用户名: 密码: 验证码:
HIF-1α/ERK通路在微波辐射致海马神经元线粒体损伤中的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的和意义:随着微波技术的广泛应用和信息时代的到来,人们暴露于微波辐射的机会与日俱增,各种通讯设施和医疗设备的影响尤为突出。微波的生物效应及其机制研究是目前生物电磁学的前沿课题。微波辐射具有明显的中枢神经系统损伤效应,海马是最敏感的靶区,但其致伤机制未明。线粒体结构和功能与能量代谢密切相关,也是微波辐射最早累及的靶点之一,而HIF-1α/ERK信号通路可能在微波辐射致海马神经元线粒体损伤过程中发挥重要作用。因此,研究微波辐射致海马线粒体损伤中HIF-1α/ERK信号通路的改变及意义,将为深入研究微波辐射损伤机制和防治措施提供新靶标和思路,对于平时作业人员的卫生防护和现代高科技战争中作战人员的安全保障具有重要的理论和现实意义。
     材料和方法:(1)采用2.5、5和10mW/cm~2的微波辐射192只二级雄性Wistar大鼠,辐射时间为6min/次,5次/w,连续辐射1m。大鼠于辐射后6h、7d、14d、1m、2m和6m,采用Morris水迷宫检测其学习和记忆能力;通过HE、尼氏体染色和电镜观察海马组织结构和线粒体超微结构的变化;采用高效液相色谱法检测海马组织中氨基酸类神经递质含量的变化;采用Real-time PCR检测海马组织中hif-1αmRNA表达;通过Western Blot、免疫组织化学和图像分析等手段检测海马组织中HIF-1α、ERK1/2和p-ERK1/2表达。(2)采用30mW/cm~2微波辐射经NGF诱导的PC12细胞5min,通过电镜、Luminometer、多功能酶标仪、荧光显微镜等技术,观察PC12细胞线粒体结构和功能变化;采用Real-time PCR、Western Blot、免疫细胞化学和图像分析等技术,检测PC12细胞中hif-1αmRNA、HIF-1α、ERK通路分子(ERK1/2、p-ERK1/2、Raf、p-c-Raf和p-MEK1/2)、HIF-1靶基因(VEGF)、能量代谢相关基因(COXⅠ和COXⅣ)的表达变化;通过U0126和HIF-1α高表达质粒的干预等手段,研究微波辐射后ERK通路对HIF-1α的调控作用以及HIF-1α对PC12细胞线粒体功能的影响。
     实验结果:(1)大鼠学习记忆能力和氨基酸类神经递质变化:辐射后7d,10mW/cm~2组大鼠平均逃避潜伏期显著长于假辐射组(P<0.05);辐射后14d,5和10mW/cm~2组大鼠平均逃避潜伏期明显延长(P<0.05);辐射后1m,各辐射组与假辐射组相比,平均逃避潜伏期均延长(P<0.05或P<0.01)。2.5和5mW/cm~2微波辐射后6h、14d和2m,海马4种氨基酸类神经递质含量均明显增加(P<0.05或P<0.01);10 mW/cm~2微波辐射后6h,GABA含量降低(P<0.05);辐射后14d和2m,Asp和Glu含量均降低(P<0.05或P<0.01)。(2)大鼠海马组织结构和线粒体超微结构变化:2.5、5和10mW/cm~2微波辐射后6m内,大鼠海马组织见水肿、疏松,神经元呈不同程度的变性、坏死,血管周间隙增宽。2.5和5mW/cm~2辐射后7d见海马损伤,1m损伤最为严重,2m呈恢复趋势,2.5 mW/cm~2辐射后6m恢复,而5mW/cm~2组仍见部分组织损伤;10mW/cm~2组海马结构损伤发生早(辐射后6h),7d和14d损伤最重,6m仍未恢复。各辐射组尼氏体数量均呈不同程度减少,以10mW/cm~2组最重,其变化规律与HE染色结果基本一致。5mW/cm~2组辐射后6m内,大鼠海马线粒体肿胀、嵴断裂,可见线粒体空化和畸形的线粒体;辐射后6h即见损伤,1m最重,6m呈恢复趋势。(3)大鼠海马组织中hif-1αmRNA和HIF-1α蛋白变化:大鼠海马hif-1αmRNA于2.5mW/cm~2组未见明显改变;5mW/cm~2组于辐射后14d明显增加(P<0.01),辐射后1m恢复;10mW/cm~2组均低于假辐射组,以6h(P<0.01)、1m(P<0.05)和2m(P<0.05)减少显著。大鼠海马组织中HIF-1α蛋白于2.5mW/cm~2辐射后6h和1m增加(P<0.05或P<0.01),5mW/cm~2辐射后1m增加(P<0.01),10mW/cm~2辐射后14d~2m降低(P<0.05或P<0.01)。(4)大鼠海马组织中ERK1/2和p-ERK1/2表达变化:2.5、5和10mW/cm~2微波辐射后2m内,大鼠海马ERK1/2未见明显改变。假辐射组p-ERK1/2于海马神经元胞浆中呈弱阳性;2.5mW/cm~2辐射后2m内,p-ERK1/2表达无明显变化;5mW/cm~2辐射后7d~1m,p-ERK1/2于海马神经元胞浆和胞核中呈阳性或强阳性(P<0.05或P<0.01);10mW/cm~2辐射后7d~2m,p-ERK1/2于海马神经元胞浆和胞核中呈阳性或强阳性(P<0.05或P<0.01)。(5)PC12细胞线粒体结构和功能变化:30mW/cm~2微波辐射后6h,PC12细胞线粒体分布不均,大小、形状不规则,多数线粒体肿胀、嵴断裂和空化。辐射后1h~3d,ATP含量均低于假辐射组(P<0.01或P<0.05);辐射后1h,SDH和COX活性显著降低(P<0.05);辐射后6h,ΔΨm降低显著(P<0.05);辐射后1~24h,ROS均显著高于假辐射组(P<0.01)。(6)PC12细胞hif-1αmRNA和HIF-1α蛋白变化:hif-1αmRNA于30mW/cm~2微波辐射后6h显著增加(P<0.05);HIF-1α蛋白于30mW/cm~2微波辐射后1h和12h增加(P<0.05),辐射后6h降低(P<0.05)。(7)PC12细胞ERK通路信号分子ERK1/2、p-ERK1/2、Raf、p-c-Raf和p-MEK1/2表达变化:30mW/cm~2微波辐射后1h,PC12细胞中p-ERK1/2蛋白显著增加(P<0.05),30mW/cm~2微波辐射后1~24h,PC12细胞中ERK1/2、Raf、p-c-Raf和p-MEK1/2蛋白均无明显改变。(8)PC12细胞HIF-1靶基因VEGF和能量代谢基因COXⅠ和Ⅳ表达变化:VEGF、COXⅠ和Ⅳ蛋白变化与上述HIF-1α变化呈现一致性,即30mW/cm~2微波辐射后6h,PC12细胞VEGF、COXⅠ和Ⅳ蛋白显著减少(P<0.05),辐射后12h明显增加(P<0.05)。(9)U0126干预后ERK1/2、p-ERK1/2和HIF-1α表达以及线粒体功能变化:10μmol/l U0126干预2h经30mW/cm~2微波辐射后1h,PC12细胞中ERK1/2无明显改变,p-ERK1/2和HIF-1α明显降低(P<0.05);10μmol/l U0126干预2h经30mW/cm~2微波辐射后1~24h,PC12细胞线粒体ATP含量和ΔΨm降低。(10)HIF-1α高表达质粒及U0126干预对30mW/cm~2微波辐射后PC12细胞线粒体功能的影响:经G418筛选后,对照质粒pEGFP-N1(N)和目的质粒pEGFP-N1-HIF-1α(H)转染PC12细胞效率大于90%;H组HIF-1α表达显著高于N组(P<0.01);30mW/cm~2微波辐射后1~24h,H组线粒体ΔΨm显著升高(P<0.01),SDH活性无明显改变(P>0.05);10μmol/l U0126干预2h后经30mW/cm~2微波辐射1~24h,H组ATP含量抑制率低于N组,ΔΨm于辐射后1h和6h无明显变化(P>0.05),辐射后12h和24h明显升高(P<0.01)。
     结论:(1)2.5~10mW/cm~2微波长期辐射可使大鼠海马组织结构尤其是线粒体结构损伤,学习记忆能力下降,氨基酸类神经递质紊乱;上述改变与微波辐射剂量呈正相关。(2)2.5和5mW/cm~2微波长期辐射引起大鼠海马组织中HIF-1α表达增加,10mW/cm~2微波辐射则使HIF-1α表达降低;2.5~10mW/cm~2微波长期辐射使p-ERK1/2表达增加,表明HIF-1α和ERK通路参与微波辐射致海马线粒体损伤的病理生理过程;(3)30mW/cm~2微波辐射使PC12细胞线粒体结构损伤,ATP含量、SDH和COX活性及ΔΨm下降,ROS堆积;(4)30mW/cm~2微波辐射可使PC12细胞HIF-1α表达呈升高、降低再升高的波动性改变,其mRNA呈短暂升高,p-ERK1/2表达升高。表明微波辐射可激活HIF-1α和通过活化p-ERK1/2激活ERK通路。HIF-1的靶基因VEGF和能量代谢相关基因COXⅠ和Ⅳ与HIF-1α的表达变化呈现一致性,表明上述基因表达参与微波辐射致线粒体损伤过程;(5)U0126抑制ERK通路,可引起30mW/cm~2微波辐射后PC12细胞p-ERK1/2和HIF-1α表达下降, ATP含量下降和ΔΨm降低,表明微波辐射后ERK信号通路正向调控HIF-1α,ERK信号通路在微波辐射致线粒体损伤中发挥保护作用;(6)HIF-1α高表达可使30mW/cm~2微波辐射后PC12细胞ATP含量和ΔΨm明显升高,U0126抑制ERK通路后可降低HIF-1α高表达对PC12细胞ATP含量和ΔΨm的作用,表明HIF-1α激活在微波辐射致PC12细胞线粒体损伤中起保护作用,ERK通路对线粒体功能的保护作用部分通过HIF-1α的作用实现。
Objective: With the wide application of microwave technology and information era, the opportunities of people exposed to microwave are increasing particularly all communication facilities and medical equipment. The biological effects and mechanisms of microwave are the subject of bioelectromagnetics forward. Microwave has a significant effect on central nervous system while hippocampus is the most sensitive target, but the injury mechanism is unknown. Mitochondrial structure and function are closely related to energy metabolism, which is one of the first involving targets of microwave exposure, while the HIF-1α/ERK signaling pathway may play an important role in the process of injury of hippocampal neurons in mitochondria induced by microwave. Therefore, the study of HIF-1α/ERK signaling pathway and its significance in the damage of the hippocampus induced by microwave radiation provides new targets for in-depth study of microwave injury mechanisms and prevention and control measures and approaches, and has important theoretical and practical significance for the normal operation of the health protection staff and modern technology war combatant’s security.
     Materials and methods: (1) 192 male Wistar rats were exposed to microwave at 2.5, 5 and 10mW/cm~2. Exposure time was 6min/times, 5 times/week, and continuouing exposure for 1m. The abilities of learning and memory were detected by Morris water maze at 6h, 7d, 14d, 1m, 2m and 6m after exposure. The structure of rats’hippocampus and mitochondria ultrastructure were observed by HE and tigroid body staining and electron microscope. Meanwhile, amino acid neurotransmitters contents in hippocampus were detected by HPLC. The expression of hif-1αmRNA in hippocampus was detected by Real-time PCR. HIF-1α, ERK1/2, p-ERK1/2 expression were detected by Western Blot, IHC and image analysis. (2) PC12 cells which were induced by NGF were exposed to 30mW/cm~2 microwave. The structure and function of mitochondria were observed by electron microscope, luminometer, fluorospectrophotometer and fluoromicroscope. Real-time PCR, Western Blot, IHC and image analysis were used to detect hif-1αmRNA, HIF-1α, molecular of ERK pathway (ERK1/2, p-ERK1/2, Raf, p-c-Raf, p-MEK1/2), target gene of HIF-1α(VEGF) and energy metabolism related gene (COXⅠand COXⅣ) expression. The regulation of ERK pathway on HIF-1αand the effect of HIF-1αto mitochondria function of PC12 cells were invested by intervention means of U0126 and hypso-expression plasmid of HIF-1α.
     Results: (1) The changes of rats’learning and memory abilities and amino acids neurotransmitter: The AELs of 10mW/cm~2 group were longer than sham group (P<0.05) at 7d after exposure. AELs of 5 and 10mW/cm~2 group were longer than sham group at 14d (P<0.05 or P<0.01). AELs of exposed groups were all longer than sham group at 1m(P<0.05 or P<0.01). Four kinds of amino acid neurotransmitter contents in hippocampus were increased significantly at 6h, 14d and 2m in 2.5 and 5mW/cm~2 groups(P<0.05 or P<0.01). GABA contents were decreased at 6h after exposure (P<0.05), and Asp and Glu contents were decreased at 14d and 2m in 10mW/cm~2 group(P<0.05 or P<0.01). (2) The changes of hippocampus structure and ultrastructure of mitochondria: The hippocampus structure of exposed groups appeared tissue edema, osteoporosis, and different degrees of degeneration and necrosis of neurons, vascular congestion and hemorrhage and enlarged perivascular space within 6m after 2.5, 5 and 10mW/cm~2 exposure. At 2.5 and 5mW/cm~2 groups, the hippocampus injuries appeared at 7d, 1m at the most serious stage, and 2m on the recovery of the trend. In 2.5 mW/cm~2 group, the hippocampus structure recovered at 6m while in 5 mW/cm~2 group, the injuries still could be seen then. In 10mW/cm~2 group, the injury of hippocampus structure appeared earlier (6h after exposure), 7d and 14d at the most serious stage, and could not recovered at 6m. The numbers of tigroid body were decreased at different extend in exposure groups and were the most serious in 10 mW/cm~2 group. The change rule of it was agreed with HE staining. The mitochondria showed swell, cristae break, cavitation and malformed which were injured at 6h, 1m at the most serious stage, and 6m on the recovery of the trend during 6m in 5 mW/cm~2 group. (3) The mRNA and protein expression changes of HIF-1αin rats’hippocampus: There was no change of hif-1αmRNA in 2.5mW/cm~2 group, while hif-1αmRNA was increased significantly at 14d (P<0.01) and recovered at 1m in 5mW/cm~2 group, then hif-1αmRNA was expressed in 10mW/cm~2 group lower than sham group, which was decreased significantly at 6h (P<0.01), 1m (P<0.05) and 2m (P<0.05). The protein of HIF-1αin rats’hippocampus was increased at 6h and 1m (P<0.01 or P<0.05) in 2.5mW/cm~2 group and at 1m in 5mW/cm~2 group (P<0.01), and was decreased at 14d~2m in 10mW/cm~2 group (P<0.01 or P<0.05). (4) The expression changes of ERK1/2 and p-ERK1/2 in rats’hippocampus: There was no significant change within 2m in exposure groups. In sham group, p-ERK1/2 was expressed weakly positive in neuron cytoplasm of hippocampus, while there was no changes within 2m in 2.5mW/cm~2 group, and p-ERK1/2 was expressed positive or strong positive at 7d~1m in 5mW/cm~2 group (P<0.01 or P<0.05) and at 7d~2m in 10mW/cm~2 group (P<0.01 or P<0.05). (5) The structure and function changes of mitochondria of PC12 cells: The mitochondria of PC12 cells showed unevenness distribution, irregular sizes and shapes, swelling, cristae break and cavitation at 6h after 30mW/cm~2 microwave exposure. ATP contents were lower than sham group (P<0.01 or P<0.05) at 1h~3d. The activities of SDH and COX were decreased significantly (P<0.05) at 1h.ΔΨm was decreased significantly at 6h (P<0.05). ROS was higher than sham group at 1~24h (P<0.01). (6) The mRNA and protein expression changes of HIF-1αin PC12 cells: hif-1αmRNA was increased at 6h after 30mW/cm~2 microwave exposure (P<0.05). HIF-1αwas increased at 1h and 12h after 30mW/cm~2 microwave exposure (P<0.05) and was decreased at 6h (P<0.05). (7) The expression changes of ERK pathway signal moleculars ERK1/2, p-ERK1/2, Raf, p-c-Raf and p-MEK1/2: The expression of p-ERK1/2 was increased significantly at 1h after 30mW/cm~2 microwave exposure (P<0.05). There were no changes of ERK1/2, Raf, p-c-Raf and p-MEK1/2 expression at 1~24h after 30mW/cm~2 microwave exposure. (8) The changes of VEGF, COXⅠand COXⅣ: The expressions of VEGF, COXⅠandⅣwere on concordance with HIF-1αabove, i.e. VEGF, COXⅠandⅣwere decreased at 6h after 30mW/cm~2 microwave exposure (P<0.05), and were increased at 12h (P<0.05). (9) ERK1/2, p-ERK1/2 and HIF-1αexpression and function of mitochondria changes after U0126 intervention: PC12 cells were exposed to 30mW/cm~2 microwave 2h after 10μmol/l U0126 intervention, and there was no change of ERK1/2 expression, while the expression of p-ERK1/2 and HIF-1αwere decreased significantly at 1h after (P<0.05). With the same conditions, the ATP contents andΔΨm were decreased at 1~24h after exposure. (10) The effect of high expression plasmid of HIF-1αand U0126 intervention on mitochondria function of PC12 cells after 30mW/cm~2 microwave exposure: After G418 screening, the transfection efficiency of sham plasmid pEGFP-N1 (N) and objective plasmid pEGFP-N1-HIF-1α(H) to PC12 cells exceeded 90%. The expressions of HIF-1αin H group were higher than N group (P<0.01). After 30mW/cm~2 microwave exposure at 1~24h, theΔΨm step up significantly in H group (P<0.01), but there was no change of SDH activity (P>0.05). The ATP inhibition ratio in H group was lower than N group 2h after 10μmol/l U0126 intervention and 30mW/cm~2 microwave exposure, and there was no change ofΔΨm at 1h and 6h after exposure (P>0.05), but was increased at 12h and 24h (P<0.01).
     Conclusions: (1) Long-term microwave exposure at 2.5, 5 and 10mW/cm~2 may cause structural damage in rats’hippocampus especially in mitochondria, with the abilities of learning and memory declining and amino acid neurotransmitter disorders. These changes above were positively correlated with exposure dose. (2) HIF-1αexpression in rats’hippocampus was increased in 2.5 and 5mW/cm~2 groups, while was decreased in 10 mW/cm~2 groups. The p-ERK1/2 expression was increased in exposure groups, which indicated that HIF-1αand ERK pathway participated in the processes of hippocampus mitochondria damage induced by microwave. (3) The mitochondria structure of PC12 cells were injuried by microwave at 30mW/cm~2, and the contents of ATP, the activities of SDH and COX,ΔΨm were decreased, while ROS accumulated. (4) HIF-1αexpression in PC12 cells was fluctuated which showed step up first, then step down and up. The hif-1αmRNA showed increase temporary and the expression of p-ERK1/2 increased. It indicated that microwave exposure may activate HIF-1αand activate ERK pathway by p-ERK1/2. The changes of expression of VEGF which was the target gene of HIF-1α, COXⅠandⅣwhich were energy metabolism genes appeared the same rule of HIF-1α, which indicated that genes above participated in the processes of mitochondria damage induced by microwave exposure. (5) ERK pathway inhibited by U0126 can cause the down expression of p-ERK1/2 and HIF-1α, and the decreasing of ATP contents andΔΨm, which manifested that ERK pathway participated in the positive regulation of HIF-1αafter microwave exposure and ERK pathway played a protection role in the mitochondria damage induced by microwave exposure. (6) High expression of HIF-1αcan increase the ATP contents andΔΨm and ERK pathway inhibited by U0126 can decrease the effects of high expression of HIF-1αon ATP contents andΔΨm, which indicated that the activation of HIF-1αprotected mitochondria in the processes of mitochondria damages of PC12 cells induced by microwave exposure and the protection effect of ERK pathway on mitochondria function was implemented by HIF-1α.
引文
[1]刘尚合,胡小锋.电磁环境效应及对军事装备的影响.兵器知识, 2009, 8: 19-21.
    [2]吕楠,梅全亭,吴朝东.复杂电磁环境对未来战争的影响及对策.国防, 2009, 2: 44-45.
    [3]赵玉峰.现代环境中的电磁污染.北京:电子工业出版社, 2003,第一版: 6-13.
    [4]王德文,彭瑞云.电磁辐射的损伤与防护.中华劳动卫生职业病杂志, 2003, 21(5): 321-322.
    [5] Banik S, Bandyopadhyay S, Ganguly S. Bioeffects of microwave-a brief review. Bioresour Technol, 2003, 87(2): 155-159.
    [6]王善雨,高春玉,谢宁.军事作业环境的电磁辐射及防护.解放军预防医学杂志, 2009, 27(3): 230-232.
    [7]邓朝晖,龚茜芬,余争平,等.雷达部队电磁辐射对作业人员神经行为功能的影响.中国辐射卫生, 2008, 17(2): 136-137.
    [8]王德文.现代军事病理学.北京:军事医学科学出版社, 2002,第一版: 598-637.
    [9] Chou CK. Thirty-five years in bioelectromagnetics research. Bioelectromagnetics, 2007, 28(1): 3-15.
    [10] Johansen C. Exposure to electromagnetic fields and risk of central nervous system disease in utility workers. Epidemiology, 2000, 11(5): 539-543.
    [11] Wang B, Lai H. Acute exposure to pulsed 2450-MHz microwaves affects water-maze performance of rats. Bioelectrom, 2000, 21(1): 52-56.
    [12]左红艳,王德文,彭瑞云,等.电磁辐射对原代培养海马神经元的损伤效应及其机制探讨.生物物理学报, 2007, 23 (1): 47-53.
    [13] Koylu H, Mollaoglu H, Ozguner F, et al. Melatonin modulates 900 MHz microwave-induced lipid peroxidation changes in rat brain. Toxicol Ind Health, 2006, 22(5): 211-216.
    [14]魏丽,彭瑞云,王丽峰,等.高功率微波辐射对大鼠海马神经元突触超微结构及氨基酸类神经递质含量的影响.中华劳动卫生与职业病杂志, 2006, 24(4): 245-247.
    [15]张彦文,余争平,谢燕,等.微波辐照对大鼠海马脑区NMDA受体亚基基因表达的影响.卫生研究, 2008, 37(1): 25-28.
    [16]李玉红,赵向阳,王德文.电磁脉冲对大鼠海马组织中CREB和nNOS蛋白表达的影响.承德医学院学报, 2005, 22(1): 3-6.
    [17]杨瑞,彭瑞云,高亚兵,等. HPM辐射后大鼠海马组织中细胞凋亡及Caspase 3的表达研究.中国体视学与图像分析, 2006, 11(2): 109-112.
    [18]杨瑞,彭瑞云,高亚兵,等.微波辐射对大鼠海马神经元的损伤效应及其机制研究.中华物理医学与康复杂志, 2006, 28(10): 670-673.
    [19] Xu S, Ning W, Xu Z, et al. Chronic exposure to GSM 1800-MHz microwaves reduces excitatory synaptic activity in cultured hippocampal neurons. Neurosci Lett, 2006, 398(3): 253-257.
    [20] Ning W, Xu SJ, Chiang H, et al. Effects of GSM 1800 MHz on dendritic development of cultured hippocampal neurons. Acta Pharmacol Sin, 2007, 28(12): 1873-1880.
    [21]高晓娜,彭瑞云,高亚兵,等.微波辐射致大鼠PC12细胞损伤作用.中国公共卫生, 2008, 24(11): 1354-1356.
    [22]左红艳,王德文,彭瑞云,等.电磁辐射对大鼠海马Raf/MEK/ERK信号通路的影响.中国应用生理学杂志, 2009, 25(2): 186-189.
    [23] Sinha RK, Aggarwal Y, Upadhyay PK, et al. Neural network-based evaluation of chronic non-thermal effects of modulated 2450 MHz microwave radiation on electroencephalogram. Ann Biomed Eng, 2008, 36(5): 839-851.
    [24] Tattersall JE, Scott I, Wood SJ, et al. Effects of low intensity radiofrequency electromagnetic fields on electrical activity in rat hippocampal slices. Brain Res, 2001, 904(1): 43-53.
    [25]彭晓东,刘传缋,赵亚丽,等.微波照射对大鼠在体海马诱发电位长时程增强的影响.生物物理学报, 2001, 17(2): 371-378.
    [26] Li M, Wang Y, Zhang Y, et al. Elevation of plasma corticosterone levels and hippocampal glucocorticoid receptor translocation in rats: a potential mechanism for cognition impairment following chronic low-power-density microwave exposure. J Radiat Res(Tokyo), 2008, 49(2): 163-170.
    [27] Hardell L, Basman A, Pahlson A, et al. Case-control study on radiology work, medical x-ray investingations, and use of cellular telephones as risk factors for brain tumors. MedGenMed, 2000, 2(2): E2.
    [28] Richter E, Berman T, Ben-Michael E, et al. Cancer in radar technicians exposed to radiofrequency/microwave radiation: sentinel episodes. Int J Occup Environ Health, 2000, 6(3): 187-193.
    [29]谢燕,江海洪,龚茜芬,等.微波辐照对大鼠海马和皮层神经细胞线粒体超微结构及mtTFA mRNA表达的影响.中华劳动卫生职业病杂志, 2004, 22(2): 104-107.
    [30]赵黎,彭瑞云,高亚兵,等.微波辐射对大鼠海马线粒体COX基因表达的影响研究.中华物理医学与康复, 2008, 1(30): 31-33.
    [31] Ke Q, Costa M. Hypoxia-Inducible Factor-1 (HIF-1). Mol Pharmacol, 2006, 70(5): 1469-1480.
    [32] Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer, 2003, 3(10): 721-732.
    [33]王旭,胡向军,彭瑞云,等.高功率微波辐射对大鼠脑HIF-1α表达影响.中国公共卫生, 2007, 23(10): 1161-1163.
    [34] Bickler PE, Donohoe PH. Adaptive responses of vertebrate neurons to hypoxia. J Exp Biol, 2002, 205(Pt23): 3579-3586.
    [35] Samuels IS, Saitta SC, Landreth GE. MAP’ing CNS Development and Cognition: An ERKsome Process. Neuron, 2009, 61(2): 160-167.
    [36] Caraglia M, Marra M, Mancielli F, et al. Electromagnetic fields at mobile phone frequency induce apoptosis and inactivation of the multi-chaperone complex in human epidermoid cancer cells. J Cell Physiol, 2005, 204(2): 539-548.
    [37]杨学森,龚茜芬,张广斌,等.电磁辐射对大鼠海马MAPK信号通路的影响.中国公共卫生, 2005, 21(6): 693-695.
    [38] Bergeron M, Yu AY, Solway KE, et al. Induction of hypoxia-inducible factor-1(HIF-1) and its target genes following focal ischemia in rat brain. Eur J Neurosci, 1999, 11(12): 4159-4170.
    [1]龚志锦,詹镕洲.病理组织制片和染色技术.上海:科学技术出版社, 1994,第一版: 50-54.
    [2]王伯沄,李玉松,黄高昇,等.病理学技术.北京:人民卫生出版社. 2001,第一版: 37-40.
    [3]王德文,彭瑞云.电磁辐射的损伤与防护.中华劳动卫生职业病杂志, 2003, 21(5): 321.
    [4] Fedorowski A, Steciwko A. Biological effects of non-ionizing electromagnetic. Med Pro, 1998, 49(1): 93.
    [5]张莹,洪涛.阿尔茨海默病Aβ构象转变机制研究进展.现代生物医学进展, 2009, 9(10): 1956-1963.
    [6]杜怡峰,赵咏梅,姬志娟,等. APP17肽对快速老化小鼠SAMP10学习、记忆功能和海马神经细胞线粒体氧化应激水平的影响.中国病理生理杂志, 2006, 22(6): 1099-1102.
    [7]王强,张淑珍,曹兆进.移动电话微波电磁辐射对中枢神经系统的影响.中华预防医学杂志, 2005, 39(6): 425-426.
    [8]王丽峰,胡向军,彭瑞云,等.高功率微波辐射后小鼠行为学变化研究.中国行为医学科学, 2005, 14(1): 32-34.
    [9]张彦文,安晓静,谢燕,等.微波辐照对大鼠学习记忆行为和海马LTP影响.中国公共卫生, 2007, 23(2): 190-192.
    [10] Hillert L, Berglind N, Arneta BB, et al. Prevalence of self reported hypersensitivity to electric or magnetic fields in a population based questionnaire survey. Scand J Work Environ Health, 2002, 28(1): 33-41.
    [11] Keetley V, Wood AW, Spong J, et al. Neuropsychological sequelae of digital mobile phone exposure in humans. Neuropsychologia, 2006, 44(10): 1843-1848.
    [12] Koivisto M, Krause CM, Revonsuo A, et al. The effects of electromagnetic field emitted by GSM phones on working memory. Neuroreport, 2000, 11(8): 1641-1643.
    [13] Papageorgiou CC, Nanou ED, Tsiafakis VG, et al. Acute mobile phone effects on pre-attentive operation. Neurosci Lett, 2006, 397(1-2): 99-103.
    [14] Aalto S, Haarala C, Bruck A, et al. Mobile phone affects cerebral blood flow in humans. J Cereb Blood Flow Metab, 2006, 26(7): 885-890.
    [15]陈娟,左红艳,王德文.不同波段电磁辐射对大鼠学习记忆的影响.中国行为医学科学, 2006, 15(12): 1061-1063.
    [16]周艳玲,马燕,刘能保.成年海马齿状回神经发生研究进展.医学综述, 2009, 15(24): 3739-3742.
    [17] Morris R. Development of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods, 1984, 11(1): 47-60.
    [18] Vorhees CV, Williams MT. Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc, 2006, 1(2): 848-858.
    [19] Sienkiewicz ZJ, Blackwell RP, Haylock RG. Low-level exposure to pulsed 900MHz microwave radiation does not cause deficits in performance of spatial learning task in mice. Bioelectromagnetics, 2001, 21(3): 151-158.
    [20]吴锡南,程天民,刘苹,等.出生前暴露1800MHz电磁场大鼠Morris迷宫测试.环境与健康杂志, 2003, 20(1): 10-12.
    [21]王强,曹兆进,张淑珍,等. 915MHz微波电磁辐射对断乳鼠学习记忆能力的影响.环境与健康杂志, 2007, 24(6): 385-388.
    [22]王葆芳,芦秀香,徐晓波,等. 900MHz脉冲微波近场辐射对实验大鼠学习记忆功能的影响.环境与职业医学, 2003, 20(4): 299-300.
    [23]史长华,路国兵,李玉红.电磁辐射对大鼠学习记忆能力和海马神经元形态的影响.承德医学院学报, 2009, 26(4): 356-358.
    [24]陈纯海,屈占东,杨学森.妊娠期和哺乳期连续微波辐射对小鼠学习记忆功能的影响与甲状腺激素作用研究.辐射研究与辐射工艺学报, 2009, 27(3): 161-166.
    [25] Yamaguchi H, Tsurita G, Ueno S, et al. 1439 MHz pulsed TDMA fields affect performance of rats in a T-maze task only when body temperature is elevated. Bioelectromagnetics, 2003, 24(4): 223-230.
    [26]温二生,王凤珍,胡志苹.海马与学习记忆的研究进展.赣南医学院学报, 2006, 4: 651-652.
    [27]李永生,阎学安,邵福源.中枢神经递质与学习记忆的相关性研究进展.实用医药杂志, 2006, 23(7): 864-866.
    [28] Mason PA, Escarciga R, Doyle JM, et al. Amino acid concentrations in hypothalamic and caudate nuclei during microwave-induced thermal stress: analysis by microdialysis. Bioelectromagnetics, 1997, 18(3): 277-283.
    [29]李玉红,王德文,彭瑞云.电磁脉冲对大鼠海马氨基酸类神经递质水平的影响.中华劳动卫生职业病杂志, 2003, 21(5): 323-325.
    [30]王丽峰,彭瑞云,胡向军,等. HPM对大鼠大脑结构及其神经递质的影响.中国公共卫生, 2005, 21(9): 1059-1060.
    [31]魏丽,彭瑞云,王丽峰,等.高功率微波辐射对大鼠海马神经元突触超微结构及氨基酸类神经递质含量的影响.中华劳动卫生职业病杂志, 2006, 24(4): 245-247.
    [32]王旭,胡向军,彭瑞云,等.高功率微波辐射对大鼠脑内神经递质及全身儿茶酚胺代谢的影响.中国临床康复, 2006, 10(30): 92-94.
    [33]王丽峰,彭瑞云,胡向军,等.微波辐射对大鼠大脑皮质突触结构和神经递质含量的影响.解放军医学杂志, 2009, 34(10): 1188-1190.
    [34]刘朝晖,王小娟,陈景藻,等.毫米波辐射对大鼠下丘脑及海马化合物含量的影响.中华物理医学与康复杂志, 2002, 24(6): 363-364.
    [35]姜宗来.人体系统解剖学.上海:第二军医大学出版社, 2001,第一版: 220-250.
    [36] de Gannes FP, Billaudel B, Taxile M, et al. Effects of head-only exposure of rats to GSM-900 on blood-brain barrier permeability and neuronal degeneration. Radiat Res, 2009, 172(3): 359-367.
    [37]吕士杰,田志杰,姜艳霞,等.高功率脉冲微波辐射对大鼠脑结构及功能影响.中国公共卫生, 2009, 25(2): 177-178.
    [38]陈娟,王德文,左红艳,等.电磁辐照对海马病理形态学及相关因子表达的影响.解放军预防医学杂志, 2007, 25(2): 82-86.
    [39]杨瑞,彭瑞云,高亚兵,等.高功率微波辐射对大鼠海马的损伤效应.中华劳动卫生职业病杂志, 2004, 22(3): 211-214.
    [40] Salford LG, Brun AE, Eberhardt JL, et al. Nerve cell damage in mammalian brain after exposure to microwaves from GSM mobile phones. Environ Health Perspect, 2003, 111(7): 881-883.
    [41]张守信,金连弘.神经生物学.北京:科学出版社, 2002,第一版: 97-412.
    [42]高殿帅,张凤真.神经生物学基础.上海:第二军医大学出版社, 2006,第一版: 9-27.
    [43]孟丽,彭瑞云,高亚兵,等. S波段高功率微波对大鼠下丘脑垂体肾上腺轴的功能及形态影响.军事医学科学院院刊, 2005, 29(1): 25-29.
    [44]王春梅,黄晓峰,杨家骥.细胞超微结构与超微结构病理基础.西安:第四军医大学出版社, 2004,第一版: 11-40.
    [45]黄晓峰,戴晓汶,李向党,等.线粒体改变在超微结构病理诊断中的作用.电子显微学报, 2002, 21(6): 923-928.
    [46]卜翠萍,奚耕思.线粒体与认知老化.心理科学进展, 2005, 13(3): 341-347.
    [47] Tomobe K, Nomura Y. Neurochemistry, neuropathology, and heredity in SAMP8: a mouse model of senescence. Neurochem Res, 2009, 34(4): 660-669.
    [1]杨学森,龚茜芬,张广斌,等.电磁辐射对大鼠海马MAPK信号通路的影响.中国公共卫生, 2005, 21(6): 693-695.
    [2] Semenza GL, Wang GL. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol, 1992, 12(12): 5447-5454.
    [3] Kaelin WG. Proline hydroxylation and gene expression. Annu Rev Biochem, 2005, 74: 115-128.
    [4] Matsuda T, Abe T, Wu JL, et al. Hypoxia inducable factor-1αDNA induced angiogenesis in a rat cerebral ischemia model. Neurol Res, 2005, 27(5): 503-508.
    [5] Sun FY, Guo X. Molecular and cellular mechanisms of neuroprotection by vascular endothelial growth factor. J Neurosci Res, 2005, 79(1-2): 180-184.
    [6] Maiese K, Li F, Chong ZZ. Erythropoietin in the brain can the promise to protect be fulfilled? Trends Pharmacol Sci, 2004, 25 (11): 577-583.
    [7] Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer, 2003, 3(10): 721-732.
    [8] Karaczyn A, Ivanov S, Reynolds M, et al. Ascorbate depletion mediates up-regulation of hypoxia-associated proteins by cell density and nickel. J Cell Biochem, 2006, 97(5): 1025-1035.
    [9] Yang ZZ, Zhang AY, Yi FX, et al. Redox regulation of HIF-1alpha levels and HO-1 expression in renal medullary interstitial cells. Am J Physiol Renal Physiol, 2003, 284(6): F1207-1215.
    [10] Qian D, Lin HY, Wang HM, et al. Normoxic induction of the hypoxic-inducible factor-1 alpha by interleukin-1 beta involves the extracellular signal-regulated kinase 1/2 pathway in normal human cytotrophoblast cells. Biol Reprod, 2004, 70(6): 1822-1827.
    [11] Moeller BJ, Cao Y, Li CY, et al. Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radical, and stress granules. Cancer Cell, 2004, 5(5): 429-441.
    [12] Gorski DH, Beckett MA, Jaskowiak NT, et al. Blockage of the vascular endothelial growth factor stress response increases the antitumor effects of ionizing radiation. Cancer Res, 1999, 59(14): 3374-3378.
    [13]王旭,胡向军,彭瑞云,等.高功率微波辐射对大鼠脑HIF-1α表达影响.中国公共卫生, 2007, 23(10): 1161-1163.
    [14]陈瑞,侯燕芝,陈安宇,等.微波辐照对鼠脑MND、NOS含量和LDH活性的影响.首都医科大学学报, 2003, 24(3): 231-233.
    [15] McCubrey JA, Steelman LS, Chappell WH, et al. Roles of the Raf/MEK/ERK pathway in cell growth, malignant, transformation and drug resistance. Biochim Biophys Acta, 2007, 1773(8): 1263-1284.
    [16] Murphy LO, Blenis J. MAPK signal specificity: the right place at the right time. Trends Biochem Sci, 2006, 31(5): 268-275.
    [17] Chambard JC, Lefloch R, Pouysségur J, et al. ERK implication in cell cycle regulation. Biochim Biophys Acta, 2007, 1773(8): 1299-1310.
    [18] Feld M, Dimant B, Delorenzi A, et al. Phosphorylation of extra-nuclear ERK/MAPK is required for long-term memory consolidation in the crab Chasmagnathus. Behav Brain Res, 2005, 158(2): 251-261.
    [19] Lee KS, Choi JS, Hong SY, et al. Mobile phone electromagnetic radiation activates MAPK signaling and regulates viability in Drosophila. Bioelectromagnetics, 2008, 29(5): 371-379.
    [20] Caraglia M, Marra M, Mancinelli F, et al. Electromagnetic fields at mobile phone frequency induce apoptosis and inactivation of the multi-chaperone complex in human epidermoid cancer cells. J Cell Physiol, 2005, 204(2): 539-548.
    [21] Soda A, Ikehara T, Kinouchi Y, et al. Effect of exposure to an extremely low frequency-electromagnetic field on the cellular collagen with respect to signaling pathways in osteoblast-like cells. J Med Invest, 2008, 55(3-4): 267-278.
    [22] Ke XQ, Sun WJ, Lu DQ, et al. 50-Hz magnetic field induces EGF-receptor clustering and activates RAS. Int J Radiat Biol, 2008, 84(5): 413-420.
    [23] Jin M, Blank M, Goodman R. ERK1/2 phosphorylation, induced by electromagnetic fields, diminishes during neoplastic transformation. J Cell Biochem, 2000, 78(3): 371-379.
    [24] Sylvester PW, Shah SJ, Haynie DT, et al. Effects of ultra-wideband electromagnetic pulses on pre-neoplastic mammary epithelial cell proliferation. Cell Prolif, 2005, 38(3): 153-163.
    [25] Nie K, Henderson A. MAP kinase activation in cells exposed to a 60 Hz electromagnetic field. J Cell Biochem, 2003, 90(6): 1197-1206.
    [26] Goldschmidt ME, McLeod KJ, Taylor WR. Integrin-mediated mechanotransduction in vascular smooth muscle cells: frequency and force response characteristics. Circ Res, 2001, 88(7): 674-680.
    [27]左红艳,王德文,彭瑞云,等.电磁辐射对大鼠海马Raf/MEK/ERK信号通路的影响.中国应用生理学杂志, 2009, 25 (2): 186-189.
    [28] Pages G, Milanini J, Richard DE, et al. Signaling angiogenesis via p42/p44 MAP kinase cascade. Ann N Y Acad Sci, 2000, 902: 187-200.
    [29] Treins C, Giorgetti-Peraldi S, Murdaca J, et al. Regulation of vascular endothelial growthfactor expression by advanced glycation end products. J Biol Chem, 2001, 276(47): 43836-43841.
    [30] Garcia JA. Hifing the brakes: therapeutic opportunities for treatment of human malignancies. Sci STKE, 2006, 2006(337): pe25.
    [31] Minet E, Michel G, Mottet D, et al. Transduction pathways involved in hypoxia-inducible factor-1 phosphorylation and activation. Free Radic Biol Med, 2001, 31(7): 847-855.
    [32] Hur E, Chang KY, Lee E, et al. Mitogen-activated protein kinase kinase inhibitor PD98059 blocks the transactivation but not the stabilization or DNA binding ability of hypoxia-inducible factor-1 alpha. Mol Pharmacol, 2001, 59 (5): 1216-1224.
    [33] Sodhi A, Montaner S, Miyazaki H, et al. MAPK and Akt act cooperatively but independently on hypoxia inducible factor-1alpha in rasV12 upregulation of VEGF. Biochem Biophys Res Commun, 2001, 287 (1): 292-300.
    [1] Greene LA, Angelastro JM. You can't go home again: transcriptionally driven alteration of cell signaling by NGF. Neurochem Res, 2005, 30(10): 1347-1352.
    [2] Shafer TJ, Atchison WD. Transmitter, ion channel and receptor properties of pheochromocytoma (PC12) cells: a model for neurotoxicological studies. Neurotoxicology, 1991, 12(3): 473-492.
    [3] Levi A, Biocca S, Cattaneo A, et al. The mode of action of nerve growth factor in PC12 cells. Mol Neurobiol, 1988, 2(3): 201-226.
    [4] Seth K, Agrawal AK, Aziz MH, et al. Induced expression of early response genes/oxidative injury in rat pheochromocytoma (PC12) cell line by 6-hydroxydopamine: implication for Parkinson’s disease. Neurosci Lett, 2002, 330(1): 89-93.
    [5] Tracy MR, Hedges SB. Evolutionary history of the enolase gene family. Gene, 2000, 259(1-2): 129-138.
    [6] Palmio J, Peltola J, Vuorinen P, et al. Normal CSF neuron-specific enolase and s-100 protein levels in patients with recent non-complicated tonic clonic seizures. J Neuro Sci, 2001, 183(1): 27-31.
    [7] Gurnett CA, Landt M, Wong M. Analysis of cerebrospinal fluid glial fibrillary acidic protein after seizures in children. Epilepsia, 2003, 44(11): 1455-1458.
    [8] Julien JP. Neurofilament functions in health and disease. Curr Opin Neurobiol, 1999, 9(5): 554-560.
    [9] Gotow T. Neurofilaments in health and disease. Med Electron Microsc, 2000, 33(4): 173-199.
    [10]万选材,杨天祝,徐承熹.现代神经生物学.北京:北京医科大学中国协和医科大学联合出版, 1999,第一版: 105-126.
    [11] Xu S, Ning W, Xu Z, et al. Chronic exposure to GSM 1800-MHz microwaves reduces excitatory synaptic activity in cultured hippocampal neurons. Neurosci Lett, 2006, 398(3): 253-257.
    [12] Ning W, Xu SJ, Chiang H, et al. Effects of GSM 1800 MHz on dendritic development of cultured hippocampal neurons. Acta Pharmacol Sin, 2007, 28(12):1873-1880.
    [13] Del Vecchio G, Giuliani A, Fernandez M, et al. Effect of radiofrequency electromagnetic field exposure on in vitro models of neurodegenerative disease. Bioelectromagnetics, 2009, 30(7): 564-572.
    [14] Del Vecchio G, Giuliani A, Fernandez M, et al. Continuous exposure to 900MHz GSM-modulated EMF alters morphological maturation of neural cells. Neurosci Lett, 2009, 455(3): 173-177.
    [15] Blackman CF, Benane SG, House DE, et al. Action of 50 Hz magnetic fields on neurite outgrowth in pheochromocytoma cells. Bioelectromagnetics, 1993, 14(3): 273-286.
    [16] McFarlane EH, Dawe GS, Marks M, et al. Changes in neurite outgrowth but not in cell division induced by low EMF exposure: influence of field strength and culture conditions on responses in rat PC12 pheochromocytoma cells. Bioelectrochemistry, 2000, 52(1): 23-28.
    [17] Zhang Y, Ding J, Duan W, et al. Influence of pulsed electromagnetic field with different pulse duty cycles on neurite outgrowth in PC12 rat pheochromocytoma cells. Bioelectromagnetics, 2005, 26(5): 406-411.
    [18] Zhang Y, Ding J, Duan W. A study of the effects of flux density and frequency of pulsed electromagnetic field on neurite outgrowth in PC12 cells. J Biol Phys, 2006, 32(1): 1-9.
    [19] Kim S, Im WS, Kang L, et al. The application of magnets directs the orientation of neurite outgrowth in cultured human neuronal cells. J Neurosci Methods, 2008, 174(1): 91-96.
    [20]高晓娜,彭瑞云,高亚兵,等.微波辐射致大鼠PC12细胞损伤作用.中国公共卫生, 2008, 24(11): 1354-1356.
    [21]韩济生.神经科学纲要.北京医科大学&协和医科大学联合出版社, 1993,第一版: 356-489.
    [22] Sanders AP, Schaefer DJ, Joines WT. Microwave effects on energy metabolism of rat brain. Bioelectromagnetics, 1980, 1(2): 171-181.
    [23] Sanders AP, Joines WT, Allis JW. The differential effects of 200, 591 and 2,450 MHz radiation on rat brain energy metabolism. Bioelectromagnetics, 1984, 5(4): 419-433.
    [24] Sanders AP, Joines WT. The effects of hyperthermia and hyperthermia plus microwaves on rat brain energy metabolism. Bioelectromagnetics, 1984, 5(1): 63-70.
    [25]赵黎,彭瑞云,高亚兵,等.微波辐射对大鼠海马线粒体形态及能量代谢的影响.中华放射医学与防护杂志, 2007, 27(6): 602-605.
    [26]李玉红,王德文,高亚兵,等.电磁脉冲对海马神经元的损伤效应及其对[Ca2+]i的影响.中华物理医学与康复杂志, 2005, 27(4): 193-196.
    [27] Rao MV, Sharma PS. Protective effect of vitamin E against mercuric chloride reproductive toxicity in male mice. Reprod Toxicol, 2001, 15(6): 705-712.
    [28] Piasecka M, Wenda-Rózewicka L, Ogoński T. Computerized analysis of cytochemical reactions for dehydrogenases and oxygraphic studies as methods to evaluate the function of the mitochondrial sheath in rat spermatozoa. Andrologia, 2001, 33(1): 1-12.
    [29]姜槐,姚耿东,周水云.微波辐射对胎鼠及新生子鼠下丘脑和肝相对活性的影响.辐射防护, 1987, 7(3): 229-232.
    [30]蒲京遂,陈建. 3000MHz微波辐射对鼠脑电能量和脑组织酶的影响.航天医学与医学工程, 1995, 8(4): 262-264.
    [31] Walker DW, Hájek P, Muffat J, et al. Hypersensitivity to oxygen and shortened lifespan in a Drosophila mitochondrial complex II mutant. Proc Natl Acad Sci U S A, 2006, 103(44): 16382-16387.
    [32] Ardehali H, Chen Z, Ko Y, et al. Multiprotein complex containing succinate dehydrogenase confers mitochondrial ATP-sensitive K+ channel activity. Proc Natl Acad Sci USA, 2004, 101(32): 11880-11885.
    [33] Gennis R, Ferguson-Miller S. Structure of cytochromec oxidase energy generator of aerobic life. Science, 1995, 269(5227): 1063-1064.
    [34] Ammari M, Lecomte A, Sakly M. Exposure to GSM 900 MHz electromagnetic fields affects cerebral cytochrome c oxidase activity. Toxicology, 2008, 250(1): 70-74.
    [35]王强,曹兆进,白雪涛.微波电磁辐射对大鼠脑神经元细胞色素氧化酶活力影响.环境与健康杂志, 2005, 22(5): 329-331.
    [36]孟丽,彭瑞云,高亚兵,等.高功率微波辐射后下丘脑神经元凋亡和线粒体膜电位与Ca2+的变化.中华劳动卫生职业病杂志, 2006, 24(12): 739-741.
    [37] Freeman BA, Crapo JD. Biology of disease: free radicals and tissue injury. Lab Invest, 1982, 47(5): 412-426.
    [38] Ilhan A, Gurel A, Armutcu F, et al. Ginkgo biloba prevents mobile phone-induced oxidative stress in rat brain. Clin Chim Acta, 2004, 340(1-2): 153-162.
    [39] K?ylüH, Mollaoglu H, Ozguner F. Melatonin modulates 900 MHz microwave-induced lipid peroxidation changes in rat brain. Toxicol Ind Health, 2006, 22(5): 211-216.
    [40] Kesari KK, Behari J. Fifty-GHz microwave exposure effect of radiations on rat brain. ApplBiochem Biotechnol, 2009, 158(1): 126-139.
    [41] Di Loreto S, Falone S, Caracciolo V, et al. Fifty hertz extremely low-frequency magnetic field exposure elicits redox and trophic response in rat-cortical neurons. J Cell Physiol, 2009, 219(2): 334-343.
    [42]龚茜芬,杨学森,张广斌,等.硒对微波辐照致PC12细胞损伤的保护作用.第三军医大学学报, 2004, 26(24): 2251-2253.
    [43]龚茜芬,杨学森,邓朝晖,等.营养干预对微波致大鼠海马过氧化损伤的保护效应研究.中国辐射卫生, 2008, 17(4): 401-403.
    [44] Xu S, Zhou Z, Zhang L, et al. Exposure to 1800 MHz radiofrequency radiation induces oxidative damage to mitochondrial DNA in primary cultured neurons. Brain Res, 2010, 1311:189-196.
    [45] Zorov DB, Juhaszova M, Sollott ST. Mitochondrial ROS-induced ROS release: an update and review. Biochim Biophys Acta, 2006, 1757(5-6): 509-517.
    [1] Klimova T, Chandel NS. Mitochondrial complex III regulates hypoxic activation of HIF. Cell Death and Differ, 2008, 15(4): 660-666.
    [2] Lu CW, Lin SC, Chen KF, et al. Induction of pyruvate dehydrogenase kinase-3 by hypoxia-inducible factor-1 promotes metabolic switch and drug resistance. J Biol Chem, 2008, 283(42): 28106-28114.
    [3] Selak MA, Armour SM, Mackenzie ED, et al. Succinale links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolylhydroxylase. Cancer Cell, 2005, 7(l): 77-85.
    [4] Pouysségur J, Mechta-Grigoriou F. Redox regulation of the hypoxia-inducible factor. Biol Chem, 2006, 387(10-11): 1337-1346.
    [5]赵建平,郭治,周志刚,等.线粒体ATP敏感钾通道对大鼠肺动脉平滑肌细胞低氧诱导因子-1α表达及细胞增殖的作用.生理学报, 2007, 59(2): 157-162.
    [6] Ramos JW. The regulation of extracellular signal-regulated kinase(ERK) in mammalian cells. Int J Biochem Cell Biol, 2008, 40(12): 2707-2719.
    [7] Tomita M, Semenza GL, Michiels C. Activation of hypoxia-inducible factor 1 in human T-cell leukaemia virus type 1-infected cell lines and primary adult T-cell leukaemia cells. Biochem J, 2007, 406 (2): 317-323.
    [8] Mottet D, Michel G, Renard P, et al. Role of ERK and calcium in the hypoxia-induced activation of HIF-1. J Cell Physiol, 2002, 194 (1): 30-44.
    [9]左红艳,王德文,彭瑞云,等. RKIP介导的ERK通路在电磁辐射致海马神经元损伤中的作用.细胞与分子免疫学杂志, 2008, 24(7): 660-667.
    [10]杨学森,龚茜芬,张广斌,等.电磁辐射诱导PC12细胞凋亡中丝裂原活化蛋白激酶的差别激活.中华劳动卫生职业病杂志, 2005, 23(3): 167-171.
    [11] Hannken T , Schroeder R , Zahner G, et al. Reactive oxygen species stimulated P44/42 mitogen-activated protein kinase and induce p27 (kip 1): role in angiotensinⅡ-mediated hypertrophy of proximal tubular cells. J Am Sco Nephrol, 2000, 11(8): 1387-1397.
    [12] Berger I, Stahl S, Rychkova N, et al. VEGF receptors on PC12 cells mediate transient activation of ERK1/2 and Akt: comparison of nerve growth factor and vascular endothelialgrowth factor. J Negat Results Biomed, 2006, 5: 8.
    [13] Roitbak T, Li L, Cunningham LA. Neural stem/progenitor cells promote endothelial cell morphogenesis and protect endothelial cells against ischemia via HIF-1α-regulated VEGF signaling. J Cereb Blood Flow Metab, 2008, 28(9): 1530-1542.
    [14] Middeke M, Hoffmann S, Hassan I, et al. In vitro and in vivo angiogenesis in PC12 pheochromocytoma cells is mediated by vascular endothelial growth factor. Exp Clin Endocrinol Diabetes, 2002, 110(8): 386-392.
    [15] Shibuya M. Brain angiogenesis in developmental and pathological processes: therapeutic aspects of vascular endothelial growth factor. FEBS J, 2009, 276(17): 4636-4643.
    [16]董志武,苏乐,苗俊英.内皮细胞对神经干细胞增殖与分化的影响,生物医学工程学杂志, 2007, 24(5): 1184-1186.
    [17] Azzouz M, Ralph GS, Storkebaum E, et al. VEGF delivery with retrogradely transported lentivector prolongs survival in a mouse ALS model. Nature, 2004, 429(6990): 413-417.
    [18] Madri JA. Modeling the neurovascular niche: implications for recovery from CNS injury. J Physiol Pharmacol, 2009, 60(Suppl 4): 95-104.
    [19] Delle Monache S, Alessandro R, Iorio R, et al. Extremely low frequency electromagnetic fields (ELF-EMFs) induce in vitro angiogenesis process in human endothelial cells. Bioelectromagnetics, 2008, 29(8): 640-648.
    [20] Martino CF, Perea H, Hopfner U, et al. Effects of weak static magnetic fields on endothelial cells. Bioelectromagnetics, 2010, 31(4): 296-301.
    [21] Genetos DC, Cheung WK, Decaris ML, et al. Oxygen tension modulates neurite outgrowth in PC12 cells through a mechanism involving HIF and VEGF. J Mol Neurosci, 2010, 40(3): 360-366.
    [22] Xu J, Peng Z, Li R, et al. Normoxic induction of cerebral HIF-1alpha by acetazolamide in rats: role of acidosis. Neurosci Lett, 2009, 451(3): 274-278.
    [23] Fan X, Heijnen CJ, van der Kooij MA, et al. The role and regulation of hypoxia-inducible factor-1alpha expression in brain development and neonatal hypoxic-ischemic brain injury. Brain Res Rev, 2009, 62(1): 99-108.
    [24] Quintero M, Colombo SL, Godfrey A, et al. Mitochondria as signaling organelles in the vascular endothelium. Proc Natl Acad Sci U S A, 2006, 103(14): 5379-5384.
    [25] Lenka N, Vijayasarathy C, Mullick J, et al. Structural organization and transcription of nuclear genes encoding the mammalian cytochrome c oxidase complex. Prog Nucleic Acid Res Mol Biol, 1998, 61: 309-344.
    [26] Carr HS, Winge DR. Assembly of cytochrome c oxidase within the mitochondrion. AccChem Res, 2000, 36(5): 309-316.
    [27] Fukuda R, Zhang H, Kim JW, et al. HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell, 2007, 129(1): 111-122.
    [28]谢燕,江海洪,龚茜芬,等.微波辐照对大鼠脑海马和皮层神经细胞线粒体超微结构及mtTFA mRNA表达的影响.中华劳动卫生职业病杂志, 2004, 22(2): 104-108.
    [29]谢燕,江海洪,龚茜芬,等.微波对大鼠脑线粒体细胞色素c氧化酶亚基转录水平的影响.第三军医大学学报, 2003, 25(11): 987-989.
    [30]赵黎,彭瑞云,高亚兵,等.微波辐射对大鼠海马线粒体COX基因表达的影响研究.中华物理医学与防护杂志, 2008, 30(1): 648-652.
    [31] Scarpulla RC. Transcriptional Paradigms in Mammalian Mitochondrial Biogenesis and Function. Physiol Rev, 2008, 88(2): 611-638.
    [32]陆松敏. mtDNA与缺血缺氧性细胞损伤及疾病的关系.中国病理生理杂志, 2001,17(11): 1104-1105.
    [1] Seta K, Kim HW, Ferguson T, et al. Genomic and physiological analysis of oxygen sensitivity and hypoxia tolerance in PC12 cells. Ann N Y Acad Sci, 2002, 971: 379-388.
    [2] Bracken CP, Fedele AO, Linke S, et al. Cell-specific regulation of hypoxia-inducible factor (HIF)-1 and HIF-2 stabilization and transactivation in a graded oxygen environment. J Biol Chem, 2006, 281(32): 22575-22585.
    [3] Shin HJ, Choi MS, Ryoo NH, et al. Manganese-mediated up-regulation of HIF-1alphaprotein in Hep2 human laryngeal epithelial cells via activation of the family of MAPKs. Toxicol In Vitro, 2010 Feb 10. [Epub ahead of print]
    [4]刘秀华,武旭东,蔡莉蓉,等.缺氧诱导因子-1在缺氧预处理心肌保护中的作用及其机制研究.中国病理生理杂志, 2004, 20: 343-346.
    [5] Li L, Xiong Y, Qu Y, et al. The requirement of extracellular signal-related protein kinase pathway in the activation of hypoxia inducible factor 1 alpha in the developing rat brain after hypoxia-ischemia. Acta Neuropathol, 2008, 115(3): 297-303.
    [6] Shaul YD, Seger R. The MEK/ERK cascade: from signaling specificity to diverse functions. Biochim Biophys Acta, 2007, 1773(8): 1213-1226.
    [7]杨学森,刘戟环,龚茜芬,等.干预丝裂原活化蛋白激酶信号通路对电磁辐射诱导神经细胞凋亡的影响.中国临床康复, 2005, 9(13): 70-72.
    [8] Lall H, Coughlan K, Sumbayev VV. HIF-1αprotein is an essential factor for protection of myeloid cells against LPS-induced depletion of ATP and apoptosis that supports Toll-like receptor 4-mediated production of IL-6. Mol Immunol, 2008, 45(11): 3045-3049.
    [9] Burkhard K, Smith S, Deshmukh R, et al. Development of extracellular signal-regulated kinase inhibitors. Curr Top Med Chem, 2009, 9(8): 678-689.
    [10] Negrín G, Eiroa JL, Morales M, et al. Naturally occurring asteriscunolide A induces apoptosis and activation of mitogen-activated protein kinase pathway in human tumor cell lines. Mol Carcinog, 2010, 49(5): 488-499.
    [1] zur Nedden S, Tomaselli B, Baier-Bitterlich G. HIF-1 alpha is an essential effector for purine nucleoside-mediated neuroprotection against hypoxia in PC12 cells and primary cerebellar granule neurons. J Neurochem, 2008, 105(5): 1901-1914.
    [2] Li L, Qu Y, Li J, et al. Relationship between HIF-1αexpression and neuronal apoptosis in neonatal rats with hypoxia-ischemia brain injury. Brain Res, 2007, 1180: 133-139.
    [3] Chang S, Jiang X, Zhao C, et al. Exogenous low dose hydrogen peroxide increases hypoxia-inducible factor-1alpha protein expression and induces preconditioning protection against ischemia in primary cortical neurons. Neurosci Lett, 2008, 44 1(1): 134-138.
    [4] Li Z, Ya K, Xiao-Mei W, et al. Ginkgolides protect PC12 cells against Hypoxia-Induced injury by p42/p44 MAPK pathway-dependent upregulation of HIF-1a expression and HIF-1 DNA-binding activity. J Cell Biochem, 2008, 103(2): 564-575.
    [5] Gao L, Mejías R, Echevarría M, et al. Induction of the glucose-6-phosphate dehydrogenase gene expression by chronic hypoxia in PC12 cells. FEBS Lett, 2004, 569(1-3): 256-260.
    [6] Zhu L, Wu XM, Yang L, et al. Up-regulation of HIF-1alpha expression induced byginkgolides in hypoxic neurons. Brain Res, 2007, 1166: 1-8.
    [7] Soucek T, Cumming R, Dargusch R, et al. The regulation of glucose metabolism by HIF-1 mediates a neuroprotective response to amyloid beta peptide. Neuron, 2003, 39(1): 43-56.
    [8] Taylor CT. Mitochondria and cellular oxygen sensing in the HIF pathway. Biochem J, 2008, 409(11): 19-26.
    [9] Ralph SJ, Neuzil J. Mitochondria as targets for cancer therapy. Mol. Nutr Food Res, 2009, 53(1): 9-28.
    [10] Hock MB, Kralli A. Transcriptional control of mitochondrial biogenesis and function. Annu Rev Physiol, 2009, 71:177-203.
    [1] Habash RW, Elwood JM, Krewski D, et al. Recent advances in research on radiofrequency fields and health: 2004-2007. J Toxicol Environ Health B Crit Rev, 2009, 12(4): 250-288.
    [2] Om P Gandhi. Electromagnetic fields: human safety issues. Annu Rev Biomed Eng, 2002, 4: 211-234.
    [3]隋建峰,范郑丽.电磁场的神经生物学效应及机制研究进展.环境与职业医学, 2009, 26(4): 409-416.
    [4] Lynn BC, Wang J, Markesbery WR, et al. Quantitative changes in the mitochondrial proteome from subjects with mild cognitive impairment, early stage, and late stage Alzheimer's disease. J Alzheimers Dis, 2010, 19(1): 325-339.
    [5]赵黎,彭瑞云,高亚兵,等.微波辐射对大鼠海马线粒体形态及能量代谢的影响.中华放射医学与防护杂志, 2007, 12(27): 602-604.
    [6]赵黎,彭瑞云,高亚兵,等.微波辐射对大鼠海马线粒体COX基因表达的影响研究.中华物理医学与康复杂志, 2008, 1(30): 31-33.
    [7]谢燕,江海洪,龚茜芬,等.微波辐照对大鼠海马和皮层神经细胞线粒体超微结构及mtTFA mRNA表达的影响.中华劳动卫生职业病杂志, 2004, 22(2): 104-107.
    [8] Ke Q, Costa M. Hypoxia-Inducible Factor-1 (HIF-1). Mol Pharmacol, 2006, 70(5): 1469-1480.
    [9] Qian D, Lin HY, Wang HM, et al. Normoxic induction of the hypoxic-inducible factor-1 alpha by interleukin-1 beta involves the extracellular signal-regulated kinase 1/2 pathway in normal human cytotrophoblast cells. Biol Reprod, 2004, 70(6): 1822-1827.
    [10] Feld M, Dimant B, Delorenzi A, et al. Phosphorylation of extra-nuclear ERK/MAPK is required for long-term memory consolidation in the crab Chasmagnathus. Behav Brain Res,2005, 158(2): 251-261.
    [11] Shin HJ, Choi MS, Ryoo NH, et al. Manganese-mediated up-regulation of HIF-1alpha protein in Hep2 human laryngeal epithelial cells via activation of the family of MAPKs. Toxicol In Vitro, 2010 Feb 10. [Epub ahead of print]
    [12]杨学森,龚茜芬,张广斌,等.电磁辐射对大鼠海马MAPK信号通路的影响.中国公共卫生, 2005, 21(6): 693-695.
    [13]左红艳,王德文,彭瑞云,等.电磁辐射对大鼠海马Raf/MEK/ERK信号通路的影响.中国应用生理学杂志, 2009, 25 (2): 186-189.
    [14]王旭,胡向军,彭瑞云,等.高功率微波辐射对大鼠脑HIF-1α表达影响.中国公共卫生, 2007, 23(10): 1161-1163.
    [15]陈瑞,侯燕芝,陈安宇,等.微波辐照对鼠脑MND、NOS含量和LDH活性的影响.首都医科大学学报, 2003, 24 (3): 231-233.
    [16] Rao MV, Sharma PS. Protective effect of vitamin E against mercuric chloride reproductive toxicity in male mice. Reprod Toxicol, 2001, 15(6): 705-712.
    [17] Piasecka M, Wenda-Rózewicka L, Ogoński T. Computerized analysis of cytochemical reactions for dehydrogenases and oxygraphic studies as methods to evaluate the function of the mitochondrial sheath in rat spermatozoa. Andrologia, 2001, 33(1): 1-12.
    [18] Gennis R, Ferguson-Miller S. Structure of cytochromec oxidase energy generator of aerobic life. Science, 1995, 269(5227): 1063-1064.
    [19] Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial ROS-induced ROS release: an update and review. Biochim Biophys Acta, 2006, 1757(5-6): 509-517.
    [20] Selak MA, Armour SM, Mackenzie ED, et al. Succinale links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolylhydroxylase. Cancer Cell, 2005, 7(l): 77-85.
    [21] Pouysségur J, Mechta-Grigoriou F. Redox regulation of the hypoxia-inducible factor. Biol Chem, 2006, 387(10-11): 1337-1346.
    [22]赵建平,郭治,周志刚,等.线粒体ATP敏感钾通道对大鼠肺动脉平滑肌细胞低氧诱导因子-1α表达及细胞增殖的作用.生理学报, 2007, 59(2): 157-162.
    [23] Hannken T , Schroeder R , Zahner G, et al. Reactive oxygen species stimulated P44/42 mitogen-activated protein kinase and induce p27 (kip 1): role in angiotensinⅡ-mediated hypertrophy of proximal tubular cells. J Am Sco Nephrol, 2000, 11(8): 1387-1397.
    [24] Middeke M, Hoffmann S, Hassan I, et al. In vitro and in vivo angiogenesis in PC12 pheochromocytoma cells is mediated by vascular endothelial growth factor. Exp Clin Endocrinol Diabetes, 2002, 110(8): 386-392.
    [25] Genetos DC, Cheung WK, Decaris ML, et al. Oxygen tension modulates neurite outgrowth inPC12 cells through a mechanism involving HIF and VEGF. J Mol Neurosci, 2010, 40(3): 360-366.
    [26] Carr HS, Winge DR. Assembly of cytochrome c oxidase within the mitochondrion. Acc Chem Res, 2003, 36(5): 309-316.
    [27] Burkhard K, Smith S, Deshmukh R, et al. Development of extracellular signal-regulated kinase inhibitors. Curr Top Med Chem, 2009, 9(8): 678-689.
    [28] Negrín G, Eiroa JL, Morales M, et al. Naturally occurring asteriscunolide A induces apoptosis and activation of mitogen-activated protein kinase pathway in human tumor cell lines. Mol Carcinog, 2010, 49(5): 488-499.
    [1]汪堃仁,薛绍白,柳惠图.细胞生物学.北京师范大学出版社. 2004.第二版. 167-202.
    [2] Semenza GL, Wang GL. A nuclear factor induced by hypoxia via denovo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol, 1992, 12(12): 5447-5454.
    [3] Semenza GL. HIF-1 and mechanisms of hypoxia sensing. Curr Opin Cell Biol, 2001, 13(2): 167-171.
    [4] Bruick RK, Mcknight SL. A conserved family of prolyl-4-hydroxy-lases that modify HIF. Science, 2001, 294 (5545): 1337-1340.
    [5] Mahon PC, Hirota K, Semenza GL. FIH-1: a novel protein that interacts with HIF-1 and VHL to mediate repression of HIF-1 transcriptional activity. Genes Dev, 2001, 15 (20): 2675-2686.
    [6] Semenza GL. Hypoxia inducible 1 (HIF-1) pathway. Science STKE, 2007, 407: 1-3.
    [7] Utta Berchner-Pfannschmidt, Suzan Tug, Michael Kirsch, et al. Oxygen-sensing under the influence of nitric oxide. Cellular Signalling, 2010, 22: 349-356.
    [8] Solaini G, Baracca A, Lenaz G, et al. Hypoxia and mitochondrial oxidative metabolism. Biochim Biophys Acta, 2010 Feb 11. [Epub ahead of print]
    [9] Selak MA, Armour SM, Mackenzie ED, et al. Succinale links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolylhydroxylase. Cancer Cell, 2005, 7(l): 77-85.
    [10] Zhou J, Eleni C, Spyrou G, et al. The mitochondrial thioredoxin system regulates nitric oxide-induced HIF-1alpha protein. Free Radic Biol Med, 2008, 44(1): 91-98.
    [11] Agani FH, Puchowicz M, Chavez JC, et al. The role of mitochondria in the regulation of hypoxia-inducible factor 1 expression during hypoxia. J Biol Chem, 2000, 275(46): 35863-35867.
    [12] Mateo J, Garcia-Lecea M, Cadenas S, et al. Regulation of hypoxia-inducible factor-1alpha by nitric oxide through mitochondria-dependent and -independent pathways. Biochem J, 2003, 376(Pt 2): 537-544.
    [13] Gong Y, Agani FH. Oligomycin inhibits HIF-1alpha expression in hypoxic tumor cells. Am J Physiol Cell Physiol, 2005, 288(5): C1023-C1029.
    [14] Guzy RD, Sharma B, Bell E, et al. Loss of the SdhB, but Not the SdhA, subunit of complex II triggers reactive oxygen species-dependent hypoxia-inducible factor activation and tumorigenesis. Mol Cell Biol, 2008, 28(2): 718-731.
    [15] Chandel NS, Maltepe E, Goldwasser E, et al. Mitochondrial reactive oxygen species trigger hypoxia induced transcription. Proc Natl Acad Sci USA, 1998, 95: 11715-11720.
    [16] Chandel NS, McClintock DS, Feliciano CE, et al. Reactive Oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during Hypoxia: a mechanism of O2 sensing. J Biol Chem, 2000, 275(33): 25130-25138.
    [17] Guzy RD, Schumacker PT. Oxygen sensing by mitochondria at complex III: the paradox of increased reactive oxygen species during hypoxia. Exp Physiol, 2006, 91: 807-819.
    [18] Pouyssegur J, Mechta-Grigoriou F. Redox regulation of the hypoxia-inducible factor. Biol Chem, 2006, 387: 1337-1346.
    [19] Bell EL, Klimova TA, Eisenbart J, et al. The Qo site of the mitochondrial complex III is required for the transduction of hypoxic signaling via reactive oxygen species production. J Cell Biol, 2007, 177: 1029-1036.
    [20] Klimova T, Chandel NS. Mitochondrial complex III regulates hypoxic activation of HIF. Cell Death and Differentiation, 2008, 15: 660-666.
    [21] Wang D, Malo D, Hekimi S. Elevated mitochondrial reactive oxygen species generation affects the immune response via hypoxia-inducible factor-1alpha in long-lived Mclk1+/- mouse mutants. J Immunol, 2010, 184(2): 582-590.
    [22] Chandel NS. Mitochondrial regulation of oxygen sensing. Adv Exp Med Biol, 2010, 661: 339-354.
    [23] Emerling BM, Platanias LC, Black E, et al. Mitochondrial reactive oxygen species activation of p38 mitogen-activated protein kinase is required for hypoxia signaling. Mol Cell Biol, 2005, 25(12): 4853-4862.
    [24] Koshikawa N, Hayashi J, Nakagawara A, et al. Reactive oxygen species-generatingmitochondrial DNA mutation up-regulates hypoxia-inducible factor-1alpha gene transcription via phosphatidylinositol 3-kinase-Akt/protein kinase C/histone deacetylase pathway. J Biol Chem, 2009, 284(48): 33185-33194.
    [25] Tan T, Marín-García J, Damle S, et al. Hypoxia inducible factor-1 improves inotropic responses of cardiac myocytes in aging heart without affecting mitochondrial activity. Exp Physiol, 2010 Mar 12. [Epub ahead of print]
    [26] Tuttle SW, Maity A, Oprysko PR, et al. Detection of reactive oxygen species via endogenous oxidative pentose phosphate cycle activity in response to oxygen concentration: implications for the mechanism of HIF-1alpha stabilization under moderate hypoxia. J Biol Chem, 2007, 282(51): 36790-36796.
    [27] Hagan T, Taylor CT, Lam F, et al. Redistribution of intracellular oxygen in hypoxia by nitric oxide: effect on HIF-1alpha. Science, 2003, 302: 1975-1978.
    [28]赵建平,郭治,周志刚,等.线粒体ATP敏感钾通道对大鼠肺动脉平滑肌细胞低氧诱导因子-1α表达及细胞增殖的作用.生理学报, 2007, 59(2): 157-162.
    [29] Wang G, Hazra TK, Mitra S, et al. Mitochondrial DNA damage and a hypoxic response are induced by CoCl(2) in rat neuronal PC12 cells. Nucleic Acids Res, 2000, 28(10): 2135-2140.
    [30] Thomas R, Kim MH. Targeting the hypoxia inducible factor pathway with mitochondrial uncouplers. Mol Cell Biochem, 2007, 296(1-2): 35-44.
    [31] Jian B, Wang D, Chen D, et al. Hypoxia induced alteration of mitochondrial genes in cardiomyocytes-role of Bnip3 and Pdk1. Shock, 2010 Feb 10. [Epub ahead of print]
    [32] Kim JW, Tchernyshyov I, Semenza GL, et al. HIF-1 mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellar adaptation to hypoxia. Cell Metab, 2006, 3(3): 177.
    [33] Marín-Hernández A, Gallardo-Pérez JC, Ralph SJ, et al. HIF-1alpha modulates energy metabolism in cancer cells by inducing over-expression of specific glycolytic isoforms. Mini Rev Med Chem, 2009, 9(9): 1084-1101.
    [34] Ullah MS, Davies AJ, Halestrap AP. The plasma membrane lactate transporter MCT4, but not MCT1, is up-regulated by hypoxia through a HIF-1alpha-dependent mechanism. J Biol Chem, 2006, 281(14): 9030.
    [35] Fantin VR, St-Pierre J, Leder P. Attenuation of LDH-A expression uncover a link between glycolysis, mitochondrial physiology and tumor maintenance. Cancer Cell, 2006, 9(6): 425.
    [36] Lu CW, Lin SC, Chen KF, et al. Induction of pyruvate dehydrogenase kinase-3 by hypoxia-inducible factor-1 promotes metabolic switch and drug resistance. J Biol Chem, 2008, 283(42): 28106-28114.
    [37] Kirito K, Hu Y, Komatsu N. HIF-1 prevents the overproduction of mitochondrial ROS after cytokine stimulation through induction of PDK-1. Cell Cycle, 2009, 8(17): 2844-2849.
    [38] Mason S, Johnson RS. The role of HIF-1 in hypoxic response in the skeletal muscle. Adv Exp Med Biol, 2007, 618: 229-244.
    [39] Regueira T, Lepper PM, Brandt S, et al. Hypoxia inducible factor-1alpha induction by tumour necrosis factor-alpha, but not by toll-like receptor agonists, modulates cellular respiration in cultured human hepatocytes. Liver Int, 2009, 29(10): 1582-1592.
    [40] Ryo Fukuda, Huafeng Zhang, Jung-whan Kim, et al. HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell, 2007, 129(4): 111-122.
    [41] Cho YE, Ko JH, Kim YJ, et al. mHGTD-P mediates hypoxic neuronal cell death via the release of apoptosis-inducing factor. Neurosci Lett, 2007, 416(2): 144-149.
    [42] Li Y, Lim S, Hoffman D, et al. HUMMR, a hypoxia- and HIF-1alpha-inducible protein, alters mitochondrial distribution and transport. J Cell Biol, 2009, 185(6): 1065-1081.
    [43] Watanabe H, Bohensky J, Freeman T, et al. Hypoxic induction of UCP3 in the growth plate: UCP3 suppresses chondrocyte autophagy. J Cell Physiol, 2008, 216(2): 419-425.
    [44] Sasabe E, Tatemoto Y, Li D, et al. Mechanism of HIF-1alpha-dependent suppression of hypoxia-induced apoptosis in squamous cell carcinoma cells. Cancer Sci, 2005, 96(7): 394-402.
    [45] Zhang H, Bosch-Marce M, Shimoda LA, et al. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem, 2008, 283(16): 10892-10903.
    [46] Mazure N, Pouysségur J. Hypoxia-induced autophagy: cell death or cell survival? Curr Opin Cell Biol, 2010, 22(2): 177-180.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700