用户名: 密码: 验证码:
水稻条纹病毒NS2、NS3蛋白与寄主间的互作
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻条纹病毒(Rice stripe virus,RSV)是纤细病毒属的代表种,由RSV引起的水稻条纹叶枯病近年来在我国多次爆发流行,给我国的水稻生产造成了严重的经济损失。经过国内外学者多年来的研究,RSV编码蛋白的功能、致病性分化、遗传多样性、病毒与寄主间的互作以及病害的防治都有了一定的认识。为了控制病害的发生,促进我国水稻生产的可持续发展,需要深入地了解病毒与水稻、介体昆虫三者之间的互作关系。
     本文利用酵母双杂交技术研究了RSV NS2、NS3蛋白与寄主水稻间的互作,获得了一些阳性克隆。为进一步确定获得的阳性克隆基因所编码的全长蛋白是否能与NS2或NS3互作,选取了与NS2互作的5个基因,与NS3互作的3个基因片段进行全长扩增,并构建至酵母表达载体pGADT7,分别与NS2或NS3共转化酵母菌AH109,通过不同的营养缺陷型培养基筛选,确定全长蛋白与NS2或NS3互作情况。结果表明,完整水稻果胶酶蛋白(pectinesterase)、Ras相关蛋白(ras-related protein)、胆碱磷酸胞苷酰转移酶(cholinephosphate cytidylyltransferase)、水稻基因沉默抑制子3 (suppressor of gene silencing 3, SGS3)及一功能未知蛋白均能与NS2互作,完整水稻UBA/TS-N域包含蛋白(UBA/TS-N domain containing protein)、3-磷酸甘油醛脱氢酶(glyceraldehyde-3-phosphate dehydrogenase, GAPDH)能够与NS3互作,而完整蛋白O-甲基转移酶(O-methyltransferase)不能与NS3互作,且水稻SGS3 (OsSGS3)蛋白也能够与NS3互作。
     水稻SGS3 (OsSGS3)蛋白与拟南芥SGS3蛋白同源,为研究NS2、NS3与水稻SGS3互作的关键区段,根据OsSGS3的保守结构域将其分为3段,分别为包含Zinc结构域的SGS3-1区段、包含XS结构域的SGS3-2区段、包含Coiled coil结构域的SGS3-3区段,并与NS2或NS3共转化酵母菌AH109,通过不同的营养缺陷型培养基筛选互作的区段。结果表明NS2、NS3均可以与这3个区段互作,但NS2与SGS3-3区段的互作较弱。
     双分子荧光互补研究表明在烟草叶片细胞中NS3与水稻GAPDH (OsGAPDH)、NS2与OsSGS3存在的互作。亚细胞定位研究表明OsGAPDH主要定位于细胞质中,OsSGS3定位于细胞质,而NS2定位于细胞核和细胞膜,且在膜上形成小点结构,在核内能定位于柯浩体。OsSGS3与NS2主要共定位于细胞核,推测NS2改变了OsSGS3的定位,进而干扰其功能。免疫共沉淀结果也表明NS2与OsSGS3存在互作。拟南芥SGS3在小RNA生成过程中发挥作用,为研究NS2与OsSGS3互作的可能功能,首先通过荧光定量PCR检测了相关反式作用小RNA的靶标基因(5个生长素应答因子)表达量变化。结果表明,RSV侵染水稻后5个生长素应答因子表达量上调,表明RSV侵染后水稻反式作用小RNA途径可能受到影响。为此进一步检测了相应反式作用小RNA的表达量变化,结果表明小RNA表达量相对于健康水稻上升了2倍,推测可能是水稻的反馈调节作用造成的。进一步对OsSGS3、反式作用siRNA前体TAS3基因表达量进行了检测,结果表明OsSGS3基因表达量上调了2.7倍,TAS3基因表达量上调了3倍。
     以灰飞虱(Laodelphax striatellus)mRNA为起始模板,利用Gateway技术构建了灰飞虱酵母双杂交cDNA文库。经过检测表明:构建的初级cDNA文库的库容量为1.85×107cfu;扩增文库滴度为7.7×108 cfu/mL,重组率约为97%;扩增文库插入片段主要集中在1000-1500 bp之间。随机挑取10个克隆,测序后与GenBank数据库比对结果显示7个克隆具有同源序列,其中L2、L9为已公布的灰飞虱序列。灰飞虱酵母双杂交cDNA文库的构建为克隆全长目的基因及研究灰飞虱与其传播的水稻病毒间的互作奠定了基础。构建了包含RSV NS3的酵母表达载体pDB-NS3,以NS3为诱饵筛选了灰飞虱cDNA文库,钓取与之互作的灰飞虱蛋白。首先将酵母表达载体pDB-NS3转化酵母菌MaV203,以含有pDB-NS3的酵母菌制备酵母感受态,采用顺序转化法筛选灰飞虱cDNA文库,转化产物分别涂布不同的营养缺陷型培养基,观察酵母菌生长情况并检测β半乳糖苷酶活性。结果表明,以NS3为诱饵共筛选获得4个阳性克隆,序列比对表明只有一个克隆具有正确读码框,且与一些昆虫的ribosomal protein L4(RPL4)蛋白有较高的同源性。进一步研究表明水稻核糖体蛋白L4也能够与NS3在酵母中互作。
Rice stripe virus (RSV), the type member of the genus Tenuivirus, was the causative agent of rice stripe disease which was one of the most economically important pathogens of rice and is repeatedly epidemic in China. The biological functions of virus-encoded proteins, pathogenicity differentiation, genetic diversity of virus, virus-plant host interactions and management of virus were studied during the past years. But RSV genomes, movement, and virus-host interactions, transmission were little known. In order to control the disease better and promote the sustainable development of rice production, it was essential to study the virus-rice interaction, virus-vector interaction in detail.
     Yeast two-hybrid system was used to detect the interaction between RSV and rice. Some positive clones interacted with RSV NS2 or NS3 were obtained. In order to study whether the full-length clones interacted with NS2 or NS3, five full-length clones interacted with NS2, three full-length clones interacted with NS3 were amplified inspectively and constructed into vector pGADT7. Then, these eight full-length clones were co-transformed into yeast strain AH109 with pGBKT7-NS2 or pGBKT7-NS3 respectively. Different synthetic dropout nutrient medium were detected. The results showed that full-length proteins pectinesterase, ras-related protein, cholinephosphate cytidylyltransferase, suppressor of gene silencing 3 (SGS3) and a function unknown protein interacted with NS2 respectively, and full-length proteins UBA/TS-N domain containing protein, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and SGS3 interacted with NS3. Full-length proteins O-methyltransferase did not interact with NS3.
     Rice (Oryza sativa L. ) SGS3 was homologous to Arabidopsis thaliana SGS3 (ATSGS3) protein and was designated as OsSGS3. OsSGS3 possessed the three domains typical of AtSGS3: zinc finger, XS and coiled coil. Three OsSGS3 deletion mutants: OsSGS3-1, which contained the znic finger domain, OsSGS3-2, which contained the XS domain, and OsSGS3-3, which contained the coiled coil domain were constructed. The coding sequences of the mutants were subcloned individually into pGADT7 and cotransformed with pGBKT7-NS2 or pGBKT7-NS3 into yeast strain AH109. All of the transformants were able to grow on SD/-His/-Trp medium and on SD medium lacking Ade, His, Leu, and Trp (SD/-Ade/-His/-Leu/-Trp), but the transformants of NS2 and SGS3-3 interacted weakly.
     The interaction between NS2 and Oryza sativa L. GAPDH (OsGAPDH) was verified by Bimolecular fluorescence complementation (BiFC). Cellular localization studies showed that OsGAPDH accumulated in cytoplasmic, OsSGS3 accumulated in cytoplasmic foci that perfectly resemble those of AtSGS3 and NS2 located in nucleus and punctate structures in association with cell membrane. We confirmed the interaction between OsSGS3 and NS2 by using co-IP, BiFC, and colocalization. The results of colocalization revealed that a considerable proportion of OsSGS3 was redistributed to nucleus by NS2. We speculate that the redistribution of OsSGS3 by NS2 might disrupt the normal function of OsSGS3. AtSGS3 has been demonstrated to be involved in small RNA production. To explore the possible biological implications of the interaction of RSV NS2 with OsSGS3, we first detected the expression patterns of 5 auxin responsive factors (ARFs) that had been domonstrated to be potential targets of trans acting siRNAs. The results indicated that the overall accumulation levels of the 5 genes increased in RSV infected rice. This suggested that the trans acting siRNA might indeed be affected by RSV infection. Further, we detected TAS3 derived ta-siRNAs of rice. The result indicated that the accumulation level of this small RNA was more than 2 fold higher in RSV infected rice compared with healthy control. One explanation for this observation was that a feedback regulation system of the trans acting small RNA pathway may have compensated for the loss of SGS3 activity in RSV infected rice. To test this possibility, we detected the accumulation of several other genes involved in the generation of trans acting small RNAs including the TAS3 transcript precursor and OsSGS3. The results indicated that the accumulation level of OsSGS3 and the accumulation level of TAS3 was more than 2.7 and 3 fold higher in RSV infected rice respectively compared to healthy control.
     A yeast two-hybrid cDNA library was constructed using CloneMiner? cDNA Library Construction Kit. The results showed that unamplified library consisted of 1.85×107 independent clones; the titer of amplified cDNA library was 7.7×108 cfu/mL, and the recombinant rate was about 97%. The size of most inserts were 1000-1500 bp. Random sequence analysis of ten clones showed that seven clones had homologous sequences in GenBank. Clones L2 and L9 were the same as the published Laodelphax striatellus. Construction of this yeast two-hybrid cDNA library of Laodelphax striatellus laid the foundation for cloning of functional genes in Laodelphax striatellus and carrying out the research on Laodelphax striatellus-Virus interaction. Bait plasmids pDB-NS3 was constructed and used to screen the yeast two-hybrid cDNA library of Laodelphax striatellus. The transformants were plated on different dropout nutrient mediums andβ-galactosidase activity were detected. One positive clone homologous to ribosomal protein L4 of some insects was obtained. The interaction between NS3 and ribosomal protein L4 of rice was also detected, the results showed that NS3 could either interact with ribosomal protein L4 of rice or ribosomal protein L4 of Laodelphax striatellus in yeast.
引文
1.白雪亮,王金菊,周维,陶汉林,朱晔荣,王勇. 2007,水稻条纹叶枯病的研究进展.生物学通报, 42 (8): 4-6
    2.陈菁. 2008,双分子荧光互补技术及其在蛋白质相互作用研究中的应用进展.生物医学工程研究, 27(4): 302-306
    3.陈庆忠,柯文华. 1986,水稻条纹叶枯病主要感染时期之推定及适期防治试验.台中区农业改良场研究简报, 12: 51-60
    4.程兆榜,邓金花,任春梅,熊如意,周彤,范永坚,周益军. 2007,苏小麦条纹病毒病的发生及其病原的RT-PCR分析.麦类作物学报, 27(6): 1138-1142
    5.程兆榜,任春梅,周益军,范永坚,谢联辉. 2008,水稻条纹病毒不同地区分离物的致病性研究.植物病理学报, 38(2): 126-131
    6.丁新伦,谢荔岩,林奇英,吴祖建,谢联辉. 2008,水稻条纹病毒胁迫下抗、感病水稻品种胼胝质的沉积.植物保护学报, 35(1): 19-22
    7.丁秀兰,江玲,刘世家,王春明,陈亮明,程兆榜,范永坚,周益军,万建民. 2004,利用重组自交系群体检测水稻条纹叶枯病抗性基因及QTL分析.遗传学报, 31(3): 287-292
    8.杜志如,席江,万佳,江斌,徐永菊,张琦,徐正君. 2008,水稻核糖体蛋白(OsRPL14)基因的克隆及表达分析.农业生物技术科学, 24(4): 130-134
    9.樊晋宇,崔宗强,张先恩. 2008,双分子荧光互补技术.中国生物化学与分子生物学报, 24(8): 767-774
    10.冯飞,梁佳勇,纪春艳,曾红梅,邱德文. 2009,链格孢菌(Alternaria tenuissima)cDNA酵母表达文库的构建.中国农学通报, 25(12): 25-29
    11.侯宇. 2009,荧光定量PCR技术研究进展及其应用.贵州农业科学, 37(6): 29-32
    12.蒋耀培,李建刚,谭秀芳. 2005,上海地区水稻条纹叶枯病的发生与防治技术初探.上海农业科技, 5: 37-38
    13.兰汉红. 2009,水稻条纹病毒功能蛋白与水稻叶绿体蛋白的互作. [硕士学位论文],福州:福建农林大学植物病毒研究所
    14.林奇田,林含新,吴祖建,林奇英,谢联辉. 1998,水稻条纹病毒外壳蛋白和病害特异蛋白在寄主体内的积累.福建农业大学学报, 27 (3): 322-326
    15.林奇英,谢联辉,周仲驹,谢莉妍,宋秀高. 1991,水稻条纹叶枯病的研究II.病害的症状和传播.福建农学院学报, 20 (1): 24-28
    16.林奇英,谢联辉. 1990,水稻条纹叶枯病的研究I.病害的分布和损失.福建农学院学报, 19 (4): 421-425
    17.刘力,陈声祥,邱并生,康良仪,田波. 1996,抗水稻条纹叶枯病毒核酶的设计、克隆及体外活性测定.中国病毒学, 11(2): 157-163
    18.刘利华,吴祖建,林奇英,谢联辉. 2000,水稻条纹叶枯病细胞病理变化的观察.植物病理学报, 30 (4): 306-311
    19.鹿连明. 2008,利用酵母双杂交系统研究水稻条纹病毒与寄主水稻之间的互作. [博士学位论文],福州:福建农林大学植物病毒研究所
    20.吕品,李建华,张岩,刘银谦,陈玉玲. 2005,植物小G蛋白研究进展.河北师范大学学报(自然科学版), 29(2): 193-216
    21.牛晓庆. 2009,水稻条纹病毒(RSV)NSvc4与水稻,NS3蛋白与RSV蛋白之间的互作研究. [硕士学位论文],福州:福建农林大学植物病毒研究所
    22.齐中付. 2008,水稻条纹叶枯病的田间症状及综防对策.河南农业, 11: 24
    23.曲志才,马向前,白逢伟,叶鸣明,潘重光,沈大棱. 2002,活跃传毒介体灰飞虱(Laodelphax striatelllus)品系的杂交与选育.复旦学报(自然科学版), 41(6): 684-687
    24.阮义理,金登迪,许如银. 1984,水稻条纹叶枯病毒的寄主植物.植物保护, 3: 13
    25.石峰. 2009,植物小G蛋白功能的最新研究进展.热带农业科学, 29(7): 69-75
    26.孙黛珍,江玲,刘世家,张迎信,黄培鸿,程遐年,翟虎渠,万建民. 2006,水稻条纹病毒和介体灰飞虱抗性的QTL分析.作物学报, 32(6): 805-810
    27.孙黛珍,江玲. 2006,水稻抗条纹叶枯病遗传育种研究.植物保护科学, 22(12): 318-322
    28.王华弟,陈剑平,祝增荣,孙祥良,沈卫新. 2007,浙江北部水稻条纹叶枯病的发病流行规律.植物保护学报, 34 (5): 487-492
    29.王萍. 2009,水稻条纹病毒(RSV)功能蛋白与水稻蛋白的互作研究. [硕士学位论文],福州:福建农林大学植物病毒研究所
    30.魏太云. 2003,水稻条纹病毒的基因组结果及其分子群体遗传. [博士学位论文],福州:福建农林大学
    31.魏太云,林含新,吴祖建,林奇英,谢联辉. 2003,水稻条纹病毒RNA4基因间隔区序列分析—混合侵染基因组重组证据.微生物学报, 5: 57-64
    32.魏太云,林含新,吴祖建,林奇英,谢联辉. 2004,中国水稻条纹病毒两个亚种群代表性分离物全基因组核苷酸序列分析.中国农业科学, 37(6): 846-850
    33.温剑,李思光,罗玉萍. 2007,反式作用干扰小RNA.生命的化学, 27(5): 399-401
    34.温建国,胡轶清,严健,潘重光,沈大棱. 2003, Walbachia在灰飞虱群体中的传染.上海交通大学学报(农业科学版), 21(suppl): 35-37
    35.吴爱忠,赵艳,曲志才,沈大棱,潘重光,苏德明. 2001,水稻条叶枯病毒(RSV)的SP蛋白在介体灰飞虱内的亚细胞定位.科学通报, 45 (14): 1183-1186
    36.武景阳,李朝翠,孔清华,毛炳宇. 2008,利用修饰的随机引物构建非洲爪蟾酵母双杂交定向cDNA文库.动物学研究, 29(4): 368-372
    37.肖冬来. 2006,不同传毒能力灰飞虱群体的mRNA差异分析. [硕士学位论文],福州:福建农林大学
    38.谢联辉,林奇英. 1994,中国水稻病毒病的诊断、监测和防治对策.福建农业大学学报,23 (3): 280-285
    39.杨金广,王文婷,丁新伦,郭利娟,方振兴,谢荔岩,林奇英,吴祖建,谢联辉. 2008,水稻条纹病毒与水稻互作中的生长素调控.农业生物技术学报, 16(4): 628-634
    40.杨金广. 2008,水稻条纹病毒与水稻互作中的生长素调控. [博士学位论文],福州:福建农林大学植物病毒研究所
    41.张国鸣,王华弟,戴德江. 2006,浙江省水稻条纹叶枯病发生发展态势与防控对策措施.中国植保导刊, 26 (7): 20-21
    42.张海燕,吴天祥. 2006,微生物果胶酶的研究进展.酿酒科技, 9: 82-85
    43.张寒,郜慧芳,郑胡镛. 2008,转录因子Runx1对RPL4启动子的调节作用.中国肿瘤生物治疗杂志, 15(5): 412-416
    44.张恒木,孙焕然,王华弟,陈剑平. 2007,水稻条纹病毒分子生物学研究进展.植物保护学报, 34(4): 436-440
    45.张开玉,熊如意,吴建祥,周雪平,周益军. 2008,水稻条纹病毒编码蛋白在灰飞虱体内的检测及其与CP体外结合研究.中国农业科学, 41(12): 4063-4068
    46.张书祥,赵志虎,马清钧. 2001,锌指蛋白的核酸识别特异性研究进展.生物工程进展, 21(2): 7-9
    47.张晓婷,谢荔岩,林奇英,吴祖建,谢联辉. 2008,水稻条纹病毒胁迫下的水稻全基因组表达谱.激光生物学报, 17(5): 620-629
    48.张震,王教瑜,杜新法,柴荣耀,毛雪琴,邱海萍,孙国昌. 2008,稻曲病菌cDNA文库的构建.植物病理学报, 38(5): 462-467
    49.仲崇翔,陈建,乔静,杨益众. 2006,灰飞虱体内沃尔巴克氏体生物学特性及其利用展望.植物保护, 32(3): 12-16
    50.朱凤美,肖庆璞,王法明,陈毓苓. 1964,江南稻区新发生的几种稻病.植物保护, 2 (3): 100-102
    51. Allen E, Xie Z, Gustafson A M, Carrington J C. 2005, MicroRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell, 121(2): 207-221
    52. Anandalakshmi R, Marathe R, Ge X, Herr J M Jr, Mau C, Mallory A, Pruss G, Bowman L, Vance V B. 2000, A calmodulin-related protein that suppresses posttranscriptional gene silencing in plants. Science, 290(5489): 142-144
    53. Aranda M, Maule A. 1998, Virus-induced host gene shutoff in animals and plants. Virology, 243(2): 261-267
    54. Bae S D, Kim D K. 1994, Occurrence of small brown planthopper (Laodelphax striatellus fallen) and incidence of rice virus disease by different seeding date in dry seeded rice. Korean Journal of Applied Entomology, 33(3): 173-177
    55. Bagewadi B, Chen S, Lal S K, Choudhury N R, Mukherjee S K. 2004, PCNA Interacts withIndian mung bean yellow mosaic virus Rep and downregulates Rep activity. Journal of Virology, 78 (21): 11890-11903
    56. Barbier P, Takahashi M, Nakamura I, Toriyama S, Ishihama A. 1992, Solubilization and promoter analysis of RNA polymerase from rice stripe virus. Journal of Virology, 66: 6171-6174
    57. Bateman A. 2002, The SGS3 protein involved in PTGS finds a family. BMC Bioinformatics, 3: 21
    58. Billecocq A, Spiegel M, Vialat P, Kohl A, Weber F, Bouloy M, Haller O. 2004, NSs protein of Rift valley fever virus blocks interferon production by inhibiting host gene transcription. Journal of Virology, 78: 9798-9806
    59. Boudonck K, Dolan L, Shaw P J. 1999, The movement of coiled bodies visualized in living plant cells by the green fluorescent protein. Molecular Biology of the cell, 10 (7): 2297-2307
    60. Boutet S, Vazquez F, Liu J, Béclin C, Fagard M, Gratias A, Morel J B, CrétéP, Chen X, Vaucheret H. 2003, Arabidopsis HEN1: a genetic link between endogenous miRNA controlling development and siRNA controlling transgene silencing and virus resistance. Current Biology, 13(10): 843-848
    61. Brigneti G, Voinnet O, Li W X, Ji L H, Ding S W, Baulcombe D C. 1998, Viral pathogenicity determinants are suppressors of transgene silencing in Nicotiana benthamiana. EMBO Journal, 17: 6739-6746
    62. Bucher E, Sijen T, Haan P, Goldbach R, Prins M. 2003, Negative-strand tospoviruses and tenuiviruses carry a gene for a suppressor of gene silencing at analogous genomic positions. Journal of Virology, 77: 1329-1336
    63. Callaway A, Giesman-Cookmeyer D, Gillock E T, Sit T L, Lommel S A. 2001, The multifunctional capsid proteins of plant RNA viruses. Annual Review of Phytopathology, 39: 419-460
    64. Chapman E J, Prokhnevsky A I, Gopinath K, Dolja V V, Carrington J C. 2004, Viral RNA silencing suppressors inhibit the microRNA pathway at an intermediate step. Genes Development, 18: 1179-1186
    65. Chen M H, Sheng J S, Hind G, Handa A K, Citovsky V. 2000, Interaction between the tabacco mosaic virus movement protein and host cell pectin methylesterases is required for viral cell-to-cell movement. The EMBO Journal, 19(5): 913-920
    66. Cherry S, Doukas T, Armknecht S, Whelan S, Wang H, Sarnow P, Perrimon N. 2005, Genome-wide RNAi screen reveals a specific sensitivity of IRES-containing RNA viruses to host translation inhibition. Genes Development, 19: 445-452
    67. Chomchan P, Li S F, Shirako Y. 2003, Rice grassy stunt tenuivirus nonstructural protein p5interacts with itself to form oligomeric complexes in vitro and in vivo. Journal of Virology, 77: 769-775
    68. Chomchan P, Miranda G J, Shirako Y. 2002, Detection of rice grassy stunt tenuivirus nonstructural proteins p2, p5 and p6 from infected rice plants and from viruliferous brown planthoppers. Archives of Virology, 147: 2291-2300
    69. Choudhary S, De B P, Banerjee A K. 2000, Specific phosphorylated forms of glyceraldehyde 3-phosphate dehydrogenase associate with human parainfluenza virus type 3 and inhibit viral transcription in vitro. Journal of Virology, 74: 3634-3641
    70. Citaly V, Gafni Y, Tzfira T. 2008, Localizing protein-protein interactions by bimolecular fluorescence complementation in planta. Methods, 45: 196-206
    71. Citovsky V, Lee L Y, Vyas S, Glick E, Chen M H, Vainstein A, Gafni Y, Gelvin S B, Tzfira T. 2006, Subcellular localization of interacting proteins by bimolecular fluorescence complementation in planta. Journal of Molecular Biology, 362: 1120-1131
    72. Colell A, Ricci J E, Tait S, Milasta S, Maurer U, Bouchier-Hayes L, Fitzgerald P, Guio-Carrion A, Waterhouse N, Li C. 2007, GAPDH and autophagy preserve survival after apoptotic cytochrome c release in the absence of caspase activation. Cell, 129: 983-997
    73. De B P, Gupta S, Zhao H, Drazba J A, Banerjee A K. 1996, Specific interaction in vitro and in vivo of glyceraldehyde-3-phosphate dehydrogenase and LA protein with cis-acting RNAs of human parainfluenza virus type 3. Journal of Biological Chemistry, 271: 24728-24735
    74. Diaz-Pendon J A, Li F, Li W X, Ding S W. 2007, Suppression of antiviral silencing by cucumber mosaic virus 2b protein in Arabidopsis is associated with drastically reduced accumulation of three classes of viral small interfering RNAs. Plant Cell, 19: 2053-2063
    75. Donaire L, Barajas D, Mat?′nez-Garc?′a B, Mat?′nez-Priego L, Paga′n I, Llave C. 2008, Structural and genetic requirements for the biogenesis of tobacco rattle virus-derived small interfering RNAs. Journal of Virology, 82: 5167-5177
    76. Dorokhov Y L, Frolova O Y, Skurat E V, Ivanov P A, Gasanova T V, Sheveleva A A, Ravin N V, Makinen K M, Klimyuk V I, Skryabin K G, Gleba Y Y, Atabekov J G. 2006, A novel function for a ubiquitous plant enzyme pectin methylesterase: the enchancer of RNA silencing. FEBS Letters, 580: 3872-3878
    77. Elmayan T, Adenot X, Gissot L, Lauressergues D, Gy I, Vaucheret H. 2009, A neomorphic sgs3 allele stabilizing miRNA cleavage products reveals that SGS3 acts as a homodimer. FEBS, 27: 835-844
    78. Falk B W, Tsai J H. 1998, Biology and molecular biology of viruses in the genus Tenuivirus. Annual Review of Phytopathology, 36: 139-163
    79. Field S, Song O. 1989, A novel genetic system to detect protein-protein interaction. Nature,340: 245-246
    80. Fukunaga R, Doudna J A. 2009, dsRNA with 5′overhangs contributes to endogenous and antiviral RNA silencing pathways in plants. EMBO, 28: 545-555
    81. Gingery R E. 1988, The Rice stripe virus group. In: The Plant Virus 4: The Filamentous Plant Viruses. Plenum Publishing Crop, New York, 4: 297-329
    82. Glick E, Zrachya A, Levy Y, Mett A, Gidoni D, Belausov E, Citovsky V, Gafni Y. 2008, Interaction with host SGS3 is required for suppression of RNA silencing by tomato yellow leaf curl virus V2 protein. PNAS, 105(1): 157-161
    83. Guo D Y, Rajamaki M L, Saarma M, Valkonen P T. 2001, Towards a protein interaction map of potyviruses: protein interaction matrixes of two potyviruses based on the yeast two-hybrid system. Journal of General Virology, 82: 935-939
    84. Haenni A L, de Miranda J R, Falk B W, Goldbach R, Mayo M A, Shirako Y, Toriyama S (2005). Tenuivirus. In: Fauquet C M, Mayo M A, Maniloff J, Desselberger U, Ball L A. Virus taxonomy. Eighth Report of the International Committee on Taxonomy of Viruses. Elesvier Academic Press, San Diego, 717-723
    85. Hayano-Saito Y, Saito K, Nakamura S. 2000, Fine physical mapping of the rice stripe resistance gene locus, Stvb-i. Theoretical and Applied Genetics, 101: 59-63
    86. Hayano-Saito Y, Tsuji T, Fujiik. 1998, Localization of the rice stripe disease resistance gene, Stv-bi, by graphical genotyping and linkage analysis with molecular markers. Theoretical and Applied Genetics, 96: 1044-1049
    87. Hayashi T, Usugi T, Nakano M, Ishikawa K. 1989, On the strains of rice stripe virus (1) An attempt to detect stranis by difference of molecular size of disease-specific proteins. Proceedings of the Association for Plant Protection of Kyushu, 35: 1-2
    88. Li C F, Henderson I R, Song L, Fedoroff N, Lagrange T, Jacobsen S E. 2008, Dynamic regulation of ARGONAUTE4 within multipe nuclear bodies in Arabidopsis thaliana. PloS Genetics, 4(2): e27
    89. Holeva R C, Macfarlane S A. 2006, Yeast two-hybrid study of tobacco rattle virus coat protein and 2b protein interactions. Archives of Virology, 151(11): 2123-2132
    90. Inour-Nagata A K, Kormelink R, Sgro J Y, Natata T, Kitajima E W, Goldbach R, Peters D. 1998, Molecular characterization of Tomato spotted wilt virus defective interfering RNAs and detection of Truncated L proterin. Virology, 248: 342-356
    91. Joazeiro C A, Weissman A M. 2000, Ring finger proteins: mediators of ubiquitin ligase activity. Cell, 102: 549-552
    92. Johnsson N, Varshavsky A. 1994, Split ubiquitin as a sensor of protein interactions in vivo. PNAS, 91(22): 10340-10344
    93. Jones P L, Willey D L, Gacesa P, Harwood J L. 1998, Isolation, characterisation and expression of a cDNA for pea cholinephosphate cytidylyltransferase. Plant Molecular Biology, 37: 179-185
    94. Juan A, Díaz-Pendón, Ding S W. 2008, Direct and indirect roles of viral suppressors of RNA silencing in pathogenesis. Annual Review of Phytopathology, 46: 303-326
    95. Jung Y H, Agrawal G K, Rakwal R, Kim J A, Lee M O, Choi P G, Kim Y J, Kim M J, Shibato J, Kim S H, Iwahashi H, Jwa N S. 2006, Functional characterization of OsRacB GTPase-a potentially negative regulator of basal disease resistance in rice. Plant Physiology and Biochemistry, 44(1): 68-77
    96. Kakutani T, Hayano Y, Hayashi T, Minobe Y. 1990, Ambisense segment 4 of rice stripe virus: possible evolutionary relationship with phleboviruses and uukuviruses (Bunyaviridae). Journal of General Virology, 71: 1427-1432
    97. Kakutani T, Hayano Y, Hayashi T, Minobe Y. 1991, Ambisense segment 3 of rice stripe virus: the first instance of a virus containing two ambisense segments. Journal of General Virology, 72: 465-468
    98. Kang S H, Lim W S, Hwang S H, Park J W, Choi H S, Kim K H. 2006, Importance of the C-terminal domain of soybean mosaic virus coat protein for subunit interactions. Journal of General Virology, 87: 225-229
    99. Kisimoto R. 1965, On the transovarial passage of the rice stripe virus through the small brown planthopper, Laodelphax striatelllus Fallen. Conference on Relationships between Arthropods and plant- Pathogenic Viruses, Tokyo: 73-90
    100. Koganezawa H. 1977, Purification and properties of rice stripe virus. In: Symposium on Virus Diseases of Tropical Crops. Tripical Agriculture Research, 10: 151-154
    101. Komarova A V, Haenni A L, Ram?′rez B C. 2009, Virus versus host vell translation: Love and hate stories. Advances in Virus Research, 73: 99-170
    102. Kormelink R, Storms M, Van lent J, Peters D, Goldbach R. 1994, Expression and subcellular location of the NSM protein of Tomato spotted wilt virus(TSWV), a putative viral movement protein. Virology, 200: 55-65
    103. Kumakura N, Takeda A, Fujioka Y, Motose H, Takano R, Watanabe Y. 2009, SGS3 and RDR6 interact and colocalize in cytoplasmic SGS3/RDR6-bodies. FEBS, 583: 1261-1266
    104. Lagaert S, Belien T, Volckaert G. 2009, Plant cell walls: Protecting the barrier from degradation by microbial enzymes. Seminars in Cell & Developmental Biology, 20: 1064-1073
    105. Li Y, Wu M Y, Song H H, Hu X, Qiu B S. 2005, Identification of a tobacco protein interacting with tomato mosaic virus coat protein and facilitating long-distance movement ofvirus. Archives of Virology, 150(10): 1993-2008
    106. Liang D L, Ma X Q, Qu Z C, Roger H. 2005a, Nucleic acid binding property of the gene Products of rice stripe virus. Virus Genes, 31: 203-209
    107. Liang D L, Qu Z C, Ma X Q, Roger H. 2005b, Detection and location of rice stripe virus gene products in vivo. Virus Genes, 31: 211-221
    108. Liu L, Saunders K, Thomas C L, Davies J W, Stanley J. 1999, Bean yellow dwarf virus RepA, but not Rep, binds to maize retinoblastoma p rotein, and the virus toleratesmutations in the consensus binding motif. Virology, 256: 270-279
    109. Livak K J, Schmittgen T D. 2001, Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-△△CT Method. METHODS, 25: 402-408
    110. Lu L M, Du Z G, Qin M L, Wang P, Lan H H, Niu X Q, Jia D S, Xie L Y, Lin Q Y, Xie L H, Wu Z J. 2009, Pc4, a putative movement proterin of Rice stripe virus, interacts with a type I DnaJ protein and a small Hsp of rice. Virus Genes, 38: 320-327
    111. Madsen L, Schulze A, Seeger M, Petersen R H. 2007, Ubiquitin domain proteins in disease. BMC Biochemistry, 8(Suppl 1): S1
    112. Maeda H, Matsushita K, Iida S, Sunohara Y. 2006, Characterization of Two QTLs Controlling Resistance to Rice Stripe Virus Detected in a Japanese Upland Rice Line, Kanto 72. Breeding Science, 56(4): 359-364
    113. Maule A, Leh V, Lederer C. 2002, The dialogue between viruses and hosts in compatible interactions. Current Opinion in Plant Biology, 5: 279-284
    114. May N L, Dubaele S, Santis L D, Billecocq A, Bouloy M, Egly J. 2004, TFIIH transcription factor, a target for the Rift valley hemorrhagic fever virus. Cell, 116(4): 541-550
    115. Mcfarlane A A, Orriss G L, Stetefeld J. 2009, The use of coiled-coil proteins in drug delivery systems. European Journal of Pharmacology, 625: 101-107
    116. Morin S, Ghanim M, Sobol I. 2000, The GroEL protein of the whitefly bemisia tabaci interacts with the coat protein of transmissible and nontransmissible begomoviruses in the yeast two-hybrid system. Virology, 276 (2): 404-416
    117. Morris G E. 2008, The Cajal body. Biochimica et Biophysica Acta, 1783: 2018-2115
    118. Mourrain P, Beclin C, Elmayan T, Feuerbach F, Godon C, Morel J B, Jouette D, Lacombe A M, Nikic S, Picault N, Remoue K, Sanial M, Vo T A, Vaucheret H. 2000, Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance. Cell, 101: 533-542
    119. Ogg S C, Lamond A I. 2002, Cajal bodies and coilin—moving towards function. Journal of Cell Biology, 159 (1): 17-21
    120. Ohara O, Temple G. 2001, Directional cDNA Library Construction Assisted by the in vitroRecombination Reaction. Nucleic Acids Research, 29(4): e22
    121. O'Reilly E K, Paul J D, Kao C C. 1997, Analysis of the interaction of viral RNA replication proteins by using the yeast two-hybrid assay. Journal of Virology, 71(10): 7526-7532
    122. O'Shea E K, Klemm J D, Kim P S, Alber T. 1991, X-ray structure of the GCN4 leucine zipper, a two-stranded, parallel coiled coil. Science, 254: 539-544
    123. Paape M, Solovyev A G, Erokhina T N, Minina E A, Schepetilnikov M V, Lesemann D E, Schiemann J, Morozov S Y, Kellmann J W. 2006, At-4/1, an interactor of the Tomato spotted wilt virus movement protein, belongs to a new family of plant proteins capable of directed intra- and intercellular trafficking. Molecular Plant-Microbe Interactions, 19(8): 874-883
    124. Peragine A, Yoshikawa M, Wu G, Albrecht H L, Poethig R S. 2004, SGS3 and SGS2/SDE1/RDR6 are required for juvenile development and the production of trans-acting siRNAs in Arabidopsis. Genes Development, 18(19): 2368-2379
    125. Pestova T V, Lorsch J R, Hellen C U. 2007, The mechanism of translation initiation in eukaryotes. In: Mathews M B ed. Translational Control in Biology and Medicine. CSHL Press, NewYork, 87-128
    126. Pontes O, Pikaard C S. 2008, siRNA and miRNA processing: new functions for Cajal bodies. Current Opinion in Genetic Development, 18 (2): 197-203
    127. Qu F, Ye X, Hou G, Sato S, Clemente T E, Morris T J. 2005, RDR6 has a broad-spectrum but temperature-dependent antiviral defense role in Nicotiana benthamiana. Journal of Virology, 79, 15209–15217
    128. Rajamaki M L, Valkonen J T. 2009, Control of nuclear and nucleolar localization of nuclear inclusion protein a of picorna-like potato virus A in Nicotiana species. Plant cell, 21: 2485-2502
    129. Riechmann J L, Lain S, Garcia J A. 1992, Highlights and prospects of potyvirus molecular biology. Journal of General Virology, 73: 1-16
    130. Satoh K, Kondoh H, Sasaya T, Shimizu T, Choi I R, Omura T, Kikuchi S. 2010, Selective modification of rice (Oryza sativa) gene expression by Rice stripe virus infection. Journal of General Virology, 91: 294-305
    131. Shaw M L, Stone K L, Colangelo C M, Gulcicek E E, Palese P. 2008, Cellular proteins in influenza virus particles. Plos Pathogens, 4(6): 1-13
    132. Shimizu T, Toriyama S, Takahashi M, Akutsu K, Yoneyama K. 1996, Non-viral sequences at the 5' termini of mRNAs derived from virus-sense and virus-complementary sequences of the ambisense RNA segments of rice stripe tenuivirus. Journal of General Virology, 77: 541-546
    133. Shinkai A. 1962, Studies on insect transmissions of rice virus disease in Japan. The Bulletin Institute of Agriculture Science, Series C, 14: 1-112
    134. Sirover M A. 1999, New insights into an old protein: the functional diversity of mammalian glyceraldehyde-3-phosphate dehydrogenase. Biochimica et Biophysica Acta, 1432(2): 159-184
    135. Sirover M A. 2005, New nuclear functions of the glycolytic protein, glyceraldehyde-3-phosphate dehydrogenase, in mammalian cells. Journal of Cellular Biochemistry, 95: 45-52
    136. Soellick T R, Uhrig J F, Bucher G L, Kellmann J W, Schreier P H. 2000, The movement protein NSm of Tomato spotted wilt tospovirus (TSWV): RNA binding, interaction with the TSWV N protein, and identification of interacting plant proteins. PNAS, 97(5): 2373-2378
    137. Stewart M G, Banerjee N. 1999, Mechanisms of arthropod transmission of plant and animal viruses. Microbiology and Molecular Reviews, 63: 128-148
    138. Suharsono U, Fujisawa Y, Kawasaki T, Iwasaki Y, Satoh H, Shimamoto K. 2002, The heterotrimeric G protein alpha subunit acts upstream of the small GTPase Rac in disease resistance of rice. PNAS, 99: 13307-13312
    139. Takahashi M, Ishikawa K, Matsuda I, Toriyama S, Tsuchiya K. 2002, Immuno-electron microscopic localization of 22.8 K protein of Rice stripe virus in infected plant cells. Annals of the Phytopathological Society of Japan, 68 (2): 212
    140. Takahashi M, Toriyama S, Hamamatsu C, Ishihama A. 1993, Nucleotide sequence and possible ambisense coding strategy of rice stripe virus RNA segment 2. Journal of General Virology, 74: 769-773
    141. Takahashi M, Toriyama S, Kikuchi Y, Hayakawa T, Ishihama A. 1990, Complementarity between the 5'- and 3'-terminal Sequences of Rice Stripe Virus RNAs. Journal of General Virology, 71: 2817-2821
    142. Taneva S, Dennis M K, Ding Z W, Smith J L, Cornell R B. 2008, Contribution of each menbrance binding domain of the CTP: Phospocholine Cytidylyltransferase-αdimer to its activation, membrane binding, and membrane cross-bridging. Journal of Biology Chemistry, 283(42): 28137-28148
    143. Thao N P, Chen L, Nakashima A, Hara S I, Umemura K, Takahashi A, Shirasu K, Kawasaki T, Shimamoto K. 2007, RAR1 and HSP90 form a complex with Rac/Rop GTPase and function in innate-immune responses in rice. The Plant Cell, 19: 4035-4045
    144. Toriyama S, Takahashi M, Sano Y, Shimizu T, Ishihama A. 1994, Nucleotide sequence of RNA 1, the largest genomic segment of rice stripe virus, the prototype of the tenuiviruses. Journal of General Virology, 75: 3569-3579
    145. Toriyama S, Watanabe Y. 1989, Characterization of single- and double-stranded RNAs in particles of rice stripe virus. Journal of General Virology, 70: 505-511
    146. Toriyama S. 1982, Characterization of rice stripe virus: a heavy component carrying infectivity. Journal of General virology, 61: 187-195
    147. Toriyama S. 1983, Rice stripe virus CMI/ABB. Description of plant viruses, 269: 15
    148. Toriyama S. 1986, An RNA dependent RNA polymerase associated with the filamentous nucleoproteins of rice stripe virus. Journal of General Virology, 67: 1247-1255
    149. Toriyama S. 1992, Genetically engineered rice resistant to rice stripe virus, an insect-transmitted virus. Proceedings of the National Academy of Sciences, 89: 9865-9869
    150. Trink D, Rajeswaran R, Shivaprasad P V, Akbergenov R, Oakeley E J, Veluthambi K, Hohn T, Pooggin M M. 2005, Suppression of RNA silencing by a Geminivirus nuclear protein, AC2, correlates with transactivation of host genes. Journal of Virology, 79(4): 2517-2527
    151. Uhrig J F, Soellick T R, Minke C J, Philipp C, Kellmann J W, Schreier P H. 1999, Homotypic interaction and multimerization of nucleocapsidprotein of tomato spotted wilt tospovirus: Identification and characterization of two interacting domains. Proceedings of the National Academy of Sciences, 96: 55-60
    152. Vidal M, Brachmann R K, Fattaey A, Harlow E, Boeke J D. 1996, Reverse two-hybrid and one-hybrid systems to detect dissociation of protein-protein and DNA-protein interactions. PNAS, 93: 10315-10320
    153. Voinnet O. 2008, Use, tolerance and avoidance of amplified RNA silencing by plants. Trends in Plant Science, 13: 317-328
    154. Visser P B, Bol J F. 1999, Nonstructural proteins of tobacco rattle virus which have a role in nematode-transmission: expression pat tern and interact ion with viral coat protein. Journal of General Virology, 80: 3273-3280
    155. Voinnet O, Lederer C, Baulcombe D C. 2000, A viral movement protein prevents systemic spread of the gene silencing signal in Nicotiana benthamiana. Cell, 103: 157-167
    156. Volinia S, Calin G A, Liu C C, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, Prueitt R, Yanaihara N, Lanza G, Scarpa A, Vecchione A, Negrini M, Harris C C, Croce C M. 2006, A microRNA expression signature of human solid tumors defines cancer gene targets. PNAS, 103: 2257-2261
    157. Washio O, Ezuka A, Sakurai Y, Toriyama K. 1968, Testing method for, genetics of and breeding for resistance to rice stripe disease. Bulletin of the Chugoku National Agricultural Experiment Station Series A, 16: 39-179
    158. Wei T Y, Yang J G, Liao F L, Gao F L, Lu L M, Zhang X T, Li F, Wu Z J, Lin Q Y, Xie L H, Lin H X. 2009, Genetic diversity and population structure of rice stripe virus in China. Journal of General Virology, 90: 1025-1034
    159. Welchman R L, Gordon C, Mayer J. 2005, Ubiquitin and ubiquitin-like proteins asmultifunctional signals. Molecular Cell Biology, 6: 599-609
    160. Williams L, Carles C C, Osmont K S, Fletcher J C. 2005, A database analysis method identifies an endogenoustrans-acting short-interfering RNA that targets the Arabidopsis ARF2, ARF3, and ARF4 genes. PNAS, 102(27): 9703-9708
    161. Wu S J, Zhong H, Zhou Y, Zuo H, Zhou L H, Zhu J Y, Ji C Q, Gu S L, Gu M H, Liang G H. 2009, Identification of QTLs for the resistance to rice stripe virus in the indica rice variety Dular. Euphytica, 165:557-565
    162. Xiong R Y, Cheng Z B, Wu J X, Zhou Y J, Zhou T, Zhou X P. 2008a, First report of an outbreak of Rice stripe virus on wheat in China. Plant Pathology, 57(2): 397
    163. Xiong R Y, Wu J X, Zhou Y J, Zhou X P. 2008b, Identification of a movement protein of rice stripe tenuivirus. Journal of Virology, 82: 12304-12311
    164. Xiong R Y, Wu J X, Zhou Y J, Zhou X P. 2009, Characterization and subcellular localization of an RNA silencing suppressor encoded by Rice stripe tenuivirus. Virology, 387: 29-40
    165. Yang C, Guo R, Jie F, Nettleton D, Peng J Q, Carr T, Yeakley J M, Fan J B, Whitham S A. 2007, Spatial analysis of Arabidopsis thaliana gene expression in response to Turnip mosaic virus infection. Molecular Plant Microbe Interaction, 20: 358-370
    166. Yoshikawa M, Peragine A, Park M Y, Poethig R S. 2005, A pathway for the biogenesis of trans-acting siRNAs in Arabidopsis. Genes Development, 19: 2164-2175
    167. Zamore P D, Tuschl T, Sharp P A, Bartel D P. 2000, RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell, 101(1): 25-33
    168. Zhang D P, Trudeau V L. 2008, The XS domain of a plant specific SGS3 protein adopts a unique RNA recognition motif (RRM) fold. Cell Cycle, 7(14): 2268-2270
    169. Zhang H M, Yang J, Sun H R, Xin X, Wang H D, Chen J P, Adams M J. 2007b, Genomic analysis of rice stripe virus Zhejiang isolate shows the presence of an OTU-like domain in the RNA1 protein and a novel sequence motif conserved within the intergenic regions of ambisense segments of tenuiviruses. Archives of Virology, 152: 1917-1923
    170. Zhang J, Lautar S. 1996, A yeast three-hybrid method to clone ternary protein complex components. Analytical Biochemistry, 242: 68-72
    171. Zheng L, Roeder R G, Luo Yan. 2003, S phase activation of the histone H2B promoter by OCA-S, a coactivator complex that contains GAPDH as a key component. Cell, 114: 255-266
    172. Zhu S F, Gao F and Li Y. 2005, The Rice dwarf virus P2 protein interacts with ent-Kaurene Oxidases in vivo, leading to reduced biosynthesis of gibberellins and rice dwarf symptoms. Plant Physiology, 139 (4): 1935-1945
    173. Zhu Y F, Hayakawa T, Toriyama S. 1992, Complete nucleotide sequence of RNA 4 of rice stripe virus isolate T, and comparison with another isolate and with maize stripe virus.Journal of General Virology, 73: 1309-1312

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700