlled by faults which was blochaded, the other side of the onlap and toplap. Special geological bodies could be easy to form lithologic reservoirs because they in generally and directly developed in the deep lake-semi-deep lake mudstone, with very good conditions for the upper and lower closure and directly contacted with the high-quality hydrocarbon source rocks, with its proximity advantages. Based on the research findings, and compared the known oil and gas reservoir, we could predicted a favorable geological target zone.
     In chapter six, based on the previous works, comparing with former hydrocarbon accumulation theory, there put forward the thought of analyzing reservoir-forming rules under sequence stratigraphic framework. The study steps are listed as follows:build high-resolution sequence stratigraphic framework; project known reservoirs into framework and summarize the distribution characteristics; analyze the reason of hydrocarbon accumulation combined with structure, sedimentation, diagenesis, and so on; refine reservoir-forming rules for predicting favorable exploration area; based on all the previous works, meticulously depict the high-resolution sequence stratigraphic framework of geological target; predict favorable reservoir area and prove the correctness with examples to proof and revise summarized reservoir-forming rules, and put forward better ones from another angle of view.
     The innovations are as follows:
     1. Based on sequence stratigraphy, the author analyzes and summarizes the reservoir distribution characteristics of Tertiary in Qikou sag. According to data statistics and examples proof, second-order sequence boundary or structure transfer surface is one important reservoir accumulation belt:upper the surface, reservoir always accumulated in EST and LST, while lower the surface, reservoir accumulated in HST. In summary, the EST and LST are favorable for reservoir accumulation. In the plane, reservoir accumulation are controlled by structural geology, such as, fault-controlled steep slope belt is abundant in reservoir, while twist break slope is poor in reservoir. The favorable triple-coupled control zone is proposed, that is:second-order sequence boundary+relevant third-order system tract+slope break type=favorable proposed triple-coupled control zone.
     2. According to this paper, the author put forward analyze reservoir accumulation regularity under sequence stratigraphy framework, whose steps can be listed as follows:build high-resolution sequence stratigraphic framework; project known reservoirs into framework and summarize the distribution characteristics; analyze the reason of hydrocarbon accumulation combined with structure, sedimentation, diagenesis, and so on; refine reservoir-forming rules for predicting favorable exploration area; based on all the previous works, meticulously depict the high-resolution sequence stratigraphic framework of geological target; predict favorable reservoir area and prove the correctness with examples to proof and revise summarized reservoir-forming rules, and put forward better ones from another angle of view.
引文
1. 李思田,解习农,王华,等.沉积盆地分析基础与应用.2004,北京:高等教育出版社.
    2. 王华.层序地层学基本原理、方法与应用,ed.陆永潮,任建业王家豪.2008,武汉:中国地质大学出版社.
    3. 徐怀大,魏魁生,洪卫东.层序地层学原理.1993,海平面变化综合分析.
    4. Sloss, L., Feray, D. Microstylolites in sandstone. Journal of Sedimentary Research,1948. 18(1):3-13.
    5. 沈守文,彭大钧.试论隐蔽油气藏的分类及勘探思路.石油学报,2000.21(001):16-22.
    6. Van Wagoner, J., et al., Siliciclastic sequence stratigraphy in well logs, cores, and outcrops. 1990.
    7. Van Wagoner, J., et al., An overview of the fundamentals of sequence stratigraphy and key definitions. Sea-Level Changes:An Integrated Approach:SEPM, Special Publication, 1988.42:39-45.
    8. Vail, P.R., Mitchum, R.M., Thompson, S. Global cycles of relative changes of sea level. Aapg Bulletin,1977.26:99-116.
    9. Vail, P.R., Colin, J.P., Duchene, R.J., et al. Sequence Stratigraphy and Its Application to the Chronostratigraphic Correlation of the Paris Basin Jurassic. Bulletin De La Societe Geologique De France,1987.3(7):1301-&.
    10. Vail, P.R., Audemard, F., Bowman, S.A., et al. The Stratigraphic Signatures of Tectonics, Eustacy and Sedimentology-an Overview. Cycles and Events in Stratigraphy,1991: 617-659,955.
    11. Vail, P.R. Seismic Stratigraphy and the Evaluation of Depositional Sequences and Facies. Geophysical Journal of the Royal Astronomical Society,1983.73(1):278-278.
    12. Posamentier, H.W., Erskine, R.D., Mitchum, R.M. Submarine Fans in a Sequence Stratigraphic Framework. Aapg Bulletin-American Association of Petroleum Geologists, 1987.71(5):602-603.
    13. Posamentier, H.W., Vail, P.R. Sequences, Systems Tracts, and Eustatic Cycles. Aapg Bulletin-American Association of Petroleum Geologists,1988.72(2):237-237.
    14. Posamentier, H., Kolla, V. Seismic geomorphology and stratigraphy of depositional elements in deep-water settings.2003, SEPM.367-388.
    15. Weimer, P., Pettingill, H.S. Deep-water Exploration and Production:A Global Overview. AAPG Studies in Geology,2007.56(29):1-29.
    16. Catuneanu, O., Abreub, V., Bhattacharya, J.P., et al. Towards the standardization of sequence stratigraphy. Earth-Science Reviews,2009.92(1-2):1-33.
    17. DEPOSITS, S., Sequential architecture in a fluvial succession:sequence stratigraphy in the Upper Cretaceous Mesa Verde Group, Price Canyon, Utah. Journal of Sedimentary Research,1995.65(2):265-280.
    18. Sarg, J., Carbonate sequence stratigraphy. Sea-Level Changes:An Integrated Approach: SEPM, Special Publication,1988.42:155-181.
    19. Schumm, S., River response to baselevel change:implications for sequence stratigraphy. The Journal of Geology,1993.101(2):279-294.
    20. Posamentier, H., et al., Forced regressions in a sequence stratigraphic framework:concepts, examples, and exploration significance. Aapg Bulletin,1992.76:1687-1687.
    21. Wright, V. and S. Marriott, The sequence stratigraphy of fluvial depositional systems:the role of floodplain sediment storage. Sedimentary Geology,1993.86(3-4):203-210.
    22. Plint, A. and D. Nummedal, The falling stage systems tract:recognition and importance in sequence stratigraphic analysis. Sedimentary Responses to Forced Regressions,2000.172: 1-17.
    23. Mitchum, R., High-frequency sequences and their stacking patterns: sequence-stratigraphic evidence of high-frequency eustatic cycles. Sedimentary Geology, 1991.70:131-147.
    24. Gawthorpe, R., A. Fraser, and R. Collier, Sequence stratigraphy in active extensional basins:implications for the interpretation of ancient basin-fills. Marine and Petroleum Geology,1994.11(6):642-658.
    25. 邓宏文.美国层序地层研究中的新学派:高分辨率层序地层学.石油与天然气地质,1995.16(002):89-97.
    26. Dunbar, C. and J. Rodgers, Principles of stratigraphy.1965:Wiley.
    27. Krumbein, W. and L. Sloss, Stratigraphy and sedimentation. Soil Science,1951.71(5): 401.
    28. Mangerud, J., et al., Quaternary stratigraphy of Norden, a proposal for terminology and classification. Boreas,1974.3(3):109-128.
    29. Shackleton, N. and N. Opdyke, Oxygen isotope and paleomagnetic stratigraphy of Pacific core V28-239, late Pliocene to latest Pleistocene. Investigation of late Quaternary paleoceanography and paleoclimatology,1976:449-464.
    30. Mitchum, R., et al., Recognizing sequences and systems tracts from well logs, seismic data, and biostratigraphy:examples from the Late Cenozoic of the Gulf of Mexico. Siliciclastic sequence stratigraphy:Recent developments and applications:AAPG Memoir,1993.58: 163-197.
    31. Mitchum Jr, R., P. Vail, and J. Sangree, Seismic stratigraphy and global changes of sea level, part 6:stratigraphic interpretation of seismic reflection patterns in depositional sequences. Seismic stratigraphy--applications to hydrocarbon exploration:AAPG Memoir, 1977.26:117-133.
    32. Mitchum, R., et al. Sequence stratigraphy in late Cenozoic expanded sections, Gulf of Mexico.1990.
    33. Sangree, J., P. Vail, and R. Mitchum Jr. A summary of exploration applications of sequence stratigraphy.1990.
    34. Mitchum Jr, R., et al. Sequence stratigraphy in Late Cenozoic expanded sections.1990.
    35. Brown Jr, L., et al., Understanding growth-faulted, intraslope subbasins by applying sequence-stratigraphic principles:Examples from the south Texas Oligocene Frio Formation. Aapg Bulletin,2004.88(11):1501.
    36. Shanley, K. and P. McCabe, Predicting facies architecture through sequence stratigraphy--An example from the Kaiparowits Plateau, Utah. Geology,1991.19(7):742.
    37. Shanmugam, G., et al., Basin-floor fans in the North Sea:sequence stratigraphic models vs. sedimentary facies. Aapg Bulletin-American Association of Petroleum Geologists,1995. 79(4):477-512.
    38. 解习农,李思田,陆相盆地层序地层研究特点.地质科技情报,1993.12(001):p.22-26.
    39. 李思田,林畅松.大型陆相盆地层序地层学研究——以鄂尔多斯中生代盆地为例.地学前缘,1995.2(004):133-136.
    40. 冯有良,李思田.陆相断陷盆地层序形成动力学及层序地层模式.地学前缘,2000.7(003):119-132.
    41. 李思田,杨士恭.论沉积盆地的等时地层格架和基本建造单元.沉积学报,1992.10(004):11-22.
    42. 顾家裕.陆相盆地层序地层学格架概念及模式.石油勘探与开发,1995.22(004):6-10.
    43. 徐怀大.陆相层序地层学研究中的某些问题.石油与天然气地质,1997.18(002):83-89.
    44. 侯明才,陈洪德.层序地层学的研究进展.矿物岩石,2001.21(003):128-134.
    45. 赵国连.层序地层学的研究现状.沉积与特提斯地质,2000.20(003):97-104.
    46. 林畅松.沉积盆地的构造地层分析——以中国构造活动盆地研究为例.现代地质,2006.20(002):185-194.
    47. 纪友亮,张善文,冯建辉.陆相湖盆古地形,可容空间的体积变化率与层序结构的关系.沉积学报,2005.23(004):631-638.
    48. 邓宏文,郭建宇,王瑞菊,等.陆相断陷盆地的构造层序地层分析.地学前缘(中国地质大学,北京;北京大学),2008.15(2):1-7.
    49. 陈莹,林畅松,余宏忠,等.歧口凹陷古近纪同沉积断裂对层序和沉积体系的控制.地质力学学报,2006.12(003):378-386.
    50. 李思田,潘元林.断陷湖盆隐蔽油藏预测及勘探的关键技术——高精度地震探测基础上的层序地层学研究.地球科学:中国地质大学学报,2002.27(005):592-598.
    51. 任建业,陆永潮,张青林.断陷盆地构造坡折带形成机制及其对层序发育样式的控制.地球科学:中国地质大学学报,2004.29(005):596-602.
    52. 于兴河,姜辉,李胜利,等.中国东部中,新生代陆相断陷盆地沉积充填模式及其控 制因素——以济阳坳陷东营凹陷为例.岩性油气藏,2007.19(001):39-45.
    53. 王英民,金武弟,刘书会,等.断陷湖盆多级坡折带的成因类型,展布及其勘探意义.石油与天然气地质,2003.24(003):199-203.
    54. 杨明慧,刘池阳,孙冬胜,等.陆相伸展盆地强伸展期沉积格架与断块翘倾分析——以冀中坳陷廊固凹陷沙河街组三段中亚段为例.地质科学,2004.39(002):178-190.
    55. 焦养泉,周海民.断陷盆地多层次幕式裂隙作用与沉积充填响应:以….地球科学:中国地质大学学报,1996.21(006):633-636.
    56. 王英民,刘豪.准噶尔大型坳陷湖盆坡折带的类型和分布特征.地球科学:中国地质大学学报,2002.27(006):683-688.
    57. 王大伟,刘震,陈小宏,等.地震相干技术的进展及其在油气勘探中的应用.地质科技情报,2005.24(002):71-76.
    58. 王志君,黄军斌.利用相干技术和三维可视化技术识别微小断层和砂体.石油地球物理勘探,2001.36(003):378-381.
    59. 姜素华,庄博,刘玉琴,等.三维可视化技术在地震资料解释中的应用.中国海洋大学学报,2004.34(001):147-152.
    60. 刘丽峰,杨怀义,蒋多元,等.三维精细构造解释的方法流程和关键技术.地球物理学进展,2006.21(003):864-871.
    61. 杨开珍.应用三维相干技术进行精细地震解释.石油物探,2000.39(002):83-88.
    62. Marfurt, K., et al.,3-D seismic attributes using a semblance-based coherency algorithm. Geophysics,1998.63(4):1150-1165.
    63. Bosquet, F. and J. Dulac, Advanced volume visualization--new ways to explore, analyze, and interpret seismic data. The Leading Edge,2000.19(5):535.
    64. Dzwinel, W., et al., Multi-resolution clustering analysis and 3-D visualization of multitudinous synthetic earthquakes. Visual Geosciences,2003.8(1):1-32.
    65. Russell, B., C. Ross, and L. Lines, Neural networks and AVO. The Leading Edge,2002. 21(3):268.
    66. Lines, L. and S. Treitel, A review of least-squares inversion and its application to geophysical problems. Geophysical Prospecting,1984.32(2):159-186.
    67. Mukerji, T., et al., Mapping lithofacies and pore-fluid probabilities in a North Sea reservoir:Seismic inversions and statistical rock physics. Geophysics,2001.66:988.
    68. Whitcombe, D., et al., Extended elastic impedance for fluid and lithology prediction. Geophysics,2002.67:63.
    69. 马丽娟,郑和荣,陈霞.隐蔽油气藏地震预测技术研究新进展.地球物理学进展,2007.22(001):294-300.
    70. 史哥,杨东全.岩石波速和孔隙度,泥质含量之间的关系研究.北京大学学报:自然科学版,2001.37(003):379-384.
    71. Yarus, J. and R. Chambers, Stochastic modeling and geostatistics:principles, methods, and case studies.1994:Amer Assn of Petroleum Geologists.
    72. Deutsch, C. and T. Tran, FLUVSIM:A program for object-based stochastic modeling of fluvial depositional systems. Computers and Geosciences,2002.28(4):525-535.
    73. Hazlett, R., Statistical characterization and stochastic modeling of pore networks in relation to fluid flow. Mathematical Geology,1997.29(6):801-822.
    74. Haas, A. and O. Dubrule, Geostatistical inversion:a sequential method of stochastic reservoir modelling constrained by seismic data. First break(Print),1994.12(11):561-569.
    75. Posamentier, H.W., Davies, R.J., Cartwright, J.A., et al. Seismic geomorphology-an overview. Seismic Geomorphology:Applications to Hydrocarbon Exploration and Production,2007(277):1-14,274.
    76. Nordfjord, S., Goff, J., Austin, J., et al. Seismic geomorphology of buried channel systems on the New Jersey outer shelf:assessing past environmental conditions. Marine Geology, 2005.214(4):339-364.
    77. Sawyer, D., Flemings, P., Shipp, R., et al. Seismic geomorphology, lithology, and evolution of the late Pleistocene Mars-Ursa turbidite region, Mississippi Canyon area, northern Gulf of Mexico. Aapg Bulletin,2007.91(2):215-234.
    78. Posamentier, H. Seismic geomorphology:imaging elements of depositional systems from shelf to deep basin using 3D seismic data:implications for exploration and development. Geological Society London Memoirs,2004.29(1):11.
    79. Zeng, H. Seismic imaging for seismic geomorphology beyond the seabed:potentials and challenges. Seismic Geomorphology:Applications to Hydrocarbon Exploration and Production,2007(277):15-28,274.
    80. Zeng, H., Ambrose, W., Villalta, E. Seismic sedimentology and regional depositional systems in Mioceno Norte, Lake Maracaibo, Venezuela. The Leading Edge,2001.20(11): 1260-1269.
    81. Zeng, H.L., Hentz, T.F. High-frequency sequence stratigraphy from seismic sedimentology: Applied to Miocene, Vermilion Block 50, Tiger Shoal Area, Offshore Louisiana. Aapg Bulletin,2004.88(2):153-174.
    82. 董春梅,张宪国,林承焰.地震沉积学的概念,方法和技术.沉积学报,2006.24(005):698-704.
    83. 董艳蕾,朱筱敏,曾洪流,等.黄骅坳陷歧南凹陷古近系沙一层序地震沉积学研究.沉积学报,2008.26(002):234-240.
    84. 吴因业,顾家裕,施和生,等.从层序地层学到地震沉积学——全国第5届油气层序地层学大会综述.石油实验地质,2008.30(003):217-220.
    85. 陆永潮,杜学斌,陈平,等.油气精细勘探的主要方法体系——地震沉积学研究.石油实验地质,2008.30(001):1-5.
    86. 沈守文,彭入钧.层序地层学预测隐蔽油气藏的原理和方法.地球学报:中国地质科学院院报,2000.21(003):300-305.
    87. 林畅松,张燕梅.高精度层序地层学和储层预测.地学前缘,2000.7(003):111-117.
    88. Xuan-jun, Y, XUE Liang-qing, CHI Ying-liu, CHEN Zhang-ming, QU Yong-hong Sequence stratigraphic and subtle-trap characteristics of lacustrine depression basin [J]. Acta Petrolei Sinica,2003.3.
    89. Sarg, J. and L. Skjold, Stratigraphic traps in Paleocene sands in the Balder area, North Sea. The deliberate search for the subtle trap:AAPG Memoir,1982.32:197-206.
    90. Dong-sheng, W., A Research on Subtle Reservoir of Dainan Formation in Jinhu Depression. Journal of Southwest Petroleum Institute,2005.4.
    91. Kuisheng, Y., CONDENSED SECTION AND NEW EVIDENCE OF MARINE INUNDATION IN CRETACEOUS, SONGLIAO BASIN [J]. EARTH SCIENCE,1996.3.
    92. Saller, A., et al., Characteristics of Pleistocene deep-water fan lobes and their application to an upper Miocene reservoir model, offshore East Kalimantan Indonesia. Aapg Bulletin, 2008.92(7):919-949.
    93. Pettingill, H. and P. Weimer, Worlwide deepwater exploration and production:Past, present, and future. The Leading Edge,2002.21(4):371.
    94.94.Pettingill, H. and P. Weimer, Deepwater remains immature frontier. Offshore,2002. 62(10):48-51.
    95.95.Prather, B., et al., Classification, lithologic calibration, and stratigraphic succession of seismic facies of intraslope basins, deep-water Gulf of Mexico. Aapg Bulletin,1998.82: 701-728.
    96.96.Henry S. Pettingill, H. and P. Weimer. World-Wide Deepwater Exploration and Production:Past, Present and Future.2002.
    97. 朱光辉,恕,蒋.,蔡东升,等.中国碎屑岩隐蔽油气藏勘探进展与问题.石油天然气学报,2007.29(2):1-8.
    98. 冯有良,邱以钢.高精度层序地层学的济阳坳陷下第三系隐蔽油气藏勘探中的应用.石油学报,2003.24(001):49-52.
    99. 潘元林,宗国洪,郭玉新,等.济阳断陷湖盆层序地层学及砂砾岩油气藏群.石油学报,2003.24(003):16-23.
    100.李丕龙.陆相断陷盆地油气地质与勘探(卷二).陆相断陷盆地沉积体系与油气分布.2003,北京:石油工业出版社.
    101.董月霞,周海民.南堡凹陷第三系层序地层与油气成藏的关系.石油与天然气地质,2003.24(001):39-41.
    102. Lin, C.S., Zheng, H.R., Ren, J.Y, et al. The control of syndepositional faulting on the Eogene sedimentary basin fills of the Dongying and Zhanhua sags, Bohai Bay Basin. Science in China Series D-Earth Sciences,2004.47(9):769-782.
    103. Zhang, S.W., Wang, Y.S., Shi, D.S., et al. Fault-fracture mesh petroleum plays in the Jiyang Superdepression of the Bohai Bay Basin, Eastern China. Marine and Petroleum Geology,2004.21(6):651-668.
    104. Liu, H., Wang, Y.M., Xin, R.C., et al. Study on the slope break belts in the Jurassic down-warped lacustrine basin in western-margin area, Junggar Basin, northwestern China. Marine and Petroleum Geology,2006.23(9-10):913-930.
    105.李丕龙.富油断陷盆地油气环状分布与惠民凹陷勘探方向.石油实验地质,2001.23(002):146-148.
    106.张善文.济阳坳陷第三系隐蔽油气藏勘探理论与实践.石油与天然气地质,2006.27(006):731-740.
    107.张善文,王英民,李群.应用坡折带理论寻找隐蔽油气藏.石油勘探与开发,2003.30(003):5-7.
    108.樊太亮,李卫东.层序地层应用于陆相油藏预测的成功实例.石油学报,1999.20(002):12-17.
    109.牛嘉玉,李秋芬,鲁卫华,等.关于“隐蔽油气藏”概念的若干思考.石油学报,2005.26(002):122-126.
    110.蔡希源,李思田.陆相盆地高精度层序地层学——隐蔽油气藏勘探基础,方法与实践.2003:北京:地质出版社.
    111. Demaison, G. and B. Huizinga, Genetic classification of petroleum systems. Aapg Bulletin, 1991.75(10):1626-1643.
    112. Ahlbrandt, T., Global resource estimates from total petroleum systems.2005:Amer Assn of Petroleum Geologists.
    113. Magoon, L. and W. Dow, The petroleum system:American Association of Petroleum Geologists.
    114.109. Perrodon, A., Petroleum systems and global tectonics. Journal of Petroleum Geology,1995.18(4):471-476.
    115. Demaison, G. and B. Huizinga, Genetic Classification of Petroleum Systems Using Three Factors:Charge, Migration, Entrapment. MEMOIRS-AMERICAN ASSOCIATION OF PETROLEUM GEOLOGISTS,1994:73-73.
    116. Ritts, B., et al., Lower-Middle Jurassic nonmarine source rocks and petroleum systems of the northern Qaidam basin, northwest China. Aapg Bulletin,1999.83(12):1980-2005.
    117. Klemme, H., Petroleum systems of the world involving Upper Jurassic source rocks. MEMOIRS-AMERICAN ASSOCIATION OF PETROLEUM GEOLOGISTS,1994: 51-51.
    118. Talukdar, S. and F. Marcano, Petroleum systems of the Maracaibo basin, Venezuela. MEMOIRS-AMERICAN ASSOCIATION OF PETROLEUM GEOLOGISTS,1994: 463-463.
    119. PETERS, K., et al., The Petroleum System:From Source to Trap. AAPG Mem.,1994.60: 93-117.
    120. Bradshaw, M., J. Bradshaw, and A. Murray, Australian petroleum systems. PESA Journal, 1993.21:43-53.
    121. Magoon, L. and Z. Valin, Overview of petroleum system case studies. MEMOIRS-AMERICAN ASSOCIATION OF PETROLEUM GEOLOGISTS,1994: 329-329.
    122.胡朝元.胡朝元石油天然气地质文选.1999,北京:石油工业出版社.
    123.陈景达.复式油气聚集带与盆地研究.复式油气田,1996.1(001):4-6.
    124.李德生.渤海湾盆地复合油气田的开发前景.石油学报,1986.7(1):46-50.
    125.胡见义.中国陆相石油地质理论基础.1991:石油工业出版社.
    126.孙龙德,李曰俊.塔里木盆地轮南低凸起:一个复式油气聚集区.地质科学,2004.39(002):296-304.
    127.薛世荣.北大港复式油气聚集带成因探讨.复式油气田,1998(002):1-8.
    128.庞雄奇,张树林,吴欣松,等.油气田勘探.2006,北京:高等教育出版社.
    129.林畅松,潘元林.“构造坡折带”——断陷盆地层序分析和油气预测?….地球科学:中国地质大学学报,2000.25(003):260-266.
    130.任建业,张青林,陆永潮.东营凹陷弧形断裂坡折带系统及其对低位域砂体的控制.沉积学报,2004.22(004):628-635.
    131.杜金虎,易士威,张以明.二连盆地隐蔽油藏勘探.2003,北京:石油工业出版社.
    132.李丕龙,张善文,宋国奇,等.断陷盆地隐蔽油气藏形成机制——以渤海湾盆地济阳坳陷为例.石油实验地质,2004.26(001):3-10.
    133.赵文智,张光亚,王红军.石油地质理论新进展及其在拓展勘探领域中的意义.石油学报,2005.26(001):1-7.
    134.赵文智,邹才能,汪泽成,等.富油气凹陷“满凹含内涵与意义油”论——内涵与意义.石油勘探与开发,2004.31(002):5-13.
    135.刘震,赵阳,杜金虎,等.陆相断陷盆地岩性油气藏形成与分布的“多元控油-主元成藏”特征.地质科学,2006.41(004):612-635.
    136.刘震,陈艳鹏,赵阳,等.陆相断陷盆地油气藏形成控制因素及分布规律概述.岩性油气藏,2007.19(002):121-127.
    137.顾家裕,张兴阳.陆相层序地层学进展与在油气勘探开发中的应用.石油与天然气地质,2004.25(5):484-490.
    138.贾承造,赵文智.层序地层学研究新进展.石油勘探与开发,2002.29(005):1-4.
    139.徐强,姜烨.中国层序地层研究现状和发展方向.沉积学报,2003.21(001):155-167.
    140.杨小萍,刘桂侠.层序地层学研究现状及发展趋势.西北地质,2001.34(002):16-20.
    141.顾家裕,范土芝.层序地层学回顾与展望.海相油气地质,2001.6(004):15-25.
    142.郭了萍,李登伟,彭军,等.我国层序地层学研究的发展趋势.河南石油,2005.19(006):1-5.
    143.董春梅,张宪国,林承焰.有关地震沉积学若干问题的探讨.石油地球物理勘探,2006.41(004):405-409.
    144.大港油田石油地质志编辑委员会.中国石油地质志,卷四.大港油田.1991:石油工业出版社.
    145.郭兴伟,施小斌,丘学林,等.渤海湾盆地新生代沉降特征及其动力学机制探讨.大 地构造与成矿学,2007.31(003):273-280.
    146.漆家福,陈发景.渤海湾新生代裂陷盆地的伸展模式及其动力学过程.石油实验地质,1995.17(004):316-323.
    147.朱夏.中国东部板块内部盆地形成机制的初步探讨.石油实验地质,1979.1(1):1-9.
    148.周建勋,周建生.渤海湾盆地新生代构造变形机制:物理模拟和讨论.中国科学:D辑,2006.36(006):507-519.
    149. Zhai, G.M. Petroleum Geology of China (VolumeⅣ)-Dagang Oil Field.1991, Beijin: Petroleum Industry Press.
    150. Yu, Z.H., Yang, C.Y., Liao, Q.J. Natural Gas of Huanghua Depression.1997, Beijing: Petroleum Industry Press.
    151.吴元燕,周建生.歧口凹陷含油气系统及其评价.石油学报,2000.21(006):18-22.
    152.杨池银,周宗良,周建生.歧口凹陷含油气系统与油气勘探[J].勘探家,2000.5(3):64-70.
    153.张杰,邱楠生,王昕,等.黄骅坳陷歧口凹陷热史和油气成藏史.石油与天然气地质,2005.26(004):505-511.
    154.李思田.大型油气系统形成的盆地动力学背景.地球科学-中国地质大学学报,2004.29(5):505-512.
    155.蒲秀刚,吴永平,周建生,等.歧口凹陷岩性地层油气藏特征及勘探潜力.石油学报,2007.28(002):35-39.
    156. Berg, O. Seismic detection and evaluation of delta and turbidite sequences; their application to exploration for the subtle trap. Aapg Bulletin,1982.66(9):1271-1288.
    157. Weimer, P., Slatt, R. Petroleum systems of deepwater settings.2004:Society of Exploration Geophysicists.
    158.李丕龙,庞雄奇.隐蔽油气藏形成机理与勘探实践.第三届隐蔽油气藏国际学术研讨会论文集.北京:石油工业出版社,2003.
    159. Einsele, G. Sedimentary basins:evolution, facies, and sediment budget.2000:Springer Verlag.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700