用户名: 密码: 验证码:
汽车荷载作用下梁式桥与斜拉桥的动态响应分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
车辆在桥梁上行驶时会产生激励从而导致车辆本身和桥梁产生振动,移动车辆在桥梁结构内产生的动荷载效应要比相应的静荷载效应大。设计规范中通常采用“冲击系数”来考虑车辆的这种动荷载效应。对于不同的桥梁实际状况,其冲击系数将有很大区别。获得车辆荷载作用下桥梁的真实信息无疑会对桥梁结构的受力状态给出更加切合实际的评估。
     本文的研究为湖北省交通厅项目“超高桥墩大跨预应力混凝土连续刚构桥设计与施工关键技术”和交通部科技计划项目“荆岳长江公路大桥主桥关键技术研究”中部分内容,主要的研究内容及其相应的研究成果如下:
     (1)基于车桥耦合系统动力分析基本理论,导出不同自由度车辆模型的运动微分方程。根据求解非平稳振动问题的方法,模拟了四轮车辆在随机路面作用下的随机输入。计算结果表明:路面激励随着车辆速度增大而有增大的趋势,用非平稳路面模型来模拟车辆所受路面激励更加符合实际情形。
     (2)以单跨梁为例,建立车桥耦合系统的运动微分方程并利用Matlab软件编制其计算程序,与已有文献实例对比验证该模型和计算程序的正确性。分析了非平稳及平稳随机路面激励模型、混凝土路面层和沥青路面层等因素对单跨梁在汽车荷载作用下动力响应的影响。计算结果表明:在分析车辆变速运动时,平稳和非平稳两种路面励所对应的梁跨中挠度和冲击系数是不同的,对于加速运动来说,平稳路面激励可能使计算值偏小,而对于减速运动来说,平稳路面激励可能导致计算值偏大;在同一种桥面不平等级,车辆初速为10m/s且加速度为5m/s2时,混凝土路面层所对应的冲击系数是沥青路面层所对应冲击系的1.35倍。
     (3)以连续梁为例,分析裂缝对汽车荷载作用下连续梁振动响应的影响。结果表明:在移动车载作用时不同裂缝类型对桥梁振动频率的影响不同,忽略呼吸裂缝随载荷张开与闭合的特性而简化为开口裂缝是不可取的;裂缝类型、裂缝参数、移动车辆频率及车辆组合等都会引起梁与车辆耦合系统振动频率的变化;开口裂缝和呼吸裂缝都会使桥梁的冲击系数增大。
     (4)以湖南邵怀高速上一座高墩连续梁桥(炉坪大桥)为例,测试不同工况加载时测试跨的响应。采用LXPL-1型公路连续式八轮平整度仪,测量该桥面的平整度。采用环境振动法测量了该桥的竖向和横向自振频率,并在实测静力挠度和自振频率的基础之上,引入响应面法更新了炉坪大桥有限元模型。从实测数据和数值模型更新过程看出:利用环境振动法和峰值识别模态法成功测得该桥的横向和竖向振动模态,该桥的前两阶模态都是面外振动,因此该桥的横向刚度相对较弱;利用响应面法修正桥梁模型推动了结构模型修正的发展。
     (5)为分析轮胎与地面之间的面接触对车桥耦合振动的影响,建立了新的车桥耦合模型,比较了轮胎与地面的两种接触模型(点接触和面接触)对耦合系统振动的影响。计算结果表明:当路面比较光滑时,不同接触处理模拟方法对梁的振动影响是很小,这时面接触可以简化为点接触;但当路面状况变坏时,接触形式对梁跨中挠度的影响相差较大,此时面接触不能简化为点接触,点接触会增大梁的挠度值,尤其对于跳车情形点接触会带来更大的误差,如木块高度为50mm时,点接触对应计算值为实测值的1.3倍,而面接触对应计算值为实测值的1.06倍。
     (6)为分析高墩连续梁桥在车辆荷载作用下的横向振动,提出了一种新的车辆模型,该模型可考虑车辆横向振动的自由度。通过与实测数据的比较发现:本文计算模型能有效分析车辆作用下高墩桥的横向振动;就本桥算例来说,乘客行驶在该桥上时会有不舒适的感觉,且这种不舒适性随着路面不平度的变坏而增加,同时高墩桥横向和竖向振动会加大乘客的不舒适性;该桥的横向振动位移随车速的增加而增加,但车速增加到110km/h左右时,桥梁横向位移有减少的趋势。
     (7)以大跨度斜拉桥(荆岳长江公路大桥)为例,用统计方法分析了荆岳长江公路大桥在车载作用下的振动响应和冲击系数,为设计大跨度斜拉桥提供了理论依据。结果表明:计算主梁竖向挠度时所取路面随机输入样本数目可为15个,计算主梁横向位移时可取路面随机输入样本数目25个;当车辆驶过全桥时,主梁最大竖向挠度和横向位移值并不发生在同一个位置处,当车行驶至900m左右处时竖向挠度值出现最大且为32.7mm,而当车辆行驶至715m处时横向位移值出现最大且为7.34mm;按照规范计算荆岳长江公路大桥主桥冲击系数为0.05,参数分析发现只有当车速小于10m/s左右时,跨中和1/4跨处挠度冲击系数才小于0.05,而其余大部分情形冲击系数都大于0.05,因此按规范计算的冲击系数值要小于该桥实际所受的车辆动力作用。
The vibration of bridge structures and vehicles can be easily induced when the vehicles travel across the bridges. The dynamic responses of the bridge structures induced by the moving vehicle loads are generally larger than those induced by the static vehicle loads. In the bridge design codes, the dynamic responses are generally been considered as a factor named as Impact Factor. Due to the impact factors are different with the different bridge structures; it should be significant to obtain the accurate responses of the bridge structures induced by the moving vehicle loads for evaluating loading-response of these structures.
     The dissertation is the part of the two projects:one is supported by Hubei Province Communications Department, and which name is "the design methodology and construction technology of the High-pier Long-span Continuous Concrete Rigid Bridge"; the other is supported by Ministry of Transport of the People's Republic of China, and which name is " The Research on the Key Technology of Jingyue Yangtze River Bridge". The main contents and results of this dissertation are shown as follows:
     (1) Based on the studies of the bridge-vehicle coupled system, the differential equations of motion for different degree-of-freedoms (DOFs) vehicle models were obtained. Using the methodology of solving the non-stationary vibration, the non-stationary road surface inputs of the four tires were simulated. Based on the numerical simulations, the following conclusions can be drawn:the non-stationary road surface inputs may increase with the vehicle speeds increase; it can be obtained the more rational responses using the non-stationary road surface inputs.
     (2) A single-span beam was given as an example for creating the differential equations of motion of the vehicle-bridge coupled system. The program solving the equations was established by the software Matlab and was verified by comparing the simulations and the others studies. The effects of the non-stationary inputs, stationary inputs, concrete pavement, and asphalt pavement on the responses of the beam induced by the moving vehicle loads. Numerical results indicate that:the effects of non-stationary inputs and stationary inputs on the impact factors are different, the amplitudes of non-stationary random responses of the wheels increase as the vehicle velocity increases; factors including the road surface, vehicle initial speed (10m/s), and acceleration (5m/s2) are the same, the impact factor corresponding to the concrete pavement is aboutl.35 times of that to the asphalt pavement.
     (3) A continuous beam was given as an example for studying the dynamic responses of the damaged beams under the moving vehicle loads. Numerical results indicate that:the frequencies may change with the different crack categories, and using vibration behaviors corresponding to the open crack zone to interpret those of the breathing crack zone may lead to the incorrect conclusion. factors such as crack categories, crack factors, vehicle frequencies and the number of the vehicles can change the frequencies of vehicle-bridge coupled system; the impact factor generally increase with the presence of the open crack zones or breathing crack zones.
     (4) A high-pier continuous beam bridge, named Luping Bridge, was used to test the responses for different situations of testing loads. A road roughness measured device, named LXPL-1 Highway Continuous Roughness Device, was used to test the bridge road roughness. The vertical and lateral vibration frequencies were performed using the ambient vibration method. Based on the responses corresponding to static loads and vibration frequencies, the numerical model of the bridge was updated using the response surface method. It can be seen from the results of the measurement and numerical model process that the vertical and lateral vibration models can be tested using the ambient vibration method and the identification peak method. The lateral vibration can be easily induced due to the first two natural frequencies are lateral direction. The response surface method can be used to update the structural numerical model.
     (5) To study the effect of patch contact on the vibration of the vehicle-bridge coupled system, a new vehicle-bridge coupled numerical model was established. The comparison of the effects of the two inputs (point contact and patch contact) on the mid-span deflection and the impact factors were compared with different parameters including the coefficient of surface roughness, vehicle acceleration, and vehicle braking. The numerical results show that:If the road surface classification is zero-roughness, the patch contact can be simplified as the point contact; If the road surface classification ranges from the Good to Poor, the difference of the effect of the patch contact and point contact on the mid-span deflections increases as the road roughness classification increases; treating the contact condition between the tire and road surface as a point contact may overestimate the dynamic deflection of the bridge; when studying the faulting condition effect where the simulation using the point contact may result in significant errors. For example, the simulated solution corresponding to the patch contact is the 1.3times of the test solution; however, the simulated solution corresponding to the point contact is the 1.06times of the test solution.
     (6) To study the lateral vibration of the high-pier continuous bridge structures, a new vehicle-bridge coupled numerical model considered the lateral degree-of-freedoms (DOFs) was established. The comparisons of the theoretical simulations and field measurements show that the proposed method can be applied to study the bridge lateral vibration induced by moving vehicles with good accuracy. For the studied bridge, the passengers may feel a little uncomfortable, and both lateral and longitudinal vibrations of the high-pier bridge can significantly affect the drive comforts and can bring up safety concerns from the passengers. The lateral displacement does generally increase with the increase of vehicle speeds; the displacement reaches a peak at the speed of 110km/h.
     (7) A long-span cable-stayed bridge named Jingyue Yangtze River Bridge was given as an example for studying the vibration responses and impact factors using the statistical methodology. Numerical results indicate that:the 15 samples of the road surface inputs is enough to calculate the vertical displacement, however, the number of the samples equals 25 for calculating the lateral displacement. If the vehicle travels about at 900m, the vertical displacement may reaches a peak and equals 32.7mm; however, the lateral displacement may reaches a peak and equals 7.34mm when the vehicle moves at 715m. Based on the specifications, the impact factor equals 0.05. However, numerical results indicate:in the situation that the vehicle moves less than 10m/s, the impact factor of displacement where location at both at the mid-span and 1/4span may be less than 0.05; but for the other situations, the impact factor may be more than 0.05, therefore, the impact factor calculated follow from the code may be more conservative.
引文
[1]Timonshenko著,胡人礼译.工程中的振动问题.北京:人民出版社,1978,80-85
    [2]何度心.地震工程与工程振动.北京:地震出版社,1998,100-120
    [3]何度心.桥梁振动研究.北京:地震出版社,1989,55-58
    [4]陈英俊.车辆荷载下桥梁振动基本理论的演变.桥梁建设,1975,23(2):21-35
    [5]曹雪琴.桥梁结构动力分析.北京:中国铁道出版社,1987,76-80
    [6]鲍达尔编,胡人礼译.铁路桥梁与机车车辆相互作用.北京:铁道部专业设计院工程建设标准规范管理处,1987,15-21
    [7]曾华译.铁路桥梁动力计算.国外桥梁,1987,4(1):24-41
    [8]Fryba L. Vibration of solids and structures under moving loads. Netherland: Noordhoff International Publishing,1972,134-156
    [9]Biggs J M. Introduction to structural dynamics. NewYork:McGraw-Hill Book,1964,23-30
    [10]李国豪.桁梁桥的扭转稳定和振动.北京:人民交通出版社,1975,45-56
    [11]李国豪.桥梁结构稳定与振动.北京:中国铁道出版社,1992,23-33
    [12]松浦章夫.高速铁路车辆与桥梁相互作用.铁道技术研究资料,1974,31(5):14-17
    [13]松浦章夫.新干线铁路桥梁竖向允许挠度北京.铁道技术研究报告,1974,31(10):445-449
    [14]Chu K H, Gsrg V K, Dhar C L. Railway-bridge impact of simplified train and bridge model. Journal of the Structural Division, ASCE,1979,105(9):1823-1844
    [15]Chu K H, Gsrg V K, Wiriyachai A. Dynamic interaction of railway trail and bridges.Vehicle System Dynamics,1980,9(4):207-236
    [16]Bhatti M H. Vertical and lateral dynamic response of railway bridges due to nonlinear vehicle and track irregularities:[dissertation]. Chicago:Illinois Institute of Technology,1982,89-94
    [17]Shahawy M. Impact studies in open-deck steel truss for prestressed concrete railway bridges:[dissertation]. Chicago:Illinois Institute of Technology,1980, 90-100
    [18]Wang T L, Shahawy M. Bridge dynamic in railway prestressed concrete bridge. Journal of Structural Engineering,1991,126(5):1628-1639
    [19]Green M F,Cebon D. Dynamic response of highway bridges to heavy vehicles loads:Theory and Experimental Validation. Journal of Sound & Vibration, 1994,170(1):51-78
    [20]Green M F,Cebon D, David J Cole. Effects of vehicle suspension design on dynamics of dighway bridges. Journal of Structural Engineering, ASCE,1995, 121(2):272-282
    [21]Bogaert V. Dynamic response of trains crossing large span double-track bridges. Journal of Constructional Steel Research,1993,24(1):57-74
    [22]曾庆元,杨平.桁梁行车空间振动计算的桁段有限元法.桥梁建设,1985,21(4):1-16
    [23]曾庆元,杨平.桁梁空间分析的对号入座法则与桁段有限元法.铁道出版社1999,22(2):73-82
    [24]曾庆元,郭向荣.列车桥梁时变系统振动分析理论及应用.北京:中国铁道出版社,1999,12(2):45-65
    [25]郭文华,刘海涛.跨座式轻轨与连续轨道梁空间振动分析.振动与冲击,2009,28(7):139-145
    [26]郭文华,路萍.TMD对高速列车通过简支梁时的振动控制研究.振动与冲击,2008,27(11):42-48
    [27]郭文华,曾庆元.多跨简支曲线轨道折线梁桥空间振动分析模型.工程力学,2003,20(2):38-46
    [28]郭文华,曾庆元.半穿式钢桁梁桥与列车系统空间振动分析,长沙铁道学院学报,2002,20(1):36-43
    [29]胡赛龙,郭文华.横风中高速列车以及桥梁的气动特性研究.重庆交通大学学报,2009,28(6):1008-1014
    [30]曹雪琴.列车通过时桥梁结构竖向振动分析.上海铁道学院学报,1981,2(3):115-120
    [31]曹雪琴,吴鹏贤.桁梁桥横向振动实测资料的概率统计分析.桥梁建设,1983,12(3):42-51
    [32]曹雪琴.桁梁桥横向刚度的设计验算,桥梁建设.1985,12(3):37-45
    [33]曹雪琴,陈晓.轮轨蛇行引起桥梁横向振动随机分析.铁道学报,1986,8(1):89-97
    [34]曹雪琴.钢桁梁桥横向振动.北京:中国铁道出版社,1991,71-78
    [35]夏禾,陈英俊.车-梁-墩体系动力相互作用分析.土木工程学报,1992,25(2):3-12
    [36]夏禾,陈英俊.风和列车荷载同时作用下车桥系统的动力可靠性.土木工程学报,1994,27(2):14-21
    [37]夏禾,阎贵平.列车-斜拉桥体系统在风载作用下的动力响应.北方交通大学学报,1995,19(2):131-136
    [38]阎贵平,夏禾.列车与刚梁柔拱组合体系的地震响应分析.北方交通大学学报,1994,18(1):9-16
    [39]阎贵平,夏禾.铁路斜拉桥的地震响应特性研究.北方交通大学学报,1995,19(2):137-142
    [40]夏禾.车辆与结构动力相互作用.北京:科学出版社,2002,101-121
    [41]李小珍,强士中.高速列车大跨度钢斜拉桥空间耦合振动响应研究.桥梁建设1998,(4):65-68
    [42]李小珍,强士中.京沪高速铁路南京越江钢斜拉桥车桥耦合振动分析.西南交通大学学报,1999,34(2):153-157
    [43]宁晓骏,何发礼,强士中.车桥耦合振动研究中轮轨接触几何非线性的考虑.桥梁建设,1999,20(2):8-10
    [44]宁晓骏,李小珍,强士中.高速铁路桥墩横向刚度的初步研究.西南交通大学学报,2000,35(1):11-13
    [45]沈锐利.高速铁路桥粱与车辆耦合振动研究:[博士学位论文].成都:西南交通大学.1998,98-102
    [46]沈锐利.高速铁路线上简支梁桥车桥共振问题初探.西南交通大学学报.1995,30(3):275-282
    [47]沈锐利.高速铁路简支梁桥竖向振动响应研究.中国铁道科学,1996,17(3):24-34
    [48]袁向荣.考虑约束扭转效应时桥梁的振动分析:[博士学位论文].成都:西南交通大学,1992,45-65
    [49]何发礼.高速铁路中小跨度曲线梁桥耦合振动研究:[博士学位论文].成都:西南交通大学,1999,78-83
    [50]单德山.高速铁路曲线桥梁耦合振动分析及大跨度曲线梁桥设计研究:[博士学位论文]成都:西南交通大学,1999,100-110
    [51]Fryba L. Vibration of solids and structures under moving loads. Groningen: Noordhoff International Publishing,1973,45-65
    [52]Wang T L, Huang D Z, Shahawy M. Dynamic response of multi-girder bridges. Journal of Structural Engineering,1993,118(8):2222-2238
    [53]Chang D, Lee H. Impact factors for simple-span highway girder bridges. Journal of Structural Engineering,1994,120(3):704-715
    [54]Pesterev A V, Bergman L A, Tan CA. A novel approach to the calculation of pothole-induced contact forces in MDOF vehicle models. Journal of Sound and Vibration,2004,275(2):127-149
    [55]Bergman. W. Theoretical prediction of the effect of traction on cornering force. SAE Transactions,1961,69(3):567-578
    [56]Zhu X Q, Law S S. Identification of vehicle axle loads from bridge dynamic responses. Journal of Sound and Vibration,2000,236(4):705-724
    [57]Zhu X Q, Law S S. Practical aspects in moving load identification. Journal of Sound and Vibration,2002,258(1):123-146
    [58]Zhu X Q, Law S S. Moving loads identification through regularization. Journal of Engineering Mechanics,2002,128(9):989-1000
    [59]Zhu X Q, Law S S. Dynamic axle and wheel loads identification:Laboratory studies. Journal of Sound and Vibration,2003,268(9):855-879
    [60]Shahawy M, Huang D, Wang T L. Dynamic responses of multigirder concrete bridges. Journal of Structural Engineering,1995,117(9):2480-2498
    [61]Huang D Z, Wang T L. Impact analysis of cable-stayed bridges. Computers and Structures,1992,43(5):897-908
    [62]Wang T L, Huang D Z, Shahawy M. Dynamic response of multi-girder bridges. Journal of Structural Engineering,1993; 118(8):2222-2238
    [63]Wang TL. Impact and fatigue in open-deck steel truss and ballasted prestressed concrete railway bridges:[dissertation]. Chicago:Illinois Institute of Technology, 1984,99-110
    [64]Wang T L, Chu K H. Railway bridge vehicle interaction studies with new vehicle model of structural engineering. Journal of Structural Engineering,1991,117(7): 2099-2116
    [65]Wang T L. Bridge interface in railway prestressed concrete bridge. Journal of Structural Engineering,1990,116(6):1648-1659
    [66]Wang T L, Huang D Z. Impact studies in a railway bridge. Computer & Structures,1997,149(5):1545-1554
    [67]Wang T L, Shahawy M. Dynamic response of highway trucks due to road surface roughness. Computer & Structures,1993,49(6):1055-1067
    [70]Wang T L, Cheli F. Dynamic Interaction of Railway Systems with Large Bridges. Vehicle System Dynamics,1989,18(1):71-106
    [71]Wang T L. Finite element model coordinate analysis of structures subjected to moving loads. Journal of Sound & Vibration,1985,99(1):112-120
    [72]Wang T L. On the foundational moving load problems. Journal of Sound& Vibration,1991,145(2):299-307
    [73]Chen S R, Cai C S. Accident assessment of vehicles on long-span bridges in windy environments. Journal of Wind Engineering and Industrial Aerodynamics, 2004; 92(2):991-1024
    [74]Chen S R. Dynamic performance of bridges and vehicles under strong wind:[Dissertation]. Baton Rouge:Louisiana State University,2004,89-95
    [75]Zhang Y, Cai C S, Shi X M. Vehicle induced dynamic performance of a FRP versus concrete slab bridge. ASCE Journal of Bridge Engineering,2006,11(4): 410-419
    [76]Cai C S, Shi X M, Araujo M. Effect of approach span condition on vehicle-induced dynamic response. ASCE Journal of Bridge Engineering, 2007,14(4):440-449
    [77]Shi X M. Structural performance of approach slab and its effect on vehicle induced bridge dynamic response:[Dissertation]. Baton Rouge:Louisiana State University,2006,89-112
    [78]Shi X M, Cai C S, Chen S R. Vehicle induced dynamic behavior of short span bridges considering effect of approach span condition. Journal of Bridge Engineering, ASCE,2008,13(1):83-92
    [79]Deng L. System identification of bridge and vehicle based on their coupled vibration:[Dissertation]. Baton Rouge:Louisiana State University,2009,89-91.
    [80]陈上有基于车桥耦合振动分析的桥梁结构参数识别与损伤诊断方法研究:[硕士学位论文].北京:北京交通大学,2007,25-85
    [81]夏禾,陈上有.车辆与结构动力相互作用.工程力学,2002,12(2):11-17
    [82]任伟新.由车辆响应识别桥梁固有频率的方法研究.中南大学学报,200923(3):45-65.
    [83]唐意.刚架拱桥车辆振动可视化仿真研究:[硕士学位论文].福州:福州大学,2003,45-65.
    [84]袁明.高墩大跨连续刚构桥的车桥系统耦合振动分析[硕士学位论文].长沙:长沙理工大学,2005,34-65
    [85]张钧博.公路桥梁的车桥耦合振动研究[硕士学位论文].成都:西南交通大学,2007,45-50.
    [86]张黎明.大跨度连续刚构桥车桥耦合振动研究[硕士学位论文].成都:西南交通大学,2007,40-53.
    [87]张洁.公路车辆与桥梁耦合振动分析研究[硕士学位论文].成都:西南交通大学,2007,35-45.
    [88]杨建荣.车-桥耦合作用下公路桥梁局部振动研究[博士学位论文].上海:同 济大学,2007,40-56
    [89]陈敏.公路桥梁疲劳车辆荷载模型研究.[硕士学位论文].上海:同济大学,2009,50-57
    [90]薛凌翔.考虑徐变影响的混凝土公路桥梁车-桥耦合振动研究[硕士学位论文].北京.北京交通大学,2008,45-56
    [91]王达.基于有限元模型修正的大跨度悬索桥随机车流车-桥耦合振动分析[博士学位论文].西安.长安大学,2008,40-50
    [92]孙韦.车辆荷载作用下连续梁桥的动态响应研究[硕士学位论文].西安.长安大学,2008,40-50
    [93]安忠海.车辆荷载作用下曲线钢-混凝土组合箱梁桥的动力性能研究[硕士学位论文].西安.长安大学,2009,45-56
    [94]夏禾,张楠.车辆与结构动力相互作用.北京:科学出版社,2005,10-21
    [95]王明.大跨度悬索桥随机车流车-桥耦合振动分析.长安大学,2008,40-59
    [96]Parkhilovskiil G. Investigation of the probability characteristics of the surfaces of distributed types of roads, Avtom Prom,1968(8):18-22
    [97]Dodds C J, Robson J D. The description of road surface Roughness. Journal of Sound & Vibration,1973,31(2):70-75
    [98]International Standard Organization, Proposal for generalized road inputs to vehicle, Poc ISO/TC108/WG9,1972,23-31
    [99]GB703187车辆振动输入路面不平度表示方法,1987,34-39
    [100]赵济海编著.路面不平度的测量分析与应用.北京:北京理工大学出版社,2000,34-55
    [101]Rice S O. Mathematical analysis of random noise. Bell system Technology, 1994,4(23):282-332
    [102]Shinozuka M. Simulation of multivariate and multi-dimensional random process. Acous Soc Amer,1971,49(1); 357-368
    [103]常志权,罗虹.谐波叠加路面输入模型的建立及数字模拟.重庆大学学报:2004,27(12):5-8
    [104]高农,刘明思.不平整路面下汽车随机振动的计算机模拟.哈尔滨师范大学学报:1997(5):101-104
    [105]Jenkins G M, Watts D G. Spectral analysis and its applications, HoldenDay,San Fransisco,1968,67-78
    [106]Venkatesan C,Crishnan. Stochastic modeling of an aircraft traversing a run way using time series. Journal Aircraft,1981,18(2):115-120
    [107]唐光武,贺学锋,颜永福.路面不平度的数学模型及计算机模拟研究.中国 公路学报,2000,13(7):114-117
    [108]杨绍奎.用时间序列分析法描述路面不平度.兵工学报,坦克装甲车与发动机分册,1996(1):1-7
    [109]Shinozuka M. Digital simulation of random processes and its application. Journal of Sound and Vibration,1972,20(5):111-128
    [110]Racicot R L, Moses F. Filtered poisson process for random vibration problem, Journal of Eng. Mech. Div. Proc. ASCE,1972,23(8):159-175
    [111]Yadav D, Nigarn N C. Ground induced nonstationary response of vehicles,Sound and Vibration,1978,61(1):117-126
    [112]Naryanan S. Nonlinear and nonstationary random vibration of hysteretic system with application to vehicle dynamics in Process, Nonlinear Stochastic Dynamic Engineering System,1999,60(1):127-136
    [113]郭孔辉.汽车振动与载荷的统计分析及悬挂系统的参数选择.汽车技术,1976(4):1-14
    [114]Parkhilovskii, I G. Investigation of the probability characteristics of the surfaces of distributed types of roads, Avtom Prom,1968(8):18-22
    [115]Esat.Genetic algorithm-based optimization of a vehicle suspension system. International Journal of Vehicle Design,1999,21(3):29-38
    [116]张洪欣.汽车行驶平顺性的的计算机模拟.汽车工程,1986(1):21-31
    [117]罗明廉,魏绍乾.汽车非平稳随机振动的研究.汽车工程,1990,21(1),59-62
    [118]Harrison, R.F Hammond, J.k.. Evolutionary (Frequency/Time) Spectral Analysis of the Response of Vehicles Moving on Rough Ground by Using 'Covariance Equivalent'Modeling. Journal of Sound and Vibration,1986, 107(1):29-38
    [119]张立军,张天侠.车辆非匀速行驶时路面随机输入的时频研究.汽车工程.2005,27(6):710-714
    [120]Michaltsos G T, Sophianopoulos D, Kounadis A N. The effect of a moving mass and other parameters on the dynamic response of a simply supported beam. Journal of Sound and Vibration,1996,191(3):357-362
    [121]Pesterev AV, Bergman L A. An improved series expansion of the solution to the moving oscillator problem. Journal of Vibration and Acoustics,2000,122(6): 554-611
    [122]Chen Yanghong, Tan C A, Bergman LA. Effects of boundary flexibility on the vibration of a continuum with a moving oscillator. Journal of Vibration and Acoustics,2002,124(1):552-560
    [123]Kenny J T. Steady state vibrations of beam on elastic foundation for moving load, Journal of Applied Mechanics,1954,21(2):359-364
    [124]孙璐,邓学钧.匀速运动的线源荷载激励下无限长梁动力分析.应用数学和力学1998,19(4):341-347
    [125]延西利,扈惠敏,张登良.沥青混合料线性流变模型的数值模拟.西安公路交通大学学报,1999,19(1):7-12
    [126]Cheng Y S, Au F T K, Cheng Y K. Vibration of railway bridge under a moving train by using bridge-track-vehicle element. Journal of Engineering Structures, 2001,23(21):1597-1606
    [127]Lou Ping. A vehicle-track-bridge interaction element considering vehicle' pitching effect. Journal of Finite Elements in Analysis and Design.2005,41(6): 397-427
    [128]刘伯华,黄华,刘鸣.简支梁桥在车辆作用下的动力分析.土木工程学报,2006,39(3):76-80
    [129]公路桥梁板式橡胶支座.北京:中华人民共和国交通行业标准,2004,10-16
    [130]侯芸,郭忠印,田波.动荷作用下沥青路面结构的变形响应分析.中国公路学报,2002,15(3):6-10
    [131]郭忠印.公路桥梁动力计算.国外桥梁,199212(2):7-13
    [132]李建中.桥梁支座计算.北京:高等教育出版社,1998,12-28
    [133]Li J Z, Su M B, Fan L C. Natural frequency of railway girder bridges under vehicle loads. Journal of Bridge Engineering, ASCE 2003; 8(4):199-203
    [134]Eccles B J, Owen J S, Choo B S, Woodings M A. Non-linear vibrations of cracked reinforced concrete beams. Structural Dynamics,1999,18(2):357-364
    [135]Abdel Wahab M M, De Roeck G, Peeters B. Parameterization of damage in reinforced concrete structures using model updating. Journal of Sound and Vibration,1999,228(4):717-730
    [136]Neild S A, Williams M S, McFadden P D. Non-linear behavior of reinforced concrete beams under low amplitude cyclic and for vibration loads. Engineering Structures 2002,24(2):707-718
    [137]Dugush Y A, Eisenberger M. Vibration of non-uniform continuous beams under moving loads. Journal of Sound and Vibration,2001,254(5):911-926
    [138]Abdel Wahab MM, De Roeck G, Peeters B. Parameterization of damage in reinforced concrete structures using model updating. Journal of Sound and Vibration 1999; 228(4):717-730
    [139]Law S S, Zhu XQ. Dynamic behavior of damaged concrete bridge structures under moving vehicular loads. Journal of Sound and Vibration,2004,5(26): 1279-1293
    [140]Zheng D Y, Cheung Y K, Au F T K. Vibration of multi-span non-uniform beams under moving loads by using modified beam vibration functions. Journal of Sound and vibration,1998,128(4):517-530
    [141]Kim C Y, Jung D S, Kim N S, Kwon S D. Effect of vehicle weight on natural frequencies of bridges measured from traffic-induced vibration. Earthquake Engineering and Engineering Vibration,2003,2(1):109-115
    [142]Lee H P, Ng T Y. Dynamic response of a cracked beam subject to a moving load. Acta Mechanica,1994,106(5):221-230
    [143]Parhi D R, Behera A K. Dynamic deflection of a cracked beam with moving mass.. Journal of Mechanical Engineering,1997,211(2):77-87
    [144]Eccles BJ, Owen J S, Choo B S. Non-linear vibrations of cracked reinforced concrete beams. Structural Dynamics,1999,20(12):357-364
    [145]Zheng D Y, Cheung Y K, Au F T K. Vibration of multi-span non-uniform beams under moving loads by using modified beam vibration functions. Journal of Sound and vibration,1998,128(4):517-530
    [146]Yang Y B, Yau J D, Wu Y S. Vehicle-bridge interaction dynamics with applications to high-speed railways. Neworland:World scientific publishing, 2004,87-95
    [147]Shi X M. Structural performance of approach slab and its effect on vehicle induced bridge dynamic response [Dissertation]. Baton Rouge:Louisiana State University,2006,120-129
    [148]Gim G, Nikravesh P E. Analytical model of pneumatic types for vehicle dynamic simulations Part 1. Pure slips. International journal of vehicle design, 1990,11(5):589-618
    [149]Gim G, Nikravesh P E. Analytical model of pneumatic types for vehicle dynamic simulations Part 2. Comprehensive slips. International journal of vehicle design,1991,12(1):19-39
    [150]Gim G, Nikravesh P E. Analytical model of pneumatic types for vehicle dynamic simulations Part 3. Validation against experimental data. International journal of vehicle design,1991,12(2):217-228
    [151]Kao B G. A three-dimensional dynamic tire model for vehicle dynamic simulations. Tire science & technology,2000,28(2):72-95
    [152]Crolla D A, El-Razaz. A review of the combined lateral and longitudinal force generation of tyres on deformable surfaces. Journal of terra mechanics,1987, 24(3):199-225
    [153]Goel V K, Ramji K. Analytical predictions of steady state tyre characteristics. Journal of vehicle design,2004,34(3):260-284
    [154]Hewson P. Method for estimating tyre cornering stiffness from basic tyre information. Proceedings of the institution of mechanical engineers-part D-Journal of automobile engineering,2005,24(4):1407-1412
    [155]Bradley J, Allen.R F. The behavior of rubber-tyred wheels. The automotive engineer,1931,21(3):57-77
    [156]American Association of State Highway and Transportation Officials (AASHTO). Washington D C:LRFD bridge design specifications,2004,78-80
    [157]Mechanical vibration and shock-Evaluation of human exposure to whole body vibration-Part1:General requirements. International Standard Organization, ISO 1997,2631(1E):10-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700