用户名: 密码: 验证码:
N-异丙基丙烯酰胺类温敏型聚合物的制备及其协助蛋白质体外复性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,蛋白质体外重折叠复性技术已成为基因工程蛋白质产业化的瓶颈问题之一。蛋白质体外重折叠过程中聚集体的形成是制约蛋白质恢复正确空间结构的一个主要原因,向复性体系中加入能够协助目标蛋白复性的试剂,即折叠助剂,是解决这一问题的有效方法,因而开发新型、高效,同时又易于操作和回收利用的蛋白质体外复性添加剂成为近年来的研究热点。
     N-异丙基丙烯酰胺(NIPA)类聚合物是应用广泛的一种温敏型聚合物,是一种蛋白质体外复性的候选添加剂。本文以NIPA类聚合物的合成、性能表征及其在协助蛋白质体外复性中的应用为主线,开展了四个方面的工作:其一,交联网状聚合物PNIPA、NIPA与丙烯酸钠(SA)的网状共聚物P(NIPA-co-SA)的合成、性能表征及其协助目标蛋白溶菌酶(lysozyme)体外复性效果的考察;其二,线性聚合物PNIPAAm的合成、性能表征及其协助溶菌酶体外复性效果的考察;其三,兼具交联网状聚合物和线性聚合物优点的接枝型聚合物—含温敏性PNIPAAm毛发的聚苯乙烯微球(PS-grafted-PNIPAAm)的制备、性能表征及其协助溶菌酶体外复性效果的考察;其四,三种不同类型聚合物温敏性能及其协助蛋白质体外复性效果的比较,并对其协助复性的机理进行了探讨。
     交联网状聚合物的合成、性能表征及其协助溶菌酶体外复性效果的考察:采用反相悬浮聚合法合成了粒状PNIPA凝胶及其与丙烯酸钠(SA)的共聚凝胶P(NIPA-co-SA),温敏性能研究表明,两种凝胶具有相似的温度敏感性,但其低临界溶解温度(LCST)有所不同,分别为33℃和39℃;凝胶粒子的直径在200~500μm之间,表面分布着不规则微孔。在温度为30℃,尿素浓度为3mol/L,GSH和GSSG的浓度分别为3mmol/L和0.375mmol/L(GSH:GSSG=8:1)的复性条件下,当目标蛋白溶茵酶的终浓度为250μg/ml时,加入2mg/ml PNIPA粒状凝胶可使溶菌酶的活力回收率达到72.9%,明显高于稀释复性的51.3%;;加入3mg/ml粒状P(NIPA-co-SA)共聚凝胶可使溶菌酶的活力回收率提高到71.5%。不同稀释倍数下两种凝胶协助复性实验表明,溶菌酶初始浓度越高,与稀释复性相比凝胶协助复性的效果就越好,在蛋白质体外重折叠过程中具有一定的优势。两种凝胶重复利用6次后溶菌酶的活力回收率仍分别高出稀释复性15%和12%以上。两种凝胶协助复性和稀释复性的时间基本相同,凝胶的加入并没有成为复性的限速步骤。
     线性聚合物的合成、性能表征及其协助溶菌酶体外复性效果的考察:采用自由基聚合法,以偶氮二异丁腈(AIBN)为引发剂,N-异丙基丙烯酰胺(NIPA)为单体,在乙醇溶液中合成了PNIPAAm。温敏性能研究表明,其低临界溶解温度(LCST)约为32℃,该值受PNIPAAm基团的亲水疏水相互作用强弱变化的控制,随PNIPAAm分子量、溶液浓度和溶液组成不同而略有变化。PNIPAAm凝胶具有较好协助溶菌酶复性的效果,与稀释复性相比,PNIPAAm可大大提高蛋白复性的初始浓度,在协助蛋白质复性上有较大优势。当溶菌酶浓度为600μg/ml时,活性回收率从稀释复性的11.93%提高到79.83%,改进非常明显。系统考察了复性液中PNIPAAm与溶菌酶浓度比(w/w)、尿素浓度和复性温度对溶菌酶复性效果的影响,确定本实验中合适的复性条件为,PNIPAAm与溶菌酶浓度比8、尿素浓度1.8mol/L、复性温度30℃。
     接枝型聚合物PS-grafted-PNIPAAm微球的制备、性能表征及其协助溶菌酶体外复性效果的考察:采用无皂乳液聚合法和紫外光引发表面接枝技术制备了PS-grafted-PNIPAAm微球,获得了Particle A(PS核心直径442nm,PNIPAAm高分子毛发层厚度122nm)和Particle B(PS核心直径442nm,PNIPAAm高分子毛发层厚度89nm)两种微球。微球形貌为圆球形,且粒径分布较为均一,单分散性良好,尺寸为亚微米级,其LCST均在34℃左右。将PS-grafted-PNIPAAm微球应用于溶菌酶的体外复性中,优化的复性工艺条件为:复性温度30℃,复性液中尿素浓度3mol/L,GSH与GSSG的浓度比8:1(其中GSSG的浓度0.375mmol/L),Particle A和Particle B与溶菌酶的浓度比分别为0.5和1.0。在优化的复性条件下,Particle A和Particle B的加入可以在较高蛋白浓度条件下显著地提高其活性收率,当溶菌酶的浓度为500μg/ml时,Particle A和Particle B的加入使得复性后的活性回收率分别达到了71.5%和58.0%,比稀释复性的收率提高了36.7和23.2个百分点,从而极大地降低了复性过程的成本。Particle A和ParticleB的加入,在提高溶菌酶活性收率的同时,使复性过程达到平衡所需的时间略有延长,从稀释复性时约4 h延长至4.5 h。
     三种聚合物温敏性能、协助蛋白质体外复性效果的比较,及其协助复性的机理初探:在上述实验的基础上,将制得的三种聚合物进行性能及协助复性效果的比较。三种聚合物都具有显著的温度敏感性,但低临界溶解温度(LCST)有所不同。在协助蛋白质体外复性的过程中,线性聚合物的效果最佳,但复性完成后不易与目标蛋白分离,难以重复利用;交联网状聚合物易于从复性体系中分离出来,但协助复性效果相对较差,且由于凝胶网络的吸附会造成蛋白损失;接枝型聚合物则兼具高效和易分离的特点,其应用前景值得期待。采用动力学模型拟合和荧光光谱分析的方法对N-异丙基丙烯酰胺类聚合物协助复性的机理进行了初步研究,结果表明,在复性过程中起主要作用的是其上的疏水基团—异丙基与溶菌酶疏水区域之间的疏水相互作用,这种作用阻止了蛋白折叠过程中的聚集沉淀,使复性向天然态的构象进行。
     总之,全文围绕N-异丙基丙烯酰胺类聚合物的制备、性能表征和在蛋白质复性中的应用开展了系列研究,成功完成了制备-性能表征-应用-机理的研究路线,为进一步开发新型、高效、易于分离回收的蛋白复性添加剂奠定了基础。
Nowadays,how to refold proteins expressed as inclusion bodies into natural conformation with high yields at high initial proteins concentration is becoming one of the most important problems in genetic engineered proteins industry.The vital step in protein refolding in vitro is to reduce the intermolecular aggregates which prevent protein to form correct three-dimensional structure.Some folding agents which can inhibit proteins aggregation were added to solve this problem.Therefore,the development of the novel,highly efficient,easy to operate and recycle folding agents has become a research hotspot in recent years.
     Poly(N-isopropylacrylamide) is one of the most popular temperature-sensitive polymers and has been widely applied in many fields.In this thesis,the different kinds of NIPA polymers,including crosslinked network polymers(PNIPA and P(NIPA-co-SA)),a single chain of polymer(PNIPAAm) and graft copolymer (PS-grafted-PNIPAAm),were synthesized.The performance of the above polymers was characterized and then the polymers were applied to the refolding of denatured hen egg white lysozyme(HEWL) in vitro.Furthermore,the assisting refolding effects of different polymers were compared and the refolding mechanism was discussed.
     Firstly,the PNIPA and P(NIPA-co-SA) gel particles were synthesized by inverse suspension polymerization.The two gel particles had similar temperature sensitivity but different low critical solution temperature(LCST).The LCST of the gels was 33℃and 39℃respectively.The gel particles were characterized by SEM and the results showed that the particles were in the range of 200-500μm in diameters with numerous pores spreading over the surface of the beads.The optimum condition for lysozyme refolding assisted by PNIPA and P(NIPA-co-SA) gel particles was obtained, i.e.refolding temperature 30℃,the concentration of urea 3mol/L and the concentration ratio of GSH to GSSG 8:1(the GSSG concentration 0.375mmol/L). Under this optimized condition,when the final protein concentration was 250μg/ml, the activity recovery of lysozyme increased from 51.3%to 72.9%assisted by PNIPA gel particles of 2mg/ml concentration,while to the 71.5%assisted by the P(NIPA-co-SA) gel particles of 3mg/ml concentration correspondingly.The results indicated that gel particles were even more efficient at high protein concentration. After PNIPA and P(NIPA-co-SA) gel particles were recycled for 6 batches,the activity recovery of lysozyme were still 15%and 12%higher than the simple dilution. The refolding time mediated by the two kinds of gel particles was nearly the same with the simple dilution.
     Secondly,a single chain of PNIPAAm was synthesized using free-radical polymerization reaction.The results of temperature sensitivity experiments showed that the LCST of PNIPAAm was at about 32℃,and this value would slightly change with the molecular weight,solution concentration of PNIPAAm and solution compositions.Compared with the simple dilution refolding,the renaturation of lysozyme assisted by PNIPAAm showed some advantages.When lysozyme concentration was as high as 600μg/ml,the activity was increased from 11.93%to 79.83%with the presence of PNIPAAm.Some important process parameters,such as the initial lysozyme concentration,the concentration ratio of PNIPAAm to lysozyme, the urea concentration and the refolding temperature were investigated in detail and the optimized refolding condition was ascertained:the concentration ratio(w/w) of PNIPAM to lysozyme 8,the urea concentration 1.8mol/L,and the refolding temperature 30℃.
     Thirdly,PS-grafted-PNIPAAm Particle A(diameter of PS core 442nm,thickness of brush layer 122nm) and Particle B(diameter of PS core 442nm,thickness of brush layer 89nm) were synthesized by the non-soap emulsion polymerization and UV-initiation.The particles were in spherical shape with narrow particles size distribution and good dispersion property.The LCST was about 34℃.The optimum condition for lysozyme refolding mediated by PS-grafted-PNIPAAm was:the refolding temperature 30℃,the concentration of urea 3mol/L and the concentration ratio of GSH to GSSG 8:1(the GSSG concentration 0.375mmol/L),and Particle A and B to lysozyme were 0.5 and 1 respectively.Under this condition,lysozyme was refolded efficiently assisted by Particle A and B,especially at high initial protein concentrations.For instance,when lysozyme concentration was 500μg/ml,the activity recovery assisted by Particle A and B obtained 71.5%and 58.0%respectively,36.7 percent and 23.2 percent higher than simple dilution.Meanwhile with the additive Particle A and B,the refolding time was extended from 4h to 4.5h,compared with simple dilution refolding.
     Fourthly,based on the experimental results,the comparison of performance and the assisting refolding effects of different polymers were carried out.Three kinds of polymers all had distinct temperature sensitivity,but the LCST were a little bit different.In the process of assisting refolding,the linear PNIPAAm was the most effective but hard to be removed and recycled after protein refolding;the crosslinked network polymers were easily to be removed from the refolding system but the efficiency was correspondingly lower and there was loss of protein due to the penetration and adsorption of protein into the gel network;the graft copolymer possessed both advantages of liner and crosslinked network polymers with high efficient and easily to be separated.The preliminary studies to the mechanism of assisting refolding with kinetic model simulation and fluorescence spectrum analysis were carried out,and the results showed that the hydrophobic interaction between NIPA polymers and protein molecules inhibited intermolecular hydrophobic interaction of protein molecules and then reduced aggregation of refolding intermediates,so the protein could be folded correctly to native conformation.
     In a word,the preparation,characterization and application of NIPA polymers were carried out.Some important information was obtained and the refolding mechanism was discussed,which would certainly be useful for the development of some novel,highly efficient,easy to separate and recycle folding agents.
引文
1.Jungbauer A,Kaar W.Current status of technical protein refolding.Journal of Biotechnology,2007,128:587-596.
    2.夏启玉,肖苏生,邓柳红,易小平,张春发.包涵体蛋白的复性研究进展.安徽农业科学,2008,36(14):5801-5803.
    3.Misawa S,Kumagai I.Refolding of therapeutic proteins produced in Escherichia coli as inclusion bodies.Biopolymers(Peptide Science),1999,51:297-307.
    4.杨晓仪,林键,吴文言.重组蛋白包涵体的复性研究.生命科学研究,2004,8(2):100-105.
    5.Chen Y,Ding F,Nie H,Serohijos A W,Sharma S,Yin K C W,Dokholyan N V.Protein folding:Then and now.Archives of Biochemistry and Biophysics,2008,469:4-19.
    6.黄泓,张伟.包涵体的体外复性研究进展.生命的化学,2003,23:397-400.
    7.吉清,何凤田.包涵体复性的研究进展.国外医学临床生物化学与检验学分册,2004,25(6):516-518.
    8.Clark E D B,Schwarz E,Rudolph R.Inhibition of aggregation side reactions during in vitro protein folding.Methods in Enzymology,1999,309:217-236.
    9.Ejima D,Watanabe M,Sato Y,Date M,Yamada N,Takahara Y.High yield refolding and purification process for recombinant human interleukin-6 expressed in Escherichia coil.Biotechnology and Bioengineering,1999,62(3):301-310.
    10.井明艳,孙建义.蛋白质的折叠调控与包涵体的形成.浙江大学学报(农业与生命科学版),2004,30:690-696.
    11.Clark E D B.Protein refolding for industrial processes.Current Opinion in Biotechnology,2001,12(2):202-207.
    12.高永贵,关怡新,姚善泾.包涵体蛋白的变复性研究.科技通报,2003,19(1):10-15.
    13.Mukhopadhyay A.Inclusion bodies and purification of proteins in biologically active forms.Advance in Biochemical Engineering and Biotechnology,1997,56:61-109.
    14.Gu Z Y,Weidenhaupt M,Ivanova N,Michail P,Xu B Z,Su Z G.Chromatographic methods for the isolation and refolding of proteins from Escherichia coli inclusion bodies.Protein Expression and Purification,2002,25(1):174-179.
    15.Puri N K,Crivelli E,Cardamone M,Fiddes R,Bertolini J,Ninham B,Brandon M R.Solubilization of growth hormone and other recombinant proteins from Escherichia coli.inclusion bodies by using a cation surfactant.Biochemical Journal,1992,285(3):871-879.
    16.Gavit P,Better M.Production of antifungal recombinant peptides in Escherichia coli.Journal of Biotechnology,2000,79(2):127-136.
    17.Middelberg A P J.Preparative protein refolding.Trend in Biotechnology,2002,20(10):437-443.
    18.Hart R A,Lester P M,Reifsnyder D H.Large scale,in situ isolation of periplasmic IGF-I from E.coli.Nature Biotechnology,1994,12:1113-1117.
    19.张婷婷,叶波平.包涵体蛋白质的复性研究进展.药物生物技术,2007,14(4):306-309.
    20.Zettlmeissl G,Rudolph R,Jaenicke R.Reconstitution of lactic dehydrogenase,Noncovalent aggregation vs reactivation 1.Physical properties and kinetics of aggregation.Biochemistry,1979,18(25):5567-5571.
    21.Goldberg M E,Rudolph R,Jaenicke R.A kinetic study of the competition between renaturation and aggregation during the refolding of denatured-reduced egg white lysozyme.Biochemistry,1991,30(11):2790-2797.
    22.Buswell A M,Ebtinger M,Vertes A A,Middelberg A P J.Effect of operating variables on the yield of recombinant trypsinogen for a pulse-fed dilution-refolding reactor.Biotechnology and Bioengineering,2002,77(4):435-444.
    23.Saxena V P,Wetlaufer D B.Formation of three-dimensional structure in proteins.I.Rapid nonenzymic reactivation of reduced lysozyme.Biochemistry,1970,9(25):5015-5023.
    24.崔志芳,关怡新,姚善泾.分离技术在蛋白质复性过程的集成化应用及分析.科技通报,2004,20(2):99-104.
    25.Vallejo L F,Rinas U.Optimized procedure for renaturation of recombinant human bone morphogenetic protein-2 at high protein concentration.Biotechnology and Bioengineering,2004,85(6):601-609.
    26.Anfinsen C B.Principles that govern the folding of protein chains.Science,1973,181(4096):223-230.
    27.靳挺,关怡新,费峥峥,姚善泾.重组人γ-干扰素包涵体稀释复性.化工学报,2004,55(5),770-774.
    28.Maeda Y,Ueda T,Imoto T.Effective renaturation of denatured and reduced immunoglobulin G in vitro without assistance of chaperone.Protein Engineering,1996,9(1):95-100.
    29.Katoh S,Sezai Y,Yamaguchi T.Refolding of enzyme in a feed-batch operation.Process Biochemistry,1999,35:297-300.
    30.Terashima M,Suzuki K,Katoh S.Effective refolding of fully reduced lysozyme with a flow-type reactor.Process Biochemistry,1996,31(4):341-345.
    31.邹平.重组包涵体蛋白质复性.厦门科技,2005,5:42-45.
    32.M(u|¨)ller C,Rinas U.Renaturation of heterodimeric platelet-derived growth factor from inclusion bodies of recombinant Escherichia coli using size-exclusion chromatography.Journal of Chromatography A,1999,855(1):203-213.
    33.Fahey E M,Chaudhuri J B.Refolding of low molecular weight urokinase plasminogen activator by dilution and size exclusion chromatography-a comparative study.Separation Science and Technology,2000,35(11):1743-1760.
    34.Batas B,Chaudhuri J B,Considerations of sample application and elution during size-exclusion chromatography-based protein refolding.Journal of Chromatography A,1999,864(2):229-236.
    35.Gu Z Y,Su Z G,Janson J C.Urea gradient size-exclusion chromatography enhanced the yield of lysozyme refolding.Journal of Chromatography A,2001,918(2):311-318.
    36.Zhou Q H,Cabaniss S E,Maurice P A.Considerations in the use of high-pressure size exclusion chromatography(HPSEC) for determining molecular weights of aquatic humic substances.Water Research,2000,34(14):3505-3514.
    37.Geng X D,Wang C Z.Protein folding liquid chromatography and its recent developments.Journal of Chromatography B,2007,849(1-2):69-80.
    38.关怡新,潘海学,姚善泾.疏水层析法复性重组人γ-干扰素.化工学报,2005,56(6):1076-1080.
    39.Liu T,Geng X D.The separation efficiency of biopolymers with short column in liquid chromatography.Chinese Chemical Letter,1999,10:209-212.
    40.Li M,Zhang G F,Su Z G.Dual gradient ion-exchange chromatography improved refolding yield of lysozyme.Journal of Chromatography A,2002,959(1-2):113-120.
    41.Hamaker K H.Chromatography for rapid buffer exchange and refolding of secretory leukocyte protease inhibitor.Biotechnology Progress,1996,12(2):184-189.
    42.Suttnar J.Procedure for refolding and purification of recombinant proteins from Escherichia coli inclusion bodies using a strong anion exchanger.Journal of Chromatography B,1994,656(1):123-126.
    43.Troesch A,Nguyen H,Miyada C G,Desvarenne S,Gingeras T R,Kaplan P M,Cros P,Mabilat C.Mycobacterium species identification and rifampin resistance testing with high-density DNA probe arrays.Journal of Clinical Microbiology,1999,37(1):49-55.
    44.Yoshimoto M,Kuboi R,Yang Q.Immobilized liposome chromatography for studies of protein-membrane interactions and refolding of denatured bovine carbonic anhydrase.Journal of Chromatography B:Medical Sciences and Applications,1998,712(1-2):59-71.
    45.Zahn R.Human prion proteins expressed in Escherichia coli and purified by high affinity column refolding.FEBS letters,1997,417(3):400-404.
    46.刘晓光.董晓燕.分子伴侣与蛋白质复性的简介.化学工业与工程,2000,17(2):120-124.
    47.Tanaka N,Fersht A R.Identification of substrate binding site of GroEL minichaperone in solution.Journal of Molecular Biology,1999,292(1):173-180.
    48.Manukhov I V,Eroshnikov G E,Vyssokikh Y M.Folding and refolding of thermolabile and thermostable bacterial luciferases:the role of DnaKJ heat-shock proteins.FEBS Letters,1999,448(2):265-268.
    49.Dong X Y,Yang H,Sun Y.Lysozyme Refolding with immobilized GroEL column.Journal of Chromatography A,2000,878(2):197-204.
    50.Gao Y G,Guan Y X,Yao S J,Cho M G,On-column refolding of recombinant human interferon-γ with an immobilized chaperone fragment.Biotechnology Progress,2003,19(3):915-920.
    51.张众,黄华楔.大肠杆菌二硫键形成相关蛋白的结构、功能及其在基因工程表达外源蛋白上的应用.生物工程学报,2002,18(3):261-266.
    52.Altamirano M M,Garcia C,Possani L D,Fersht A R.Qxidative refolding chromatography:folding of the Scorpion toxin Cn5.Nature Biotechnology,1999,17:187-191.
    53.Bam N B,Cleland J L,Randolph T W.Molten globule intermediate of recombinant human growth hormone:stabilization with surfactants.Biotechnology Progress,1996,12(6):801-809.
    54.Cerletti N,McMaster G K,Cox D,Schmitz A,Meyback B.Process for refolding recombinantly produced TGF-β-like proteins.US Patent,5 650 494,1997.
    55.Ain J H,Lee Y P,Rhee J S.Investigation of refolding condition for Pseudomonas fluorescens lipase by response surface methodology.Journal of Biotehnology,1997,54(3):151-160.
    56.Kohno T,Carmichael D F,Sommer A.Refolding of recombinant proteins.Methods in Enzymology,1990,185:187-195.
    57.clark E D B,Hevehan D,Szela S,Reddy J M.Oxidative renaturation of hen egg-white lysozyme.Folding vs aggregation.Biotechnology Progress,1998,14(1):47-54.
    58.Builder S,Hart R,Lester P.Refolding of misfolded insulin-like growth factor-Ⅰ.US Patent,5 663 304,1997.
    59.凌明圣,许祥裕,施凤霞.聚乙二醇增加重组人粒-单系集落刺激因子复性效率的研究.药物生物技术,1997,4(1):5-8.
    60.Goldberg M E,Bezancon N E,Vuillard L,Rabilloud T.Non-detergent sulphobetaines:a new class of molecules that facilitate in vitro protein renaturation.Folding and Design,1996,1(1):21-27.
    61.Lu D N,Liu Z X,Zhang M L,Liu Z,Zhou H M.The mechanism of PNIPAAm-assisted refolding of lysozyme denatured by urea.Biochemical Engineering Journal,2005,24(1):55-64.
    62.Katoh S,Katoh Y.Continuous refolding of lysozyme with fed-batch addition of denatured protein solution.Process Biochemistry,2000,35(10):1119-1124.
    63.Jin T,Guan Y X,Yao S J,Lin D Q,Cho M G.On-column refolding of recombinant human interferon-γ inclusion bodies by expanded bed adsorption chromatography.Biotechnology and Bioengineering,2006,93(4):755-760.
    64.Sakono M,Maruyama T,Kamiya N,Goto M.Refolding of denatured carbonic anhydrase B by reversed micelles formulated with nonionic surfactant.Biochemical Engineering Journal,2004,19(3):217-220.
    65.Boris M G,Paul M H.High hydrostatic pressure can reverse aggregation of protein folding intermediates and facilitate acquisition of native structure.Biochemistry,1998,37(17):6132-6135.
    66.Kuboi R,Morita S,Ota H,Umakoshi H.Protein refolding using stimuli-responsive polymer-modified aqueous two-phase systems.Journal of Chromatography B,2000,743(1-2):215-223.
    67.董晓臣,贺继东,王存国,郭红革.温敏水凝胶的新进展.高分子通报,2003,4:53-56.
    68.Bromberg L E,Ron E S.Temperature-responsive gels and thermogelling polymer matrices for protein and peptide delivery.Advanced Drug Delivery Reviews,1998,31(3):197-221.
    69.Qiu Y,Park K.Environment-sensitive hydrogels for drug delivery.Advanced Drug Delivery Reviews,2001,53(3):321-339.
    70.Seker F,Ellis A.Correlation of chemical structure and swelling behavior in N-alkylacrylamide hydrogels.Jouranal of Polymer Science Part A:Polymer Chemistry,1998,36(12):2095-2102.
    71.陈莹莹 线性聚 N-异丙基丙烯酰胺协助蛋白质体外复性研究[硕士学位论文].杭州.浙江大学.2008.
    72.Zeng F,Tong Z,Feng H.NMR investigation of phase separation in poly(N-isopropyl acrylamide)/water solutions.Polymer,1997,38(22):5539-5544.
    73.吴奇,汪晓辉,高均.激光光散射研究聚(N-异丙基丙烯酰胺)单链及其智能凝胶微球在水中的相变.高分子通报,1998,3:9-16.
    74.Wu C,Zhou S.Thermodynamically stable globule state of a single poly(N-isopropylacrylamide) chain in water.Macromolecules,1995,28(15):5388-5390.
    75.Hu Z B,Zhang X M,Li Y.Synthesis and application of modulated polymer gels.Science,1995,269(5223):525-527.
    76.Wang M Z,Qiang J C,Fang Y,Hu D D,Cui Y L,Fu X G.Preparation and properties of chitosan-poly(N-isopropylacrylamide) semi-IPN hydrogels.Journal of Polymer Science Part A:Polymer Chemistry,2000,38(3):474-481.
    77.Fang Y,Hu D D.Cross-linking of chitosan with glutaraldehyde in the presence of citric acid-a new gelling system.Chinese Journal of Polymer Science,1999,17(6):551-556.
    78.Liu F,Zhuo R X.A convenient method for the preparation of temperature-sensitive hydrogels and their use for enzyme immobilization.Biotechnology and Applied Biochemistry,1993,18(1):57-65.
    79.Ruel-Gariepy E,Chenite A,Chaput C,Guirguis S,Leroux J.Characterization of thermosensitive chitosan gels for the sustained delivery of drugs.International Journal of Pharmaceutics,2000,203(1-2):89-98.
    80.Chenite A,Chaput C,Wang D,Combes C,Buschmann M,Hoemann C,Leroux J,Atkinson B,Binette F,Selmani A.Novel injectable neutral solutions of chitosan form biodegradable gels in situ.Biomaterials,2000,21(21):2155-2161.
    81.Yamazaki M,Tsuchida M,Kobayashi K,Takezawa T,Mori Y.A novel method to prepare size-regulated spheroids composed of human dermal fibroblasts.Biotechnology and Bioengineering,1994,44(1):38-44.
    82.Wu C,Liu T,Chu B,Schneider D K,Graziano V.Characterization of the PEO-PPO-PEO triblock copolymer and its application as a separation medium in capillary electrophoresis.Macromolecules,1997,30(16):4574-4583.
    83.Watanabe M,Akahoshi T,Tabata Y.Molecular specific swelling change of hydrogels in accordance with the concentration of guest molecules.Journal of the American Chemical Society,1998,120(22):5577-5578.
    84.Zhuang Y F,Wang G W,Yang H,Zhu Z Q,Fu J W,Song W Q,Zhao H D.Radiation polymerization and concentration separation of P(NIPA-co-AMPS) hydrogels.Polymer International,2005,54(4):617-621.
    85.Kawaguchi H,Fujimoto K,Mizuhara Y.Hydrogel microspheres Ⅲ.Temperature-dependent adsorption of proteins on poly-N-isopropylacrylamide hydrogel micropheres.Colloid and Polymer Science,1992,270(1):53-57.
    86.任彦荣,霍丹群,侯长军.温敏性聚合物N-异丙基丙烯酰胺及其应用.材料导报,2004,18(11):2-4.
    87.邵丽,杨银,邓阳全,张志斌.温敏型聚合物PNIPAAM的合成及应用研究进展.化工新型材料,2008,36(11):5-7.
    88.Gehrke S H.Dewatering fine coal slurries by gel extraction.Separation Science and Technology,1998,33(10):1467-1485.
    89.王颖,董晓燕,孙彦.蛋白质复性技术研究进展.生物工程进展,2002,22(2):61-64.
    90.崔志芳 温敏型聚N-异丙基丙烯酰胺凝胶协助蛋白质体外复性的基础研究[博士学位论文].杭州.浙江大学.2004.
    91.Chen Y J,Huang L W,Chiu H C,Lin S C.Temperature-responsive polymer-assisted protein refolding.Enzyme and Microbial Technology,2003,32(1):120-130.
    92.Lin S C,Lin K L,Chiu H C,Lin S.Enhanced protein renaturation by temperature-responsive polymers.Biotechnology and Bioengineering 2000,67(5):505-512.
    93.Lu D N,Liu Z X,Zhang M L,Wang X G,Liu Z.Dextran-grafted-PNIPAAm as an artificial chaperone for protein refolding.Biochemical Engineering Journal,2006,27:336-343.
    94.Lu D N,Zhang K,Liu Z.Protein refolding assisted by an artificial chaperone using temperature stimuli responsive polymer as the stripper.Biochemical Engineering Journal,2005,25:141-149.
    95.Shimizu H,Fujimoto K,Kawaguchi H.Improved refolding of denatured/reduced lysozyme using disulfide-carrying polymeric microspheres.Colloids and Surfaces B:Biointerfaces,2000,18(2):137-144.
    96.Ren J,Zhang Y Q,Li J Q,Ha H F.Radiation synthesis and characteristic of IPN hydrogels composed of poly(diallyldimethylammonium chloride) and kappa-carrageenan.Radiation Physics and Chemistry,2001,62(2-3):277-281.
    97.Wang M Z,Fang Y,Hu D D.Preparation and properties of chitosan-poly(N-isopropylacrylamide) full-IPN hydrogels.Reactive and Functional Polymers,2001,48(1-3):215-221.
    98.Muniz E C,Geuskens G.Compressive elastic modulus of polyacrylamide hydrogels and semi-IPNs with poly(N-isopropylacrylamide).Macromolecules,2001,34(13):4480-4484.
    99.Zhang J,Peppas N A.Synthesis and characterization of pH and temperature-sensitive poly(methacrylic acid)/ poly(N-isopropylacrylamide) interpenetrating polymeric networks.Macromolecules,2000,33(1):102-107.
    100.Nagaoka N,Safrani A,Yoshida M,Omichi H,Kubota H,Katakai R.Synthesis of poly(N-isopropylacrylamide) hydrogels by radiation polymerization and crosslinking.Macromolecules,1993,26(26):7386-7388.
    101.耿奎士,方静.热敏性互穿网络聚合物.化工新型材料,1996,3:16-21.
    102.王斌,张玉翠,张伏龙,庄善学.智能型水凝胶改性研究进展.甘肃联合大学学报(自然科学版),2006,20(1):47-51.
    103.卓仁禧,张先正.温度及pH敏感聚(丙烯酸)/聚(N-异丙基丙烯酰胺)互穿聚合物网络水凝胶的合成及性能研究.高分子学报,1998,1:39-42.
    104.张先正,卓仁禧.快速温度敏感(N-异丙基丙烯酰胺-co-丙烯酰胺)水凝胶的制备及性能研究.高等学校化学学报,2000,21(8):1309-1311.
    105.Xue W,Hamley I W.Thermoreversible swelling behaviour of hydrogels based on N-isopropylacrylamide with a hydrophobic comonomer.Polymer,2002,43(10):3069-3077.
    106.Dong L C,Hoffman A S.A novel approach for preparation of pH-sensitive hydrogels for enteric drug delivery.Journal of Controlled Release,1991,15(2):141-152.
    107.Motonaga T,Shibayana M.Studies on pH and temperature dependence of the dynamics and heterogeneities in poly(N-isopropylacrylamide-co-sodium acrylate) gels.Polymer,2001,42(21):8925-8934.
    108.Beltran S,Hooper H H,Blanch H W,Prausnitz J M.Swelling equilibria for ionized temperature-sensitive gels in water and in aqueous salt solutions.The Journal of Chemical Physics,1990,92(3):2061-2066.
    109.王昌华,卢英先,曹维孝.阳离子型温敏水凝胶的合成和性质.高分子学报,1998,2:236-240.
    110.刘郁扬,范晓东,邵颖慧.N-异丙基丙烯酰胺/N-乙烯基吡咯烷酮水凝胶的研究.功能高分子学报,2000,13:380-385.
    111.Xue W,Champ S,Huglin M B.Thermoreversible swelling behaviour of hydrogels based on N-isopropylacrylamide with a zwitterionic comonomer.European Polymer Journal,2001,37(5):869-875.
    112.Lee W F,Chen Y J.Studies on preparation and swelling properties of the N-isopropylacrylamide/chitosan semi-IPN and IPN hydrogels.Journal of Applied Polymer Science,2001,82(10):2487-2496.
    113.张艳群 哈鸿飞.氯化钠相转变K-型卡拉胶/N-异丙基丙烯酰胺共混凝胶的辐射合成及性能研究.高分子学报,2001,4:485-488.
    114.张先正,卓仁禧.温度敏感聚(N-异丙基丙烯酰胺)/聚(乙烯醇)水凝胶的制备及性能研究.高等学校化学学报,2000,21(11):1776-1777.
    115.魏宏亮,于怀清,朱凯强,钱立军,张爱英,冯增国.α-环糊精准轮烷/N-异丙基丙烯酰胺交联共聚温敏型超分子结构水凝胶的制备与表征.高分子学报,2006,4:581-587.
    116.Yoshida R,Uchida K,Kaneko Y,Sakai K,Kikuchi A,Sakurai Y,Okano T.Comb-type grafted hydrogels with rapid deswelling response to temperature changes.Nature,1995,374:240-242.
    117.Ju H K,Kim S Y,Lee Y M.pH/temperature-responsive behaviors of semi-IPN and comb-type graft hydrogels composed of alginate and poly(N-isopropylacrylamide).Polymer,2001,42(16):6851-6857.
    118.Marra J,Hair M L.Interactions between two adsorbed layers of poly(ethylene oxide)/polystyrene diblock copolymer in heptane-toluene mixtures.Colloids and Surfaces,1989,34(3):215-226.
    119.Guzonas D,Boild S,Hair M L.Surface force measurements of polystyrene-block-poly (ethylene oxide) adsorbed from a nonselective solvent on mica.Macromolecules,1991,24(11):3383-3387.
    120.Sikka M,JW Schneider JR,Tsao Y H,Tirrell M.Adsorption of hydrophilic-hydrophobic block copolymers on silica from aqueous solutions.Macromolecules,1995,28(9):3125-3134.
    121.Field J B,Toprakcioglu C,Ball R C,Stanley H B,Dai L,Barford W,Penfold J,Smith G,Hamilton W.Determination of end-adsorbed polymer density profiles by neutron reflectometry.Macromolecules,1992,25(1):434-439.
    122.Wittmer J,Joanny J F.Charged diblock copolymers at interfaces.Macromolecules,1993,26(11):2691-2697.
    123.Yang X G,Shi J X,Johnson S,Swanson B.Growth of ultrathin covalently attached polymer films:uniform thin films for chemical microsensors.Langmuir,1998,14(7):1505-1507.
    124.Prucker O,Ruhe J.Synthesis of poly(styrene) monolayers attached to high surface area silica gels through self-assembled monolayers of azo initiators.Macromolecules,1998,31(3):592-601.
    125.Randy A S,Brian K M,William J B.Synthesis of polystyrene-block-poly(methyl methacrylate) brushes by reverse atom transfer radical polymerization.Macromolecules,2000,33(5):1492-1493.
    126.解云川,杨青芳.表面光接枝改善聚合物性能的研究进展.高分子材料科学与工程,2002,18(5):7-11.
    127.杨万泰,尹梅贞,邓建元等.表面光接枝原理、方法及应用前景.高分子通报,1999,1:60-65.
    128.Baum M,Brittain W J.Synthesis of polymer brushes on silicate substrates via reversible addition fragmentation chain transfer technique.Macromolecules,2002,35(3):610-615.
    129.Hemptinne X D.Laser induced osmosis,kinetic measurement in ethylene.The Journal of Chemical Physics,1987,86(4):1824-1828.
    130.Fytas G,Anastasiadis S H,Seghrouchni R,Vlassopoulos D,Li J B,Factor B J,Theobald W,Toprakcioglu C.Probing collective motions of terminally anchored polymers,Science,1996,274(5295):2041-2044.
    131.Kelley T W,Schorr P A,Johnson K D,Tirrell M,Frisbie C D.Direct force measurement at polymer brush surfaces by atomic force microscopy.Macromolecules,1998,31(13):4297-4300.
    132.Motschmann H,Stamm M,Toprakcioglu C.Adsorption kinetics of block copolymers from a good solvent:a two-stage process.Macromolecules,1991,24(12):3681-3688.
    133.Mansky P,Liu Y,Huang E,Russell T P,Hawker C J.Controlling polymer-surface interactions with random copolymer brushes.Science,1997,275(5305):1458-1460.
    134.Koutsos V,Van der Vegte E M,Hadziioannou G.Diret view of structural regimes of end-grafted polymer manolayers:a scanning force microscopy study.Macromolecules,1999,32(4):1233-1236.
    135. Bergbreiter D E, Franchina J G, Kabza K Hyperbranced grafting on oxidized polyethylene surfaces. Macromolecules, 1991, 24(12): 3681-3688.
    
    136. Tran Y, Auroy P. Synthesis of poly(styrene sulfonate) brushes. Journal of the American Chemical Society, 2001,123(16): 3644-3654.
    
    137. Ito Y, Ochiai Y, Park Y S, Imanishi Y. pH-Sensitive Gating by Conformational Change of a Polypeptide Brush Grafted onto a Porous Polymer Membrane. Journal of the American Chemical Society, 1997, 119(7): 1619-1623.
    
    138. Boven G, Folkersma R, Challa G, Schouten A J. Radical grafting of poly (methyl methacrylate) onto silicon wafers, glass slides and glass beads. Polymer Communications,1991, 32(2): 50-53.
    
    139. Guo X, Ballauff M. Spatial dimensions of colloidal polyelectrolyte brushes as determined by dynamic light scattering. Langmuir, 2000,16(23): 8719-8726.
    
    140. Ballauff M. Nanoscopic polymer particles with a well-defined surface: synthesis,characterization, and properties. Macromolecular Chemistry and Physics, 2003, 204(2):220-234.
    
    141. Guo X, Weiss A, Ballauff M. Synthesis of spherical polyelectrolyte brushes by photoemulsion polymerization. Macromolecules, 1999, 32(19): 6043-6046.
    
    142. Jordan R, Ulman A, Kang J F, Rafailovich M H, Sokolov J. Surface-initiated anionic polymerization of styrene by means of self-assembled monolayers. Journal of the American Chemical Society, 1999,121(5): 1016-1022.
    
    143. Zhao B. Synthesis of binary mixed homopolymer brushes by combining atom transfer radical polymerization and nitroxide-mediated radical polymerization. Polymer, 2003, 44(15):4079-4083.
    
    144. Boer B D, Simon H K, Werts M P L, van der Vegte E W, Hadziioannou G. "Living" free radical photopolymerization initiated from surface-grafted iniferter monolayers.Macromolecules, 2000, 33(2): 349-356.
    
    145. Tsuji S, Kawaguchi H. Temperature-sensitive hairy particles prepared by living radical graft polymerization. Langmuir, 2004,20(6): 2449-2455.
    
    146. Hu T J, You Y Z, Pan C Y, Wu C. The coil-to-globule-to-brush transition of linear thermally sensitive poly(N-isopropylacrylamide) chains grafted on a spherical microgel. Journal of Physical Chemistry B-Condensed Phase, 2002, 106(26): 6659-6662.
    
    147. Zhai G Y, Yu W H, Kang E T, Neoh K G, Huang C C, Liaw D J. Functionalization of hydrogen-terminated silicon with polybetaine brushes via surface-initiated reversible addition-fragmentation chain-transfer (RAFT) polymerization. Industrial & Engineering Chemistry Research, 2004,43(7): 1673-1680.
    148.Husseman M,Malmstrom E E,Mcnamara M,Mate M,Mecerreyes D,Benoit D G,Hedrick J L,Mansky P,Huang E,Russell T P,Hawker C J.Controlled synthesis of polymer brushes by "Living" free radical polymerization techniques.Macromolecules,1999,32(5):1424-1431.
    149.Batas B,Chaudhuri J B,Protein refolding at high concentration using size-exclusion chromatography.Biotechnology and Bioengineering,1996,50(1):16-23.
    150.钟英.RP-HPLC监测重组人粒细胞集落刺激因子复性动态过程.中国药学杂志,1999,34(12):834-836.
    151.陶慰孙,李惟,姜涌明.蛋白质分子基础.北京:高等教育出版社,1995.
    152.Zahn R,Buckle A M,Perrett S,Johnson C M,Corrales F J,Golbik R,Fersht A R.Chaperone activity and structure of monomeric polypeptide binding domains of GroEL.Proceedings of the National Academy of Sciences,1996,93(26):15024-15029.
    153.Kawaguchi H.Functional polymer microspheres.Progress Polymer Science,2000,25(8):1171-1210.
    154.Robert P.Temperature-sensitive aqueous microgels.Advances in Colloid and Interface Science,2000,85(1):1-33.
    155.Cui Z F,Guan Y X,Yao S J.A temperature-sensitive hydrogel refolding system:preparation of poly(N-isopropylacrylamide) and its application in lysozyme refolding.Chinese Journal of Chemical Engineering,2004,12(4):556-560.
    156.Cui Z F,Guan Y X,Chen J L,Yao S J.Thermosensitive poly(N-isopropylacrylamide)hydrogel for refolding of recombinant bovine prethrombin-2 from E.coli inclusion bodies.Journal of Applied Polymer Science,2005,96(5):1734-1740.
    157.庄银凤,王国伟,朱仲祺,宋崇健,付建伟.NIPA类共聚温敏水凝胶中水的状态和耐热性.郑州大学学报,2003,35(1):62-66.
    158.Kobayashi J,Asahi T,Sakurai M,Kagomiya I,Asai H,Asami H.The optical activity of lysozyme crystals.Acta Crystallographica Section A,1998,A54:581-590.
    159.船津,胜鹤,大典(日)编.李兴福译.溶菌酶.济南:山东科学技术出版社,1982.
    160.贾向志,李元,马文煜.溶菌酶的研究进展.生物技术通讯,2002,13(5):374-377.
    161.洪潇,余若黔.溶菌酶的活性测定方法.生物技术通报,2004,5:40-42.
    162.刘源岗,邓倩莹,廖问陶,周长忍.溶菌酶的活性测定.食品科技,2005,10:71-73.
    163.冯惠勇,徐亲民,孙国志.溶菌酶的生物测定方法研究.食品与发酵工程,2002,28(4):60-64.
    164.朱秋菊,孙怀昌,李国才,张泉,陈瑾.人溶菌酶活性两种检测方法的比较研究.扬州大学学报,2005,26(1):27-29.
    165.曲春香,沈颂东,王雪峰,崔永华,宋卫平.用考马斯亮蓝测定植物粗提液中可溶性蛋白质含量方法的研究.苏州大学学报,2006,22(2):82-85.
    166.邱葵,司天润.用考马斯亮蓝测定动物药材中可溶性蛋白质含量方法初探.中国中医药信息杂志,2007,14(4):49-50.
    167.杨玉芳.蛋白质含量测定方法.明胶科学与技术,2007,27(2):98-101.
    168.李宝芳,曹堃,徐雅玲,李伯耿.粒状温敏性PNIPA水凝胶的制备.浙江大学学报,2004,38(8):1078-1089.
    169.徐雅玲,李宝芳,曹堃,李伯耿.粒状温敏性水凝胶的溶胀行为.高校化学工程学报,2004,18(6):762-765.
    170.余锡胜,佟水心,孙以实.温度敏感性水凝胶合成反应及性能研究.高分子学报,1989,4:488-492.
    171.Iimaim F,Tanaka T,Kolufuta E.Volume transition in a gel driven by hydrogen bonding.Nature,1991,349(31):400-401.
    172.Fischer B,Sumner I,Goodenough P.Isolation,renaturation,and formation of disulfide bonds of eukaryotic proteins expressed in Escherichia coli as inclusion bodies.Biotechnology and Bioengineering,1993,41(1):3-13.
    173.Tanford C,Pain R H.Equilibrium and kinetcs of the unfolding of lysozyme(muramidase) by guanidine hydrochloride.Journal of Molecular Biology,1966,15:489-504.
    174.Hevehan D L,Clark E D B.Oxidative renaturation of lysozyme at high concentrations.Biotechnology and Bioengineering,1997,54(3):221-230.
    175.Buswell A M,Middelberg A P J.Critical analysis of lysozyme refolding kinetics.Biotechnology Progress,2002,18(3):470-475.
    176.Dong X Y,Shi J H,Sun Y.Cooperation effect of artificial chaperones and guanidinium chloride on lysozyme renaturation at high concentrations.Biotechnol Progress,2002,18(3):663-665.
    177.Fujishige S.Intrinsic viscosity-molecular weight relationships for poly(N-isopropy lacrylamide) solutions.Polymer Journal 1987,19(3):297-300.
    178.陈莉,韩永良,赵义平.环境响应型智能高分子凝胶.天津工业大学学报,2004,23:83-87.
    179.Heskins M,Guillet J E.Solution properties of poly(N-isopropylacrylamide).Journal of Macromolecular Science Part A,1968,2(8):1441-1455.
    180.Eliassaf J.Aqueous solutions of poly(N-isopropylacrylamide).Journal of Applied Polymer Science,1978,22(3):873-874.
    181.Schild H G.Poly(N-isopropylacylamide):experiment,theory and appilction.Progress in Polymer Science,1992,17(2):163-249.
    182.Tiktopulo E I,Bychkova V E,Ricka J,Ptitsyn O B.Cooperativity of the coil-globule transition in a homopolymer:microcalorimetric study of poly(N-isopropylacrylamide). Macromolecules 1994,27(10):2879-2882.
    183.车婧,韩金祥,王世立.促进包涵体蛋白复性的几种有效添加剂.医学分子生物学杂志,2004.1:122-125.
    184.Van der Waarden M.Stabilization of carbon-black disppersions in hydrocarbons.Journal of Colloid Science,1950,5:317-325.
    185.Cairns D B,Armes S P,Bremer L G B.Synthesis and characterization of submicrometer-sized polypyrrole-polystyrene composite particles.Langmuir,1999,15(23):8052-8058.
    186.Ito Y,Nishi S,Park Y S,Imanishi Y.Oxidoreduction-sensitive control of water permeation through a polymer brushes-grafted porous membrane.Macromolecules,1997,30(19):5856-5859.
    187.Neumann T,Haupt B,Ballauff M.High activity of enzymes immobilized in colloidal nanoreactors.Macromolecular Bioscience,2004,4(1):13-16.
    188.袁燕华,陈明清,刘晓亚,杨成,倪忠斌.PNIPAAM接枝PAN/PSt热敏性聚合物微球的制备.高分子材料科学与工程,2005,2l(5):71-74.
    189.顾井丽,曹堃,黄源.无皂乳液聚合制备亚微米级单分散聚苯乙烯微球.合成橡胶工业,2004,27(4):213-216.
    190.曹堃,杨明涛,姚臻.聚苯乙烯微球表面温敏性毛发特性研究.高分子材料科学与工程,2005,21(5):278-281.
    191.Curti P S,de Moura M R,Veiga W,Radovanovic E,Rubira A F,Muniz E C.Characterization of PNIPAAm photografted on PET and PS surfaces.Applied Surface Science,2005,245(1-4):223-233.
    192.Rozema R,Gellman S H.Artificial chaperone-assisted refolding of denatured-reduced lysozyme modulation of the competition between renaturation and aggregation.Biochemistry,1996,35(49):15760-15771.
    193.黄曼,卞科.蛋白质疏水性测定方法研究进展.粮油食品科技,2004,12(2):31-32.
    194.Alizadeh-Pasdar N,Li-Chan E C Y.Comparison of protein surface hydrophobicity measured at various pH values using three different fluorescent probes.Journal of Agricultural and Food Chemistry,2000,48(2):328-334.
    195.Terada H,Hiramatsu K,Aoki K.Heat denaturation of serum albumin monitored by 1-anilinonaphthalene-8-sulfonate.Biochimica et Biophysica Acta,1980,622(2):161-170.
    196.Fraley R,Jameson D M,Kaplan S.The use of the fluorescent probe alpha-parinaric acid to determine the physical state of the intracytoplasmic membranes of the photosynthetic bacterium,Rhodopseudomonas sphaeroides.Biochimica et Biophysica Acta,1978,511(1):52-60.
    197.王守业,余华明,张祖德,刘清亮.荧光探针在蛋白质研究中的应用.大学化学,1998,13(3):5-10.
    198.Wilson K J,Honegger A,Stotzel R P,Hughes G J.The behavior of peptides on reversephase supports during high-pressure liquid chromatography.Biochemical Journal,1981,199(1):31-41.
    199.Tsutsui T,Li-Chan E,Nakai S.A simple fluorometric method for fat-binding capacity as an index of hydrophobicity of proteins.Journal of Food Science,1986,51(5):1268-1272.
    200.Zaslavsky B Y,Miheeva L M,Rogozhin S V.Relative hydrophobicity of surfaces of erythrocytes from different species as measured by partition in aqueous two-polymer phase system.Biochimica et Biophysica Acta,1979,588(1):89-101.
    201.陈蓁蓁,张宁,张文申,唐波.蛋白质分子荧光探针研究及其应用新进展.分析化学,2006,34(9):1341-1347.
    202.Matulis D,Baumann C G,Bloomfield V A,Lovrien R E.1-anilino-8-naphthalene sulfonate as a protein conformational tightening agent.Biopolymers,1999,49:451-458.
    203.Lehrer S S,Fasman G D.Fluorescence of lysozyme and lysozyme substrate complexes-separation of tryptophan contrubutions by fluorescence difference methods.The Journal of Biological Chemistry,1967,242(20):4644-4651.
    204.Imoto T,Forster L S,Rupley J A,Tanaka F.Fluorescence of lysozyme:emissions from tryptophan residues 62 and 108 and energy migration.Proceedings of the National Academy of Science,1972,69(5):1151-1155.
    205.Lehrer S S.Solute perturbation of protein fluorescence.Quenching of the tryptophyl fluorescence of model compounds and of lysozyme by iodide ion.Biochemistry,1971,10(17):3254-3263.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700