用户名: 密码: 验证码:
不同因素诱导鹅肝细胞脂肪变性的机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肝内脂质沉积受到很多因素的影响,高能食物、葡萄糖、胰岛素、胆固醇和肝脏X受体(LXR)激活剂等都可以诱导哺乳动物肝脂肪变性,水禽的肝脂肪变性与哺乳动物有不同的特性,关于水禽肝脂肪变性的机制目前还不清楚。在组织水平,通过对朗德鹅和四川白鹅进行填饲高能碳水化合物检测了填饲对血浆葡萄糖、胰岛素和胆固醇浓度、肝内脂质含量及肝内三酰甘油(TG)含量、与脂肪酸和TG合成、及VLDL-TG(极低密度脂蛋白)组装与分泌相关基因的mRNA表达水平影响在两个品种间的差异;在细胞水平通过添加不同浓度的葡萄糖、胰岛素、胆固醇和LXR激活剂T0901317培养鹅原代肝细胞,检测生酯酶脂肪酸合成酶(FAS)和乙酰辅酶A羧化酶(ACC)酶活性、细胞内外TG含量及总TG含量、细胞外VLDL浓度、相关基因表达水平;并用western blot和凝胶电泳迁移实验(EMSA)方法检测了葡萄糖和胰岛素、胆固醇和LXR激活剂T0901317处理细胞后转录因子固醇调节元件结合蛋白-1 (SREBP-1)的蛋白变化及SREBP-1的核蛋白与靶基因ACCa的结合情况。主要结果如下:
     (1)填饲引起脂质大量沉积在鹅肝脏内,朗德鹅肝内脂质沉积强度要高于四川白鹅;填饲引起的血浆胰岛素和胆固醇水平的增加程度也存在品种差异,朗德鹅的变化大于四川白鹅(P<0.05);而填饲后血浆葡萄糖在朗德鹅中上升,在四川白鹅中下降(P<0.05)。填饲后与脂肪酸合成相关的基因ACCa、FAS, SREBP-1和碳水化合物反应元件结合蛋白(ChREBP)在肝组织中的表达水平降低(P<0.05);脂蛋白酯酶(LPL夕和LXRa mRNA表达量显著升高(P<0.05); VLDL-TG组装与分泌相关基因微粒体甘油三酯转运蛋白(MTTP)基因表达显著降低(P<0.05);填饲诱导的基因表达水平的变化在两个品种中显著不同,SREBP-1, ChREBP和MTTP基因表达水平在朗德鹅中的降低程度大于四川白鹅(P<O.05), LPL基因表达的升高程度在朗德鹅中大于四川白鹅(P<0.05)。
     (2)葡萄糖和胰岛素分别单独与肝细胞培养后显著增加生酯酶FAS和ACC的活性、脂肪酸合成相关基因FAS, ACCa、SREBP-1、ChREBP、LXRa和硬脂酰辅酶A去饱和酶1 (SCD1)的基因表达水平及细胞内TG含量,并且葡萄糖和胰岛素共同培养存在显著协同效应P<0.05)。另外,5 mmol/L葡萄糖和50 nmol/L胰岛素分别单独培养对SREBP-1的核蛋白浓度及SREBP-1核蛋白与靶基因ACCa探针的结合没有显著影响,但当5 mmol/L葡萄糖和50 nmol/L胰岛素共同培养时显著增加了他们的结合P<0.05)。
     葡萄糖和胰岛素单独培养鹅原代肝细胞都能显著提高细胞外TG和VLDL的浓度(P<0.05),同时对VLDL-TG合成与分泌相关基因的表达具有明显诱导作用。葡萄糖和胰岛素共同培养肝细胞,发现对甘油二酯酰基转移酶1(DFAT1)、DGAT2.叉头蛋白1(FoxO1)和MTTP的基因表达有显著协同增加作用(P<0.05),高胰岛素浓度和葡萄糖的诱导作用高于低胰岛素浓度和葡萄糖的作用(P<0.05);葡萄糖和胰岛素共处理细胞对载脂蛋白B(apoB)的基因表达也有显著协同作用(P<0.05),但低浓度胰岛素和葡萄糖的诱导作用要高于高浓度胰岛素和葡萄糖的作用(P<0.05);葡萄糖和胰岛素共处理对细胞外TG和VLDL的浓度的诱导作用也要高于其单独处理作用(P<0.05)。
     (3)胆固醇对细胞内TG含量、细胞外TG含量、总TG含量、细胞外胆固醇浓度和VLDL浓度的调控模式与其对脂肪合成相关基因(FAS.ACCa.SREBP.1.ChREBP. LXRa和SCD1)及VLDL-TG组装与分泌相关基因(DGAT2、MTTP和FoxO1)mRNA表达水平的调控模式类似。其中,10μg/mL胆固醇对以上各指标具有促进作用;20μg/mL的胆固醇的诱导作用最明显(P<0.05);与20 gg/mL的胆固醇作用相比,30μg/mL的胆固醇表现出了对以上各检测指标的抑制作用(P<0.05)。胆固醇培养细胞能显著增加生酯酶FAS活性、SREBP-1的核蛋白浓度及SREBP-1核蛋白与靶基因ACCα探针的结合;胆固醇对DGAT1和apoB基因表达水平的调控与对其他基因的调控不同,对DGAT1基因表达水平的调控呈现剂量依赖模式,对apoB的mRNA水平没有显著影响(P>0.05)。
     (4)LXR激活剂(T0901317)以剂量依赖方式上调细胞内TG含量和总TG含量、上调生酯酶FAS和ACC活性和与脂肪酸合成有关基因(FAS.ACCa.SREBP-1. ChREBP、LXPa和SCD1)的mRNA表达,也同样上调LPL和DGAT1基因表达水平。另外,LXR激活剂(T0901317)可以增加SREBP-1的核蛋白浓度及SREBP-1核蛋白与靶基因ACCa探针的结合;LXR激活剂(T0901317)对细胞外TG和VLDL浓度的调控模式与对MTTP.DGAT2.FOxxO1和apoB基因水平的调控类似,随着T0901317浓度的增加,诱导作用增加,当T0901317浓度达到10μmol/L时,对基因水平的诱导效果降低,要低于1μmol/L T0901317处理组的水平。
     结论:填饲、葡萄糖、胰岛素、胆固醇和LXR激活剂(T0901317)都可以通过影响鹅肝细胞内脂肪酸和TG合成、VLDL-TG的组装和分泌诱导肝细胞内的脂质沉积,进而导致肝细胞脂肪变性;在葡萄糖、胰岛素、胆固醇和LXR激活剂(T0901317)诱导的肝脂肪酸合成中,可以通过SREBP-1激活靶基因ACCa的转录实现间接调控作用。
The lipids deposition in liver can be affected by many factors. High energy food, glucose, insulin, cholesterol and LXRa agnonist all can induce hepatic steatosis in mammals. The feature of hepatic steatosis in waterfowl is different from that in mammals, and the mechanism of hepatic steatosis in waterfowls remains unclear yet. In this study, after overfeeding carbohydrate to Landes goose and Sichuan Landes goose, we measured the plasma level of glucose, insulin and cholesterol; lipid content in liver, hepatic TG content and mRNA expression of genes involved in the lipids metabolism in vivo; also measured the effect of glucose, insulin, cholesterol and LXRa agnonist on activities of lipogeneic enzymes FAS and ACC, total TG accumulation, intracellular and extracellular TG content and extracellular VLDL content, mRNA level of related genes in vitro; at last, we measured the SREBP-1 nuclear protein content using western blot andand the binding of SREBP-1 nuclear protein and SRE probe of ACCa gene using EMSA. There rsults are as followed:
     (1) Overfeeding induced the lipids deposition in goose liver, and the lipid deposition intensity of Lands goose was higher than that of Sichuan white goose; the increase of the plasma level of insulin and cholesterol induced by overfeeding showed a difference between the two breeds, and the increase of Lands goose was bigger than that of Sichuan white goose (P<0.05); the plasma glucose concentration increased in Landes goose after overfeeding, but decreased in Sichuan white goose (P<0.05). After overfeeding, the mRNA level of genes (ACCa, FAS, SREBP-1 and ChREBP)involved in the lipogenesis decreased in the two breeds, and the gene expression of LPL and LXRa increased (P<0.05); the mRNA level of genes (MTTP) related with assembly and secretion of VLDL-TG decreased (P<0.05); the change of mRNA level induced by overfeeding is different in the two breeds, and the decease of mRNA level of SREBP-1, ChREBP and MTTP in Lands goose is bigger than that in Sichuan white goose; the increase of mRNA level of LPL gene in Lands goose is bigger than that in Sichuan white goose.
     (2) Glucose and insulin cultured with hepatocytes separately evidently increase the activity of lipogenic enzyme FAS and ACC, mRNA level of lipogenic genes (FAS, ACCa, SREBP-1, ChREBP, LXRa and SCD1), and intracellular TG content (P<0.05). There was evident synergetic effect when glucose and insulin cultured together (P<0.05). In addition,5 mmol/L glucose and 50 nmol/L insulin cultured alone had no significant effect on the SREBP-1 nuclear protein levels and the binding of SREBP-1 nuclear protein with a target gene ACCa probe, but 5 mmol/L glucose and 50 nmol/L insulin cultured together significantly increased the binding (P<0.05).
     Glucose could increase the extracellular concentration of TG and VLDL (P<0.05), and evidently increase the mRNA level of genes related with VLDL-TG synthesis and secretion. Glucose and insulin cultured together with goose primary hepatocytes increased the mRNA level of DGAT1, DGAT2 and MTTP genes (P<0.05), and the induction of high concentration of insulin and glucose was higher than the effect of low concentration of insulin and glucose (P<0.05); Glucose and insulin cultured together had synergetic effect on gene level of apoB, and the effect of low concentration of insulin and glucose was higher than the effect of high concentration of insulin and glucose(P<0.05); the effect of glucose and insulin cultured together on extracellelμlar TG and VLDL concentration was also higher than the effect when cultured with glucose and insulin seperatly (P<0.05).
     (3) The regulation mode of intracellular and extrcellular TG level, total TG level and extrcellular cholesterol level by cholesterol was similar with the regulation of mRNA level of lipogenic genes (FAS, ACCa, SREBP-1, ChREBP, LXRa and SCD1) and the genes involved in the assembly and secretion of VLDL-TG (DGAT2, MTTP and FoxO1).10μg/mL cholesterol up-regulated the level of the detected indexes; the induction by 20μg/mL cholesterol is most evident, and 30μg/mL cholesterol showed an inhibiting role (P<0.05). The regulation of gene expression of DGAT1 and apoB by cholesterol is different from the regulation of other genes. Cholesterol could increase the mRNA level of DGAT1 gene in a dose-dependent manner, and had no evident effect on mRNA level of apoB gene (P>0.05).
     (4) LXR agonist (T0901317) increased intracellular TG content and total TG levels, activity of FAS and ACC, mRNA level of genes involved in lipogensis(FAS, ACCa, SREBP-1, ChREBP, LXRa and SCD1), and also increased the gene expression of LPL and DGAT1 genes in a dose-dependent manner. In addition, T0901317 could increase the concentration of SREBP-1 nuclear protein and the binding of SREBP-1 nuclear protein and its target gene ACCa probe. The regulation of extracellular concentration of TG and VLDL by T0901317 was similar with that of gene expression of MTTP, DGAT2, FoxO1 and apoB. With the increase of T0901317, the induction increased. But when the concentration of T0901317 reached 10μmol/L, the induction to gene expression decreased, and the gene level after the treatment of 10μmol/L T0901317 was lower than that in 1μmol/L T0901317.
     Conclusion:Overfeeding, culture with glucose, insulin, cholesterol and LXR agonist (T0901317) could induce the lipids deposition in goose hepatocytes by affecting the fatty acid and TG synthesis and VLDL-TG assembly and secretion, then could lead to hepatic steatosis; The induction of fatty acid synthesis by glucose, insulin and LXR agonist (T0901317) can be indirectly achieved by SREBP-1 activting transcription of its target gene ACCa.
引文
[1]Friedman, J. Fat in all the wrong places. Nature,2002,415(6869):268-9.
    [2]Boer, A.M.d. Hepatic Steatosis Metabolic Consequences. [Doctoral dissertation]. Netherlands, University of Leiden,2006.
    [3]Gibbons, G.F., Islam, K. and Pease, R.J. Mobilisation of triacylglycerol stores. Biochim Biophys Acta,2000,1483(1):37-57.
    [4]Fong, D.G., Nehra, V., Lindor, K.D., et.al. Metabolic and nutritional considerations in nonalcoholic fatty liver. Hepatology,2000,32(1):3-10.
    [5]Yeaan, S.J. Hormone-sensitive lipase-new roles for an old enzyme. Biochem J,2004(379):11-22.
    [6]Yasuhara, M., Ohama, T., Matsuki, N., et al. Induction of fatty liver by fasting in suncus. J Lipid Res,1991,32(6):887-91.
    [7]Gauthier, M.S., Couturier, K., Latour, J.G., et.al. Concurrent exercise prevents high-fat-diet-induced macrovesicular hepatic steatosis. J Appl Physiol,2003,94(6):2127-34.
    [8]Pan, M., Liang, J., Fisher, E.A., et.al. Inhibition of translocation of nascent apolipoprotein B across the endoplasmic reticulum membrane is associated with selective inhibition of the synthesis of apolipoprotein B. J Biol Chem,2000,275(35):27399-405.
    [9]Guerre-Millo, M. Adipose tissue hormones. J Endocrinol Invest,2002,25(10):855-61.
    [10]Mourot, J., Guy, G., Lagarrigue, S., et al. Role of hepatic lipogenesis in the susceptibility to fatty liver in the goose (Anser anser). Comp Biochem Physiol B Biochem Mol Biol,2000,126(1): 81-7.
    [11]Fabienne, F. and Pascal, F. New perspectives in the regulation of hepatic glycolytic and lipogenic genes by insulin and glucose:a role for the transcription factor sterol regulatory element binding protein-lc. Biochem J,2000(366):377-391.
    [12]Goudriaan, J.R., Dahlmans, V.E., Teusink, B., et al. CD36 deficiency increases insulin sensitivity in muscle, but induces insulin resistance in the liver in mice. J Lipid Res,2003,44(12):2270-7.
    [13]Coburn, C.T., Knapp, F.F., Jr., Febbraio, M., et.al. Defective uptake and utilization of long chain fatty acids in muscle and adipose tissues of CD36 knockout mice. J Biol Chem,2000,275(42): 32523-9.
    [14]Voshol, P.J., Haemmerle, G., Ouwens, D.M., et al. Increased hepatic insulin sensitivity together with decreased hepatic triglyceride stores in hormone-sensitive lipase-deficient mice. Endocrinology,2003,144(8):3456-62.
    [15]Voshol, P.J., Jong, M.C., Dahlmans, V.E., et.al. In muscle-specific lipoprotein lipase-overexpressing mice, muscle triglyceride content is increased without inhibition of insulin-stimulated whole-body and muscle-specific glucose uptake. Diabetes,2001,50(11): 2585-90.
    [16]Letteron, P., Sutton, A., Mansouri, A., et.al. Inhibition of microsomal triglyceride transfer protein: another mechanism for drug-induced steatosis in mice. Hepatology,2003,38(1):133-40.
    [17]Li, X., Grundy, S.M. and Patel, S.B. Obesity in db and ob animals leads to impaired hepatic very low density lipoprotein secretion and differential secretion of apolipoprotein B-48 and B-100. J Lipid Res,1997,38(7):1277-88.
    [18]Bandsma, R.H., Wiegman, C.H., Herling, A.W., et.al. Acute inhibition of glucose-6-phosphate translocator activity leads to increased de novo lipogenesis and development of hepatic steatosis without affecting VLDL production in rats. Diabetes,2001,50(11):2591-7.
    [19]Avramoglu, R.K., Qiu, W. and Adeli K..Mechanisms of metabolic dyslipidemia in insulin resistant states:deregulation of hepatic and intestinal lipoprotein secretion. Front Biosci,2003,8: d464-76.
    [20]Grefhorst, A., Elzinga, B.M., Voshol, P.J., et.al. Stimulation of lipogenesis by pharmacological activation of the liver X receptor leads to production of large, triglyceride-rich very low density lipoprotein particles. J Biol Chem,2002,277(37):34182-90.
    [21]Duivenvoorden, I., Teusink, B., Rensen, P.C., et.al. Acute inhibition of hepatic beta-oxidation in APOE*3Leiden mice does not affect hepatic VLDL secretion or insulin sensitivity. J Lipid Res, 2005,46(5):988-93.
    [22]Leone, T.C., Weinheimer, C.J. and Kelly, D.P. A critical role for the peroxisome proliferator-activated receptor alpha (PPARalpha) in the cellular fasting response:the PPARalpha-null mouse as a model of fatty acid oxidation disorders. Proc Natl Acad Sci USA, 1999,96(13):7473-8.
    [23]Friedman, J.R. and Kaestner, K.H. The Foxa family of transcription factors in development and metabolism. Cell Mol Life Sci,2006,63(19-20):2317-28.
    [24]Kim, J.B. and Spiegelman, B.M. ADD1/SREBP1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism. Genes Dev,1996,10(9):1096-107.
    [25]Shimomura, I., Hammer, R.E., Richardson, J.A., et.al. Insulin resistance and diabetes mellitus in transgenic mice expressing nuclear SREBP-lc in adipose tissue:model for congenital generalized lipodystrophy. Genes Dev,1998,12(20):3182-94.
    [26]Le Lay, S., Lefrere, I., Trautwein, C, et.al. Insulin and sterol-regulatory element-binding protein-lc (SREBP-1C) regulation of gene expression in 3T3-L1 adipocytes. Identification of CCAAT/enhancer-binding protein beta as an SREBP-1C target. J Biol Chem,2002,277(38): 35625-34.
    [27]Assaf, S., Hazard, D., Pitel, F., et.al. Cloning of cDNA encoding the nuclear form of chicken sterol response element binding protein-2 (SREBP-2), chromosomal localization, and tissue expression of chicken SREBP-1 and-2 genes. Poult Sci,2003,82(1):54-61.
    [28]Horton, J.D., Shimomura,1., lkemoto, S., et.al. Overexpression of sterol regulatory element-binding protein-la in mouse adipose tissue produces adipocyte hypertrophy, increased fatty acid secretion, and fatty liver. J Biol Chem,2003,278(38):36652-60.
    [29]Abu-Elheiga, L., Oh, W., Kordari, P., et.al. Acetyl-CoA carboxylase 2 mutant mice are protected against obesity and diabetes induced by high-fat/high-carbohydrate diets. Proc Natl Acad Sci U S A,2003,100(18):10207-12.
    [30]Ide, T., Shimano, H., Yahagi, N., et.al. SREBPs suppress IRS-2-mediated insulin signalling in the liver. Nat Cell Biol,2004,6(4):351-7.
    [31]Horton, J.D., Shah, N.A., Warrington, J.A., et.al. Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes. Proc Natl Acad Sci USA,2003,100(21):12027-32.
    [32]Grand-Perret, T., Bouillot, A., Perrot, A., et.al. SCAP ligands are potent new lipid-lowering drugs. Nat Med,2001,7(12):1332-8.
    [33]Horton, J.D., Goldstein, J.L. and Brown, M.S. SREBPs:activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest,2002,109(9):1125-31.
    [34]Ascencio, C, Torres, N., Isoard-Acosta, F., et al. Soy protein affects serum insulin and hepatic SREBP-1 mRNA and reduces fatty liver in rats. J Nutr,2004,134(3):522-9.
    [35]Yamashita, H., Takenoshita, M., Sakurai, M., et al. A glucose-responsive transcription factor that regulates carbohydrate metabolism in the liver. Proc Natl Acad Sci U S A,2001,98(16):9116-21.
    [36]Cairo, S., Merla, G., Urbinati, F., et.al. WBSCR14, a gene mapping to the Williams-Beuren syndrome deleted region, is a new member of the Mlx transcription factor network. Hum Mol Genet,2001,10(6):617-27.
    [37]Ishii, S., Iizuka, K., Miller, B.C., et al. Carbohydrate response element binding protein directly promotes lipogenic enzyme gene transcription. Proc Natl Acad Sci USA,2004,101(44): 15597-602.
    [38]Kabashima, T., Kawaguchi, T., Wadzinski, B.E., etal. Xylulose 5-phosphate mediates glucose-induced lipogenesis by xylulose 5-phosphate-activated protein phosphatase in rat liver. Proc Natl Acad Sci USA,2003,100(9):5107-12.
    [39]Dentin, R., Benhamed, F., Pegorier, J.P., et.al. Polyunsaturated fatty acids suppress glycolytic and lipogenic genes through the inhibition of ChREBP nuclear protein translocation. J Clin Invest, 2005,115(10):2843-54.
    [40]Dentin, R., Girard, J., and Postic, C. Carbohydrate responsive element binding protein (ChREBP) and sterol regulatory element binding protein-1c (SREBP-1c):two key regulators of glucose metabolism and lipid synthesis in liver. Biochimie,2005,87(1):81-6.
    [41]Dentin, R., Pegorier, J.P., Benhamed, F., et.al. Hepatic glucokinase is required for the synergistic action of ChREBP and SREBP-lc on glycolytic and lipogenic gene expression. J Biol Chem, 2004,279(19):20314-26.
    [42]lizuka, K., Bruick, R.K., Liang, G., et.al. Deficiency of carbohydrate response element-binding protein (ChREBP) reduces lipogencsis as well as glycolysis. Proc Natl Acad Sci USA,2004, 101(19):7281-6.
    [43]lizuka, K., Miller, B. and Uyeda, K. Deficiency of carbohydrate-activated transcription factor ChREBP prevents obesity and improves plasma glucose control in leptin-deficient (ob/ob) mice. Am J Physiol Endocrinol Metab,2006,291(2):E358-64.
    [44]Dentin, R., Denechaud, P.D., Benhamed, F., et.al. Hepatic gene regulation by glucose and polyunsarurated fatty acids:a role for ChREBP. J Nutr,2006,136(5):1145-9.
    [45]Wang, H. and Wollheim, C.B. ChREBP rather than USF2 regulates glucose stimulation of endogenous L-pyruvate kinase expression in insulin-secreting cells. J Biol Chem,2002,277(36): 32746-52.
    [46]Cha, J.Y. and Repa, J.J. The liver X receptor (LXR) and hepatic lipogenesis. The carbohydrate-response element-binding protein is a target gene of LXR. J Biol Chem,2007, 282(1):743-51.
    [47]Dentin, R., Benhamed, F., Hainault, I., et.al. Liver-specific inhibition of ChREBP improves hepatic steatosis and insulin resistance in ob/ob mice. Diabetes,2006,55(8):2159-70.
    [48]Mitro, N., Mak, P.A., Vargas, L., et.al. The nuclear receptor LXR is a glucose sensor. Nature, 2007,445(7124):219-23.
    [49]Lazar, M.A. and Willson, T.M. Sweet dreams for LXR. Cell Metab,2007,5(3):159-61.
    [50]Denechaud, P.D., Bossard, P., Lobaccaro, J. M., et.al. ChREBP, but not LXRs, is required for the induction of glucose-regulated genes in mouse liver. J Clin Invest,2008,118(3):956-64.
    [51]lizuka, K. and Horikawa, Y. Regulation of lipogenesis via BHLHB2/DEC1 and ChREBP feedback looping. Biochem Biophys Res Commun,2008,374(1):95-100.
    [52]Sakiyama, H., Wynn, R.M., Lee, W.R., et.al. Regulation of nuclear import/export of carbohydrate response element-binding protein (ChREBP):interaction of an alpha-helix of ChREBP with the 14-3-3 proteins and regulation by phosphorylation. J Biol Chem,2008,283(36): 24899-908.
    [53]Bookout, A.L., Jeong, Y., Downes, M., Yu, et.al. Anatomical profiling of nuclear receptor expression reveals a hierarchical transcriptional network. Cell,2006,126(4):789-99.
    [54]Peet, D.J., Janowski, B.A. and Mangelsdorf, D.J. The LXRs:a new class of oxysterol receptors. Curr Opin Genet Dev,1998,8(5):571-5.
    [55]Lehmann, J.M., Kliewer, S.A., Moore, L.B., et.al. Activation of the nuclear receptor LXR by oxysterols defines a new hormone response pathway. J Biol Chem,1997,272(6):3137-40.
    [56]Schultz, J.R., Tu, H., Luk, A., Repa, J.J., et.al. Role of LXRs in control of lipogenesis. Genes Dcv,2000,14(22):2831-8.
    [57]Wente, W., Brenner, M. B., Zitzer, H., et.al. Activation of liver X receptors and retinoid X receptors induces growth arrest and apoptosis in insulin-secreting cells. Endocrinology,2007, 148(4):1843-9.
    [58]Choe, S.S., Choi, A.H., Lee, J.W., et.al. Chronic activation of liver X receptor induces beta-cell apoptosis through hyperactivation of lipogenesis:liver X receptor-mediated lipotoxicity in pancreatic beta-cells. Diabetes,2007,56(6):1534-43.
    [59]Joseph, S.B., Laffitte, B.A., Patel, P.H., et.al. Direct and indirect mechanisms for regulation of fatty acid synthase gene expression by liver X receptors. J Biol Chem,2002,277(13):11019-25.
    [60]Chu, K., Miyazaki, ML, Man, W.C., et.al. Stearoyl-coenzyme A desaturase 1 deficiency protects against hypertriglyceridemia and increases plasma high-density lipoprotein cholesterol induced by liver X receptor activation. Mol Cell Biol,2006,26(18):6786-98.
    [61]Zhou, J., Febbraio, M., Wada, T., et.al. Hepatic fatty acid transporter Cd36 is a common target of LXR, PXR, and PPARgamma in promoting steatosis. Gastroenterology,2008,134(2):556-67.
    [62]Brown, M.S. and Goldstein, J.L. The SREBP pathway:regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell,1997,89(3):331-40.
    [63]Sparrow, C.P., Baffic, J., Lam, M.H., et.al. A potent synthetic LXR agonist is more effective than cholesterol loading at inducing ABCA1 mRNA and stimulating cholesterol efflux. J Biol Chem, 2002,277(12):10021-7.
    [64]Yoshikawa, T., Shimano, H., Amemiya-Kudo, M., et.al. Identification of liver X receptor-retinoid X receptor as an activator of the sterol regulatory element-binding protein 1c gene promoter. Mol Cell Biol,2001,21(9):2991-3000.
    [65]Peet, D.J., Turley, S.D., Ma, W., et.al. Cholesterol and bile acid metabolism are impaired in mice lacking the nuclear oxysterol receptor LXR alpha. Cell,1998,93(5):693-704.
    [66]Alberti, S., Schuster, G., Parini, P., et.al. Hepatic cholesterol metabolism and resistance to dietary cholesterol in LXRbeta-deficient mice. J Clin Invest,2001,107(5):565-73.
    [67]Zhang, Y., Repa, J.J., Gauthier, K., et.al. Regulation of lipoprotein lipase by the oxysterol receptors, LXRalpha and LXRbeta. J Biol Chem,2001,276(46):43018-24.
    [68]Kaestner, K.H., Knochel, W. and Martinez, D.E. Unified nomenclature for the winged helix/forkhead transcription factors. Genes Dev,2000,14(2):142-6.
    [69]Barthel, A., Schmoll, D. and Unterman, T.G. FoxO proteins in insulin action and metabolism. Trends Endocrinol Metab,2005,16(4):183-9.
    [70]Furuyama, T., Kitayama, K., Yamashita, H., et.al. Forkhead transcription factor FOXO1 (FKHR)-dependent induction of PDK4 gene expression in skeletal muscle during energy deprivation. Biochem J,2003,375(Pt 2):365-71.
    [71]Zhang, W., Patil, S., Chauhan, B., et.al. FoxO1 regulates multiple metabolic pathways in the liver: effects on gluconeogenic, glycolytic, and lipogenic gene expression. J Biol Chem,2006,281(15): 10105-17.
    [72]Bastie, C.C., Nahle, Z., McLoughlin, T., et.al. FoxO1 stimulates fatty acid uptake and oxidation in muscle cells through CD36-dependent and-independent mechanisms. J Biol Chem,2005, 280(14):14222-9.
    [73]Altomonte, J., Cong, L., Harbaran, S., et.al. Foxol mediates insulin action on apoC-Ⅲ and triglyceride metabolism. J Clin Invest,2004,114(10):1493-503.
    [74]Accili, D. and Arden K.C. FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell,2004,117(4):421-6.
    [75]Olofsson, S.O., Stillemark-Billton, P. and Asp, L. Intracellular assembly of VLDL:two major steps in separate cell compartments. Trends Cardiovasc Med,2000,10(8):338-45.
    [76]Kamagate, A., Qu, S., Perdomo, G., et.al. FoxO1 mediates insulin-dependent regulation of hepatic VLDL production in mice. J Clin Invest,2008,118(6):2347-64.
    [77]Hussain, M.M., Shi, J. and Dreizen, P. Microsomal triglyceride transfer protein and its role in apoB-lipoprotein assembly. J Lipid Res,2003,44(1):22-32.
    [78]Taghibiglou, C, Rudy, D., Van Iderstine, S.C., et.al. Intracellular mechanisms regulating apoB-containing lipoprotein assembly and secretion in primary hamster hepatocytes. J Lipid Res, 2000,41(4):499-513.
    [79]Wetterau, J.R., Lin, M.C. and Jamil, H. Microsomal triglyceride transfer protein. Biochim Biophys Acta,1997,1345(2):136-50.
    [80]Tietge, U.J., Bakillah, A., Maugeais, C, et.al. Hepatic overexpression of microsomal triglyceride transfer protein (MTP) results in increased in vivo secretion of VLDL triglycerides and apolipoprotein B. J Lipid Res,1999,40(11):2134-9.
    [81]Mason, T.M. The role of factors that regulate the synthesis and secretion of very-low-density lipoprotein by hepatocytes. Crit Rev Clin Lab Sci,1998,35(6):461-87.
    [82]Liao, W., Hui, T. Y., Young, S. G., et.al. Blocking microsomal triglyceride transfer protein interferes with apoB secretion without causing retention or stress in the ER. J Lipid Res,2003, 44(5):978-85.
    [83]Charlton, M., Sreekumar, R., Rasmussen, D., et.al. Apolipoprotein synthesis in nonalcoholic steatohepatitis. Hepatology,2002,35(4):898-904.
    [84]Magnusson, B., Asp, L., Bostrom, P., et.al. Adipocyte differentiation-related protein promotes fatty acid storage in cytosolic triglycerides and inhibits secretion of very low-density lipoproteins. Arterioscler Thromb Vasc Biol,2006,26(7):1566-71.
    [85]Bremmer, D.R., Bertics, S.J., Besong, S.A., et.al. Changes in hepatic microsomal triglyceride transfer protein and triglyceride in periparturient dairy cattle. J Dairy Sci,2000,83(10):2252-60.
    [86]Perlemuter, G., Sabile, A., Letteron, P., et.al. Hepatitis C virus core protein inhibits microsomal triglyceride transfer protein activity and very low density lipoprotein secretion:a model of viral-related steatosis. FASEB J,2002,16(2):185-94.
    [87]Bremmer, D.R.,Trower, S.L., Bertics,S.J., et.al. Etiology of fatty liver in dairy cattle:effects of nutritional and hormonal status on hepatic microsomal triglyceride transfe protein. J Dairy Sci, 1999,83(10):2239-2251.
    [88]Au, W.S., Kung, H.F.and Lin, M.C. Regulation of microsomal triglyceride transfer protein gene by insulin in HepG2 cells:roles of MAPKerk and MAPKp38. Diabetes,2003,52(5):1073-80.
    [89]Lin, M.C, Arbeeny, C, Bergquist, K., et.al. Cloning and regulation of hamster microsomal triglyceride transfer protein. The regulation is independent from that of other hepatic and intestinal proteins which participate in the transport of fatty acids and triglycerides. J Biol Chem, 1994,269(46):29138-45.
    [90]Farese, R.V., Jr., Cases, S. and Smith, S.J. Triglyceride synthesis:insights from the cloning of diacylglycerol acyltransferase. Curr Opin Lipidol,2000,11(3):229-34.
    [91]Chen, H.C. and Farese, R.V., Jr. Inhibition of triglyceride synthesis as a treatment strategy for obesity:lessons from DGAT1-deficient mice. Arterioscler Thromb Vasc Biol,2005,25(3):482-6.
    [92]Monetti, M., Levin, M.C, Watt, M.J., et.al. Dissociation of hepatic steatosis and insulin resistance in mice overexpressing DGAT in the liver. Cell Metab,2007,6(1):69-78.
    [93]Stone, S.J., Myers, H.M., Watkins, S.M., et.al. Lipopenia and skin barrier abnormalities in DGAT2-deficient mice. J Biol Chem,2004,279(12):11767-76.
    [94]Tsai, J., Qiu, W., Kohen-Avramoglu, R., et.al. MEK-ERK inhibition corrects the defect in VLDL assembly in HepG2 cells:potential role of ERK in VLDL-ApoB100 particle assembly. Arterioscler Thromb Vasc Biol,2007,27(1):211-8.
    [95]Yamazaki, T., Sasaki, E., Kakinuma, C, et.al. Increased very low density lipoprotein secretion and gonadal fat mass in mice overexpressing liver DGAT1. J Biol Chem,2005,280(22): 21506-14.
    [96]Millar, J.S., Stone, S.J., Tietge, U.J., et.al. Short-term overexpression of DGAT1 or DGAT2 increases hepatic triglyceride but not VLDL triglyceride or apoB production. J Lipid Res,2006, 47(10):2297-305.
    [97]Levin, M.C, Monetti, M., Watt, M.J., et.al. Increased lipid accumulation and insulin resistance in transgenic mice expressing DGAT2 in glycolytic (type Ⅱ) muscle. Am J Physiol Endocrinol Metab,2007,293(6):E1772-81.
    [98]Waterman, I.J., Price, N.T. and Zammit, V.A. Distinct ontogenic patterns of overt and latent DGAT activities of rat liver microsomes. J Lipid Res,2002,43(9):1555-62.
    [99]Liang, J.J., Oelkers, P., Guo, C, et.al. Overexpression of human diacylglycerol acyltransferase 1, acyl-coa:cholesterol acyltransferase 1, or acyl-CoA:cholesterol acyltransferase 2 stimulates secretion of apolipoprotein B-containing lipoproteins in McA-RH7777 cells. J Biol Chem,2004, 279(43):44938-44.
    [100]Bensadoun, A. Lipoprotein lipase. Annu Rev Nutr,1991,11:217-37.
    [101]Shelness, G.S. and Sellers, J.A. Very-low-density lipoprotein assembly and secretion. Curr Opin Lipidol,2001,12(2):151-7.
    [102]Kasim, S., Hennessy, M. and Crowley, J. Persistent fainting after implantation of a "curative" pacemaker. N Engl J Med,2009,360(1):88-9.
    [103]Saera-Vila, A., Calduch-Giner, J.A.. Gomez-Requeni, P., et.al. Molecular characterization of gilthead sea bream (Sparus aurata) lipoprotein lipase. Transcriptional regulation by season and nutritional condition in skeletal muscle and fat storage tissues. Comp Biochem Physiol B Biochem Mol Biol,2005,142(2):224-32.
    [104]Richard, N., Kaushik, S., Larroquet, L., et.al. Replacing dietary fish oil by vegetable oils has little effect on lipogenesis, lipid transport and tissue lipid uptake in rainbow trout (Oncorhynchus mykiss). Br J Nutr,2006,96(2):299-309.
    [105]Sato, K., Seol, H.S. and Kamada, T. Tissue distribution of lipase genes related to triglyceride metabolism in laying hens (Gallus gallus). Comp Biochem Physiol B Biochem Mol Biol,2010, 155(1):62-6.
    [106]Sato, H., Ueki, M., Asaga, T., et.al. D-ribose attenuates ischemia/reperfusion-induced renal injury by reducing neutrophil activation in rats. Tohoku J Exp Med,2009,218(1):35-40.
    [107]Sato, K. and Akiba, Y. Lipoprotein lipase mRNA expression in abdominal adipose tissue is little modified by age and nutritional state in broiler chickens. Poult Sci,2002,81(6):846-52.
    [108]Smar, M.C., Dedoussis, G., Louizou E., et.al., APOE, CETP and LPL genes show strong association with lipid levels in Greek children. Nutr Metab Cardiovasc Dis,2010,20(1):26-33.
    [109]Ong, J.M., Kirchgessner, T.G., et.al. Insulin increases the synthetic rate and messenger RNA level of lipoprotein lipase in isolated rat adipocytes. J Biol Chem,1988,263(26):12933-8.
    [110]Picard, F., Naimi, N., Richard, D., et.al. Response of adipose tissue lipoprotein lipase to the cephalic phase of insulin secretion. Diabetes,1999,48(3):452-9.
    [111]Gorski, J. and Stankiewicz-Choroszucha, B. The effect of hormones on lipoprotein lipase activity in skeletal muscles of the rat. Horm Metab Res,1982,14(4):189-91.
    [112]Sadur, C.N., Yost, T.J.and Eckel, R.H. Fat feeding decreases insulin responsiveness of adipose tissue lipoprotein lipase. Metabolism,1984,33(11):1043-7.
    [113]Yki-Jarvinen, H., Taskinen, M. R., Koivisto, V. A., et.al. Response of adipose tissue lipoprotein lipase activity and serum lipoproteins to acute hyperinsulinaemia in man. Diabetologia,1984, 27(3):364-9.
    [114]Granneman, J.G. and Wade, G.N. Effect of sucrose overfeeding on brown adipose tissue lipogenesis and lipoprotein lipase activity in rats. Metabolism,1983,32(2):202-7.
    [115]Erskine, J.M., Jensen, D.R. and Eckel, R.H. Macronutrient regulation of lipoprotein lipase is posttranslational. J Nutr,1994,124(4):500-7.
    [116]Sartippour, M.R. and Renier, G. Differential regulation of macrophage peroxisome proliferator-activated receptor expression by glucose:role of peroxisome proliferator-activated receptors in lipoprotein lipase gene expression. Arterioscler Thromb Vasc Biol,2000,20(1): 104-10.
    [117]Schoonjans, K., Gelman, L, Haby, C, et.al. Induction of LPL gene expression by sterols is mediated by a sterol regulatory element and is independent of the presence of multiple E boxes. J Mol Biol,2000,304(3):323-34.
    [118]Fournier, E., Peresson, R., Guy, G., et.al. Relationships between storage and secretion of hepatic lipids in two breeds of geese with different susceptibility to liver steatosis. Poult Sci,1997.76(4): 599-607.
    [119]Hermier, D., Guy, G., Guillaumin, S., et.al. Differential channelling of liver lipids in relation to susceptibility to hepatic steatosis in two species of ducks. Comp Biochem Physiol B Biochem Mol Biol,2003,135(4):663-75.
    [120]Bogin, E., Avidar, Y., Merom, M., et.al. Biochemical changes associated with fatty liver in geese. Avian Pathol,1984.13(4):683-701.
    [121]Liu, X.Y., He, R.G. and Huang, C.S. Hepatic Lipogenesis Associated with Biochemical Changes in Overfed Landaise Geese and China Xupu Geese. Agriculture Science in China,2006(5): 390-396.
    [122]Zhao, A., Tang, H., Lu, S., et.al. Identification of a differentially-expressed gene in fatty liver of overfeeding geese. Acta Biochim Biophys Sin (Shanghai),2007,39(9):649-56.
    [123]Davail, S., Guy, G., Andre, J., et.al. Metabolism in two breeds of geese with moderate or large overfeeding induced liver-steatosis. Comp Biochem Physiol A Mol Integr Physiol,2000,126(1): 91-9.
    [124]Hermier, D., Salichon, M.R., Guy, G., et.al. Differential channelling of liver lipids in relation to susceptibility to hepatic steatosis in the goose. Poult Sci,1999,78(10):1398-406.
    [125]Davail, S., Rideau, N., Guy, G., et.al. Hormonal and metabolic responses to overfeeding in three genotypes of ducks. Comp Biochem Physiol A Mol Integr Physiol,2003,134(4):707-15.
    [126]Lane, M.D., Flores-Riveros, J.R., Hresko, R.C., et.al. Insulin-receptor tyrosine kinase and glucose transport. Diabetes Care,1990,13(6):565-75.
    [127]Nakae, J. and Accili, D. The mechanism of insulin action. J Pediatr Endocrinol Metab,1999,12 Suppl 3:721-31.
    [128]Griffin, M.J. and Sul, H.S. Insulin regulation of fatty acid synthase gene transcription:roles of USF and SREBP-lc. IUBMB Life,2004,56(10):595-600.
    [129]Shimomura,1., Bashmakov, Y., Ikemoto, S., et.al. Insulin selectively increases SREBP-1c mRNA in the livers of rats with streptozotocin-induced diabetes. Proc Natl Acad Sci USA,1999,96(24): 13656-61.
    [130]Chen, G., Liang, G., Ou, J., et.al. Central role for liver X receptor in insulin-mediated activation of Srebp-lc transcription and stimulation of fatty acid synthesis in liver. Proc Natl Acad Sci U S A,2004,101(31):11245-50.
    [131]Kim, J.B., Sarraf, P., Wright, M., et.al. Nutritional and insulin regulation of fatty acid synthetase and leptin gene expression through ADD1/SREBP1. J Clin Invest,1998,101(1):1-9.
    [132]Foretz, M., Guichard, C, Ferre, P., et.al. Sterol regulatory element binding protein-1c is a major mediator of insulin action on the hepatic expression of glucokinase and lipogenesis-related genes. Proc Natl Acad Sci USA,1999,96(22):12737-42.
    [133]Lam, T.K., Carpentier, A., Lewis, G.F., et.al. Mechanisms of the free fatty acid-induced increase in hepatic glucose production. Am J Physiol Endocrinol Metab,2003,284(5):E863-73.
    [134]Halaas, J.L., Gajiwala, K.S., Maffei, M., et.al. Weight-reducing effects of the plasma protein encoded by the obese gene. Science,1995,269(5223):543-6.
    [135]Yahagi, N., Shimano, H., Hasty, A.H., et.al. Absence of sterol regulatory element-binding protein-1 (SREBP-1) ameliorates fatty livers but not obesity or insulin resistance in Lep(ob)/Lep(ob) mice. J Biol Chem,2002,277(22):19353-7.
    [136]Lu, J.X., Yang, G.S. and Chen, F.F. Effect of insulin on transcription of lipogenic and lipolytic-related genes and lipid metabolism in primary porcine adipocytes. Chinese Journal of Agricultural Biotechnology,2006,14(1):11-16.
    [137]Moustaid, N., Beyer, R.S. and Sul, H.S. Identification of an insulin response element in the fatty acid synthase promoter. J Biol Chem,1994,269(8):5629-34.
    [138]Mao, J., Chirala, S.S. and Wakil, S.J. Human acetyl-CoA carboxylase 1 gene:presence of three promoters and heterogeneity at the 5'-untranslated mRNA region. Proc Natl Acad Sci USA, 2003,100(13):7515-20.
    [139]Thampy, G.K., Haas, M.J. and Mooradian, A.D. Troglitazone stimulates acetyl-CoA carboxylase activity through a post-translational mechanism. Life Sci,2000,68(6):699-708.
    [140]Hillgartner, F.B., Salad, L.M. and Goodridge, A.G. Physiological and molecular mechanisms involved in nutritional regulation of fatty acid synthesis. Physiol Rev,1995,75(1):47-76.
    [141]McDevitt, R.M., Bott, S.J., Harding, M., et.al. De novo lipogenesis during controlled overfeeding with sucrose or glucose in lean and obese women. Am J Clin Nutr,2001.74(6):737-46.
    [142]Hermier, D., Rousselot-Pailley, D., Peresson, R., et.al. Influence of orotic acid and estrogen on hepatic lipid storage and secretion in the goose susceptible to liver steatosis. Biochim Biophys Acta,1994,1211(1):97-106.
    [143]Edwards, P. A., Tabor, D., Kast, H. R., et.al. Regulation of gene expression by SREBP and SCAP. Biochim Biophys Acta,2000,1529(1-3):103-13.
    [144]Matsuzaka, T., Shimano, H., Yahagi, N., et.al. Insulin-independent induction of sterol regulatory clement-binding protein-lc expression in the livers of streptozotocin-treated mice. Diabetes,2004, 53(3):560-9.
    [145]Koo, S.H., Dutcher, A.K. and Towle, H.C. Glucose and insulin function through two distinct transcription factors to stimulate expression of lipogenic enzyme genes in liver. J Biol Chem, 2001,276(12):9437-45.
    [146]Maury, J., Issad, T., Perdereau, D., et.al. Effect of acarbose on glucose homeostasis, lipogenesis and lipogenic enzyme gene expression in adipose tissue of weaned rats. Diabetologia,1993,36(6): 503-9.
    [147]孔悦,张冰,刘小青,等.高甘油三酯高血糖血症大鼠糖代谢相关酶活性变化的实验研究.中国现代医学杂志,2006,16(23):3542-3545.
    [148]Ferre, P. Regulation of gene expression by glucose. Proc Nutr Soc,1999,58(3):621-3.
    [149]Vaulont, S. and Kahn, A. Transcriptional control of metabolic regulation genes by carbohydrates. FASEB J,1994,8(1):28-35.
    [150]Spence, J.T. and Pitot, H.C. Induction of lipogenic enzymes in primary cultures of rat hepatocytes. Relationship between lipogenesis and carbohydrate metabolism. Eur J Biochem,1982,128(1): 15-20.
    [151]Coupe, C, Perdereau, D., Ferre, P., et.al. Lipogenic enzyme activities and mRNA in rat adipose tissue at weaning. Am J Physiol,1990,258(1 Pt 1):E126-33.
    [152]Iritani, N., Nishimoto, N., Katsurada, A., et.al. Regulation of hepatic lipogenic enzyme gene expression by diet quantity in rats fed a fat-free, high carbohydrate diet. J Nutr,1992,122(1): 28-36.
    [153]黄童玉,Bryer-Ash.M.球形脂联素/葡萄糖和游离脂肪酸对胰岛β细胞单磷酸腺苷激活的蛋白激酶和乙酰辅酶A羧化酶磷酸化的影响.北京大学学报(医学版),2006,38(6):609-613.
    [154]Kersten, S. Mechanisms of nutritional and hormonal regulation of lipogenesis. EMBO Rep,2001, 2(4):282-6.
    [155]Foufelle, F., Lepetit, N., Bosc, D., et.al. DNase I hypersensitivity sites and nuclear protein binding on the fatty acid synthase gene:identification of an element with properties similar to known glucose-responsive elements. Biochem J,1995,308 (Pt 2):521-7.
    [156]Brown, A.M. and Gibbons, G.F. Insulin inhibits the maturation phase of VLDL assembly via a phosphoinositide 3-kinase-mediated event. Arterioscler Thromb Vase Biol,2001,21(10): 1656-61.
    [157]Lin, M.C., Gordon, D. and Wetterau, J.R. Microsomal triglyceride transfer protein (MTP) regulation in HepG2 cells:insulin negatively regulates MTP gene expression. J Lipid Res,1995, 36(5):1073-81.
    [158]Rosalind, A.C. and Douglas, P.L. Enzymes of triacylglycerol synthesis and their regulation. Progress in lipid research,2003(43):134-176.
    [159]Bonnet, M., Leroux, C, Faulconnier, Y., et.al. Lipoprotein lipase activity and mRNA are up-regulated by refeeding in adipose tissue and cardiac muscle of sheep. J Nutr,2000,130(4): 749-56.
    [160]Spurlock, M.E., Ji, S.Q., Godat, R.L., et.al. Changes in the expression of uncoupling proteins and lipases in porcine adipose tissue and skeletal muscle during feed deprivation*(1). J Nutr Biochem, 2001,12(2):81-87.
    [161]Hagan, D.L., Kienzle, B., Jamil, H., et.al. Transcriptional regulation of human and hamster microsomal triglyceride transfer protein genes. Cell type-specific expression and response to metabolic regulators. J Biol Chem,1994,269(46):28737-44.
    [162]Chanson, N.F., Lontie, J.F., Gulik, A., et.al. LDL binding to lipid emulsion particles:effects of incubation duration, temperature, and addition of plasma subfractions. Lipids,2002,37(6): 573-80.
    [163]Smith, T.R., Hippen, A.R., Beitz, D.C., et.al. Metabolic characteristics of induced ketosis in normal and obese dairy cows. J Dairy Sci,1997,80(8):1569-81.
    [164]Hippen, A.R., She, P., Young, J. W., et.al. Alleviation of fatty liver in dairy cows with 14-day intravenous infusions of glucagon. J Dairy Sci,1999,82(6):1139-52.
    [165]Sparks, J.D. and Sparks, C.E. Insulin modulation of hepatic synthesis and secretion of apolipoprotein B by rat hepatocytes. J Biol Chem,1990,265(15):8854-62.
    [166]Durrington, P.N., Newton, R. S., Weinstein, D. B., et.al. Effects of insulin and glucose on very low density lipoprotein triglyceride secretion by cultured rat hepatocytes. J Clin Invest,1982, 70(1):63-73.
    [167]Geelen, M.J., Beynen, A.C., Christiansen, R.Z., et.al. Short-term effects of insulin and glucagon on lipid synthesis in isolated rat hepatocytes.Covariance of acetyl-CoA carboxylase activity and rate of 3H20 incorporation into fatty acids. Letts,1978(95):326-330.
    [168]Alberti, K.G., Johnston, D.G., Gill, A., et.al. Hormonal regulation of ketone-body metabolism in man. Biochem Soc Symp,1978(43):163-82.
    [169]Gibbons, G.F. Assembly and secretion of hepatic very-low-density lipoprotein. Biochem J,1990, 268(1):1-13.
    [170]Lewis, G.F. and Steiner, G. Acute effects of insulin in the control of VLDL production in humans. Implications for the insulin-resistant state. Diabetes Care,1996,19(4):390-3.
    [171]Chirieac, D.V., Chirieac, L. R., Corsetti, J. P., et.al. Glucose-stimulated insulin secretion suppresses hepatic triglyceride-rich lipoprotein and apoB production. Am J Physiol Endocrinol Metab,2000,279(5):E1003-11.
    [172]孙玉成.围产期奶牛肝VLDL组装与分泌主要相关蛋白基因表达的调控.[博士论文].吉林大学,2006.
    [173]Ameen, C, Edvardsson, U., Ljungberg, A., et.al. Activation of peroxisome proliferator-activated receptor alpha increases the expression and activity of microsomal triglyceride transfer protein in the liver. J Biol Chem,2005,280(2):1224-9.
    [174]Rothnie, A., Theron, D., Soceneantu, L, et.al. The importance of cholesterol in maintenance of P-glycoprotein activity and its membrane perturbing influence. Eur Biophys J,2001,30(6): 430-42.
    [175]Opekarova, M. and Tanner, W. Specific lipid requirements of membrane proteins--a putative bottleneck in heterologous expression. Biochim Biophys Acta,2003,1610(1):11-22.
    [176]Fungwe, T.V., Fox, J. E., Cagen, L. M., et.al. Stimulation of fatty acid biosynthesis by dietary cholesterol and of cholesterol synthesis by dietary fatty acid. J Lipid Res,1994,35(2):311-8.
    [177]王玉明,薛长湖.胆固醇影响大鼠脂肪代谢的机制研究.营养学报,2007,29(6):530-534.
    [178]Fukuda, N. and Ontko, J.A. Interactions between fatty acid synthesis, oxidation, and esterification in the production of triglyceride-rich lipoproteins by the liver. J Lipid Res,1984,25(8):831-42.
    [179]Knight, B.L., Hebbachi, A., Hauton, D., et al. A role for PPARalpha in the control of SREBP activity and lipid synthesis in the liver. Biochem J,2005,389(Pt 2):413-21.
    [180]Brandebourg, T.D. and Hu, C.Y. Regulation of differentiating pig preadipocytes by retinoic acid. J Anim Sci,2005,83(1):98-107.
    [181]Moriyama, T., Sather, S.K., McGee, T.P., et.al. Degradation of HMG-CoA reductase in vitro. Cleavage in the membrane domain by a membrane-bound cysteine protease. J Biol Chem,1998, 273(34):22037-43.
    [182]Marseille-Tremblay, C, Gravel, A., Lafond, J., et.al.. Effect of an enriched cholesterol diet during gestation on fatty acid synthase, HMG-CoA reductase and SREBP-1/2 expressions in rabbits. Life Sci,2007,81(9):772-8.
    [183]Khan, B.V., Fungwe, T.V., Wilcox, H.G., et al. Cholesterol is required for the secretion of the very-low-density lipoprotein:in vivo studies. Biochim Biophys Acta,1990,1044(3):297-304.
    [184]Stone, B.G., Schreiber, D., Alleman, L.D., et.al. Hepatic metabolism and secretion of a cholesterol-enriched lipoprotein fraction. J Lipid Res,1987,28(2):162-72.
    [185]Albrecht, W., Kahnt, F. W., Neher, R., et.al. The Effect of Short-Term Cholesterol Feeding on the Development of Aortic Atheromatosis in the Rabbit.2. The Influence of Hypercholesterolaemia on Adrenal Function. J Atheroscler Res,1965,5:369-78.
    [186]Kosykh, V.A., Preobrazhensky, S. N., Fuki, I. V., et.al. Cholesterol can stimulate secretion of apolipoprotein B by cultured human hepatocytes. Biochim Biophys Acta,1985,836(3):385-9.
    [187]Bennett, A.J., Bruce, J. S., Salter, A. M., et al. Hepatic microsomal triglyceride transfer protein messenger RNA concentrations are increased by dietary cholesterol in hamsters. FEBS Lett,1996, 394(3):247-50.
    [188]Kroon, P.A., DeMartino, J. A., Thompson, G. M., et.al. Molecular cloning of partial cDNAs for rabbit liver apolipoprotein B and the regulation of its mRNA levels by dietary cholesterol. Proc Natl Acad Sci USA,1986,83(14):5071-5.
    [189]Saswata, T. and Bradley, H. The mechanisms mediate the activation of acetyl-coenzyme Acarboxylase gene transcription by the liver X receptor agonist T-0901317. J Lipid Res,2006(47): 2451-2461.
    [190]Yue, L, Ye, F., Gui, C, et.al. Ligand-binding regulation of LXR/RXR and LXR7PPAR heterodimerizations:SPR technology-based kinetic analysis correlated with molecular dynamics simulation. Protein Sci,2005,14(3):812-22.
    [191]Repa, J.J., Liang, G., Ou, J., et.al. Regulation of mouse sterol regulatory element-binding protein-lc gene (SREBP-lc) by oxysterol receptors, LXRalpha and LXRbeta. Genes Dev,2000, 14(22):2819-30.
    [192]Hu, T., Foxworthy, P., Siesky, A., et.al. Hepatic peroxisomal fatty acid beta-oxidation is regulated by liver X receptor alpha. Endocrinology,2005,146(12):5380-7.
    [193]Matsuda, M., Korn, B. S., Hammer, R. E., et.al. SREBP cleavage-activating protein (SCAP) is required for increased lipid synthesis in liver induced by cholesterol deprivation and insulin elevation. Genes Dev,2001,15(10):1206-16.
    [194]Repa, J.J. and Mangelsdorf, D.J. The liver X receptor gene team:potential new players in atherosclerosis. Nat Med,2002,8(11):1243-8.
    [195]Bobard, A., Hainault, I., Ferre, P., et.al. Differential regulation of sterol regulatory element-binding protein 1c transcriptional activity by insulin and liver X receptor during liver development. J Biol Chem,2005,280(1):199-206.
    [196]Ou, J., Tu, H., Shan, B., et.al. Unsaturated fatty acids inhibit transcription of the sterol regulatory element-binding protein-lc (SREBP-1c) gene by antagonizing ligand-dependent activation of the LXR. Proc Natl Acad Sci U S A,2001,98(11):6027-32.
    [197]刘伟志,叶飞,岳莉多.核受体LXRα靶基因研究进展.世界科技研究与发展,2003,25(6):51-54.
    [198]Chisholm, J.W., Hong, J., Mills, S. A., et.al. The LXR ligand T0901317 induces severe lipogenesis in the db/db diabetic mouse. J Lipid Res,2003,44(11):2039-48.
    [199]Juvet, L.K., Andresen, S. M., Schuster, G. U., et.al. On the role of liver X receptors in lipid accumulation in adipocytes. Mol Endocrinol,2003,17(2):172-82.
    [200]Laffitte, B.A., Repa, J. J., Joseph, S. B., et.al. LXRs control lipid-inducible expression of the apolipoprotein E gene in macrophages and adipocytes. Proc Natl Acad Sci USA,2001,98(2): 507-12.
    [201]Costet, P., Luo, Y., Wang, N., et.al. Sterol-dependent transactivation of the ABC1 promoter by the liver X receptor/retinoid X receptor. J Biol Chem,2000,275(36):28240-5.
    [202]Schwartz, K., Lawn, R.M. and Wade, D.P. ABC1 gene expression and ApoA-1-mediated cholesterol efflux are regulated by LXR. Biochem Biophys Res Commun,2000,274(3):794-802.
    [203]Schmitz, G., Langmann, T. and Heimerl, S. Role of ABCG1 and other ABCG family members in lipid metabolism. J Lipid Res,2001,42(10):1513-20.
    [204]Oram, J.F., Lawn, R. M., Garvin, M. R., et.al. ABCA1 is the cAMP-inducible apolipoprotein receptor that mediates cholesterol secretion from macrophages. J Biol Chem,2000,275(44): 34508-11.
    [205]Hayek, T., Masucci-Magoulas, L., Jiang, X., et.al. Decreased early atherosclerotic lesions in hypertriglyceridemic mice expressing cholesteryl ester transfer protein transgene. J Clin Invest, 1995,96(4):2071-4.
    [206]Luo, Y. and Tall, A.R. Sterol upregulation of human CETP expression in vitro and in transgenic mice by an LXR element. J Clin Invest,2000,105(4):513-20.
    [207]Basciano, H., Miller, A., Baker, C, et.al. LXRalpha activation perturbs hepatic insulin signaling and stimulates production of apolipoprotein B-containing lipoproteins. Am J Physiol Gastrointest Liver Physiol,2009,297(2):G323-32.
    [208]Grefhorst, A. and Parks, E.J. Reduced insulin-mediated inhibition of VLDL secretion upon pharmacological activation of the liver X receptor in mice. J Lipid Res,2009,50(7):1374-83.
    [209]Hermier, D. Lipoprotein metabolism and fattening in poultry. J Nutr,1997,127(5 Suppl): 805S-808S.
    [210]刘中华.鹅正常肝脏与肥肝差异表达蛋白质检测与分析.[硕士学位论文].扬州,扬州大学,2008.
    [211]Miyahara, T., Schrum, L., Rippe, R., et.al. Peroxisome proliferator-activated receptors and hepatic stellate cell activation. J Biol Chem,2000,275(46):35715-22.
    [212]徐国庆.鹅肥肝中差异表达基因的筛选及分析.[硕士学位论文].扬州,扬州大学,2008.
    [213]Pearce, J. Some differences between avian and mammalian biochemistry. Biochem Int,1977(8): 269-279.
    [214]Postic, C. and Girard, J. Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance:lessons from genetically engineered mice. J Clin Invest,2008,118(3):829-38.
    [215]Gutierrez-Juarez, R., Pocai, A., Mulas, C, etal. Critical role of stearoyl-CoA desaturase-1 (SCD1) in the onset of diet-induced hepatic insulin resistance. J Clin Invest,2006,116(6):1686-95.
    [216]Savage, D.B., Choi, C. S., Samuel, V. T., etal. Reversal of diet-induced hepatic steatosis and hepatic insulin resistance by antisense oligonucleotide inhibitors of acetyl-CoA carboxylases 1 and 2. J Clin Invest,2006,116(3):817-24.
    [217]Foufelle, F. and Ferre, P. New perspectives in the regulation of hepatic glycolytic and lipogenic genes by insulin and glucose:a role for the transcription factor sterol regulatory element binding protein-1c. Biochem J,2002,366(Pt 2):377-91.
    [218]Auwerx, J., Leroy, P. and Schoonjans, K. Lipoprotein lipase:recent contributions from molecular biology. Crit Rev Clin Lab Sci,1992,29(3-4):243-68.
    [219]Zechner, R. The tissue-specific expression of lipoprotein lipase:implications for energy and lipoprotein metabolism. CurrOpin Lipidol,1997,8(2):77-88.
    [220]Watanabe, Y., Jiang, S., Takabe, W., et.al. Expression of the LXRalpha protein in human atherosclerotic lesions. Arterioscler Thromb Vasc Biol,2005,25(3):622-7.
    [221]Laffitte, B.A., Chao, L. C, Li, J., et.al. Activation of liver X receptor improves glucose tolerance through coordinate regulation of glucose metabolism in liver and adipose tissue. Proc Natl Acad Sci U S A,2003,100(9):5419-24.
    [222]Grefhorst, A., van Dijk, T. H., Hammer, A., et.al. Differential effects of pharmacological liver X receptor activation on hepatic and peripheral insulin sensitivity in lean and ob/ob mice. Am J Physiol Endocrinol Metab,2005,289(5):E829-38.
    [223]Locsmandi, L, Hegedus, G., Andrassy-Baka, G., et.al. Following the goose liver development by means of cross-sectional digital imaging, liver histology and blood biochemical parameters. Acta Biol Hung,2007,58(1):35-48.
    [224]Janan, J., Bodi, L., Agota, G., et.al. Relationships between force-feeding and some physiological parameters in geese bred for fatty liver. Acta Vet Hung,2000,48(1):89-97.
    [225]Girard, J., Ferre, P. and Foufelle, F. Mechanisms by which carbohydrates regulate expression of genes for glycolytic and lipogenic enzymes. Annu Rev Nutr,1997,17:325-52.
    [226]Decaux, J.F., Marcillat, O., Pichard, A. L., et.al. Glucose-dependent and-independent effect of insulin on gene expression. J Biol Chem,1991,266(6):3432-8.
    [227]Prip-Buus, C, Perdereau, D., Foufelle, F., et.al. Induction of fatty-acid-synthase gene expression by glucose in primary culture of rat hepatocytes. Dependency upon glucokinase activity. Eur J Biochem,1995,230(1):309-15.
    [228]Den Boer, M.A., Voshol, P. J., Kuipers, F., et.al. Hepatic glucose production is more sensitive to insulin-mediated inhibition than hepatic VLDL-triglyceride production. Am J Physiol Endocrinol Metab,2006,291(6):E1360-4.
    [229]Lewis, G.F., Uffelman, K. D., Szcto, L. W., et.al. Interaction between free fatty acids and insulin in the acute control of very low density lipoprotein production in humans. J Clin Invest,1995, 95(1):158-66.
    [230]Cortez-Pinto, H., Lin, H., Yang, S., et.al. Lipids up-regulate uncoupling protein 2 expression in rat hepatocytes. Gastroenterology,1999.116(5):1184-93.
    [231]Smith, M.R., Lee, H. and Nathan, D.M. Insulin sensitivity during combined androgen blockade for prostate cancer. J Clin Endocrinol Metab,2006,91(4):1305-8.
    [232]Choi, S.S. and Diehl, A.M. Hepatic triglyceride synthesis and nonalcoholic fatty liver disease. CurrOpin Lipidol,2008,19(3):295-300.
    [233]Azzout-Marniche, D., Becard, D., Guichard, C, et.al. Insulin effects on sterol regulatory-element-binding protein-lc (SREBP-lc) transcriptional activity in rat hepatocytes. Biochem J,2000,350 Pt 2:389-93.
    [234]Becard, D., Hainault, I., Azzout-Marniche, D., et.al. Adenovirus-mediated overexpression of sterol regulatory element binding protein-1c mimics insulin effects on hepatic gene expression and glucose homeostasis in diabetic mice. Diabetes,2001,50(11):2425-30.
    [235]Fleischmann, M. and lynedjian, P.B.Regulation of sterol regulatory-element binding protein 1 gene expression in liver:role of insulin and protein kinase B/cAkt. Biochem J,2000,349(Pt 1): 13-7.
    [236]Zhang, Y., Yin, L. and Hillgartner, F.B. SREBP-1 integrates the actions of thyroid hormone, insulin, cAMP, and medium-chain fatty acids on ACCalpha transcription in hepatocytes. J Lipid Res,2003,44(2):356-68.
    [237]Brett, D.J., Pease, R.J., Scott, J., et.al. Microsomal triglyceride transfer protein activity remains unchanged in rat livers under conditions of altered very-low-density lipoprotein secretion. Biochem J,1995.310 (Pt 1):11-4.
    [238]Morral, N., Edenberg, H.J., Witting, S.R., et.al. Effects of glucose metabolism on the regulation of genes of fatty acid synthesis and triglyceride secretion in the liver. J Lipid Res,2007.48(7): 1499-510.
    [239]Hasty, A.H., Shimano, H., Yahagi, N., et.al. Sterol regulatory element-binding protein-1 is regulated by glucose at the transcriptional level. J Biol Chem,2000,275(40):31069-77.
    [240]Shimomura, I., Bashmakov, Y. and Horton, J.D.-Increased levels of nuclear SREBP-1c associated with fatty livers in two mouse models of diabetes mellitus. J Biol Chem,1999,274(42): 30028-32.
    [241]Meegalla, R.L., Billheimer, J.T. and Cheng, D. Concerted elevation of acyl-coenzyme A:diacylglycerol acyltransferase (DGAT) activity through independent stimulation of mRNA expression of DGAT 1 and DGAT2 by carbohydrate and insulin. Biochem Biophys Res Commun, 2002,298(3):317-23.
    [242]Hirata, T., Unoki, H., Bujo, H., et.al. Activation of diacylglycerol O-acyltransferase 1 gene results in increased tumor necrosis factor-alpha gene expression in 3T3-L1 adipocytes. FEBS Lett,2006, 580(21):5117-21.
    [243]Ma, L., Robinson, L.N. and Towle, H.C. ChREBP*Mlx is the principal mediator of glucose-induced gene expression in the liver. J Biol Chem,2006,281(39):28721-30.
    [244]Vaulont, S., Vasseur-Cognet, M. and Kahn, A. Glucose regulation of gene transcription. J Biol Chem,2000,275(41):31555-8.
    [245]Proctor, G., Jiang, T., lwahashi, M., et.al. Regulation of renal fatty acid and cholesterol metabolism, inflammation, and fibrosis in Akita and OVE26 mice with type 1 diabetes. Diabetes, 2006,55(9):2502-9.
    [246]Liang, G., Yang, J., Horton, J. D., et.al. Diminished hepatic response to fasting/refeeding and liver X receptor agonists in mice with selective deficiency of sterol regulatory element-binding protein-1c. J Biol Chem,2002,277(11):9520-8.
    [247]Carr, T.P., Hamilton, R.L., Jr., and Rudel, L.L. ACAT inhibitors decrease secretion of cholesteryl esters and apolipoprotein B by perfused livers of African green monkeys. J Lipid Res,1995,36(1): 25-36.
    [248]Wetterau, J.R., Gregg, R. E., Harrity, T. W., et.al. An MTP inhibitor that normalizes atherogenic lipoprotein levels in WHHL rabbits. Science,1998,282(5389):751-4.
    [249]Jump, D.B., Botolin, D., Wang, Y., et.al. Fatty acid regulation of hepatic gene transcription. J Nutr,2005,135(11):2503-6.
    [250]Wojcicka, G., Jamroz-Wisniewska, A., Horoszewicz, K., et.al. Liver X receptors (LXRs). Part 1: structure, function, regulation of activity, and role in lipid metabolism. Postepy Hig Med Dosw (Online),2007,61:736-59.
    [251]Steffensen, K.R. and Gustafsson, J.A. Putative metabolic effects of the liver X receptor (LXR). Diabetes,2004,53 Suppl 1:S36-42.
    [252]Fisher, E.A. and Ginsberg, H.N. Complexity in the secretory pathway:the assembly and secretion of apolipoprotein B-containing lipoproteins. J Biol Chem,2002,277(20):17377-80.
    [253]Wu, X., Zhou, M., Huang, L. S., et.al. Demonstration of a physical interaction between microsomal triglyceride transfer protein and apolipoprotein B during the assembly of ApoB-containing lipoproteins. J Biol Chem,1996,271(17):10277-81.
    [254]Shockey, J.M., Gidda, S. K., Chapital, D. C, et.al. Tung tree DGAT1 and DGAT2 have nonredundant functions in triacylglycerol biosynthesis and are localized to different subdomains of the endoplasmic reticulum. Plant Cell,2006,18(9):2294-313.
    [255]Stone, S.J., Levin, M.C. and Farese, R.V., Jr. Membrane topology and identification of key functional amino acid residues of murine acyl-CoA:diacylglycerol acyltransferase-2. J Biol Chem, 2006,281(52):40273-82.
    [256]Darimont, C, Avanti, O., Zbinden, I., et.al. Liver X receptor preferentially activates de novo lipogenesis in human preadipocytes. Biochimie,2006,88(3-4):309-18.
    [257]Joseph, S.B., McKilligin, E., Pei, L., et.al. Synthetic LXR ligand inhibits the development of atherosclerosis in mice. Proc Natl Acad Sci USA,2002,99(11):7604-9.
    [258]Guzman, M. and Castro, J. Zonation of fatty acid metabolism in rat liver. Biochem J,1989,264(1): 107-13.
    [259]Menke, J.G., Macnaul, K. L., Hayes, N. S., et.al. A novel liver X receptor agonist establishes species differences in the regulation of cholesterol 7alpha-hydroxylase (CYP7a). Endocrinology, 2002,143(7):2548-58.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700