用户名: 密码: 验证码:
强γ_k-γ_(cl)H_∞镇定及若干相关问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于H_∞范数最小化的控制理论是鲁棒控制领域最有效的工具之一,而强镇定控制器设计对控制理论与控制工程都具有重大的意义。由于研究之初忽略了控制器自身的稳定性,现有的主流控制器设计方法,包括LQG/H_∞等,都无法保证所设计控制器的稳定性,而另一方面,迄今为止的大多数强镇定问题研究成果存在诸多不足,如局限于特殊对象或特殊问题,依赖于非线性优化问题的求解等,缺乏普适性框架和有效的求解手段。
     本文从H_∞性能指标优化角度入手,定义了强γk-γcl H_∞镇定、同时γk-γcl H_∞控制问题,将现有强镇定相关的若干重要问题纳入统一的框架考虑。随后,论文以状态空间描述和H_∞控制状态空间解为技术架构,结合经典代数Riccati方程方法与线性矩阵不等式方法,充分利用矩阵不等式约束中的自由度,系统深入地研究了强γk-γclH_∞镇定及相关的一系列关键问题。
     在第三章,我们将描述系统方法引入线性时不变对象H_∞镇定问题,提出并证明了H_∞稳定的新充要条件——扩展有界实引理。随后,我们将该技术应用于凸多面体型/仿射型线性参数不确定系统的H_∞分析与综合问题,利用构造参数依赖的Lyapunov函数,分别得到相应的H_∞稳定条件,进而通过约束松弛变量,得到基于线性矩阵不等式约束的H_∞状态反馈控制器设计方法。
     第四章中,我们通过互质分解和Youla参数化描述,证明了r≥2对象同时γk-γclH_∞控制问题等价于r-1关联对象的同时强γk-γcl H_∞镇定问题。利用有界实引理,我们提出了基于一个标准代数Riccati方程和若干线性矩阵不等式约束的n阶强γk-γclH_∞镇定条件,证明了该条件包含之前文献中的修正代数Riccati方程方法,并给出了基于直接线性矩阵不等式优化的控制器设计方法。在此基础上,通过放宽了另一个代数Riccati方程约束,我们得到一个改进n阶强γk-γcl H_∞镇定条件,利用路径跟踪(path-following)思想给出基于迭代线性矩阵不等式优化的控制器设计方法。
     在第五章,我们将第三章中证明的扩展有界实引理引入强镇定问题研究,利用松弛变量提供的自由度,证明了n阶强γk-γcl H_∞镇定的新充分条件,该条件大大改善了第四章中的直接线性矩阵不等式形式镇定结果,随后,利用所有次优H_∞控制器的参数化描述,我们证明了任意l×n(l≥2)阶强γk-γcl H_∞控制器设计可以转化为一个n阶强γk-γcl H_∞控制器设计问题,并在此基础上提出嵌套式高阶控制器构造算法,为解决强镇定问题中可能的高阶控制器困难提供了一种有效的手段。对包含双线性矩阵不等式约束的优化问题,我们结合路径跟踪和互迭代思想给出了有效的n阶、l×n(l≥2)阶控制器设计算法。
     在第四、五章研究成果的基础上,我们在第六章中从参数化控制器描述的结构入手,通过引入自由矩阵,提出并证明了基于广义H_∞中心控制器形式的n阶强γk-γclH_∞镇定条件,证明若干最新的直接线性矩阵不等式镇定条件都可视为该条件的特殊情况。随后我们系统分析了有界实引理条件在处理强镇定相关问题上的保守性,利用第三章中扩展有界实引理条件进一步迭代改进设计结果,并展示了新镇定方法如何与第五章中的嵌套式高阶控制器构造方法结合以克服强镇定控制器的阶数问题。此外,我们还给出了两对象同时γk-γcl H_∞控制器设计的有效算法。
H_∞control is one of the most efficient tools in robust control,while the strong stabilization problem has great significance in both control theory and practice.As neglected initially,it is well known that most of the current state-of-the-art design techniques,including LQG/H_∞,can not guarantee the stability of controller.On the other hand,due to different kinds of limitations,e.g.,considering only SISO plants or only special kinds of problems,depending on the solutions of nonlinear optimization problems,most results on strong stabilization to date can not be generalized and efficiently solved.
     Considering the strong stabilization problem with H_∞performance index,we first define strongγ_k-γ_(cl) H_∞stabilization and simultaneousγ_k-γ_(cl) H_∞control problems,which include strong H_∞stabilization,stable H_∞stabilization,strong stabilization,simultaneous H_∞stabilization and simultaneous stabilization.Then by taking advantages of both ARE and LMI methods and exploring the freedom lying in the matrix inequality constraints,we obtain several results on strongγ_k-γ_(cl) H_∞stabilization and some related problems,which can be summarized as follows.
     In Chapter 3,by introducing the descriptor system method into the H_∞stabilization problem for LTI systems,we prove a new necessary and sufficient condition for H_∞stabilization, i.e.,the extend bounded real lemma.Then this technique is applied to the H_∞analysis and synthesis problems for linear polytopic/affine uncertain systems.By constructing parameter-dependent Lyapunov functions,we obtain the corresponding H_∞stabilization conditions,which lead to direct H_∞state feedback controller design methods by refraining the slack variables.
     In Chapter 4,by utilizing coprime factorization and Youla parameterization,we first prove that the simultaneousγ_k-γ_(cl) H_∞stabilization problem for r(r≥2) plants is equivalent to stronglyγ_k-γ_(cl) H_∞stabilize r-1 associated plants.Then based on the bounded real lemma,a sufficient condition for strongγ_k-γ_(cl) H_∞stabilization is proposed,which leads to the design procedures that involve an algebraic Riccati equation and some LMI constraints. We also prove that this condition include the modified ARE method in[1].Based on this result,an improved sufficient condition on strong H_∞stabilization as well as its dual form is derived,which extends the other ARE constraint into an inequality constraint.Two path-following algorithms are proposed to solve the associated optimization problems with BMI constraints,which lead to full order controllers.
     In Chapter 5,by utilizing the extended bounded real lemma,a new sufficient condition is proposed for n-th order strongγ_k-γ_(cl) H_∞stabilization.This new condition fully relax the H_∞constraint on the controller and greatly improves the direct LMI design results.Then by exploring the parameterization of all suboptimal H_∞controllers,it's also proved that the design of an l×n-th order(l≥2) strongγ_k-γ_(cl) H_∞controller can be transformed into that of an n-th order controller for an associated plant,which tackles the possible order problem.Despite the BMI constraints in resulting optimization problems,the path-following and alternative iteration methods are adopted to formulate procedures for both n-th and l×n-th order(l≥2) controller design.
     In Chapter 6,based on the results of Chapter 4 and 5,a new LMI method is proposed for the strongγ_k-γ_(cl) H_∞stabilization problem by modifying the controller form,which leads to a so-called generalized H_∞central controller form.It is shown that several recently developed methods can be seen as its special cases.Meanwhile,we analyze the conservatism of the bounded real lemma when additional constraints have to be taken into account,and adopt the extended bounded real lemma to further improve the LMI design results iteratively.For the possible order problem,the nested construction method can also be applied.For the case when r=2,we present an efficient algorithm for designing a simultaneousγ_k-γ_(cl) H_∞controller.
引文
[1] Cao Y, Lam J. On simultaneous H_∞ control and strong H_∞ stabilization. Automatica, 2000,36:859-865.
    
    [2] Doyle J. Robustness of multiloop linear feedback systems. Proceedings of the IEEE Conf. Dec. and Control, San Diego, California, USA, 1979. 12-18.
    
    [3] Zhou K, Doyle J, Glover K. Robust and optimal control. New Jersey: Prentice-Hall, 1996.
    
    [4] MacFarlane A. Frequency response methods in control systems. New York: IEEE Press, 1979.
    
    [5] Rosenbrock H. Computer-Aided control system design. New York: Academic Press, 1974.
    
    [6] Maciejowski J. Multivariable feedback design. New York: Addison Wesley, 1989.
    
    [7] Doyle J, Stein G. Multivariable system design: concepts for a classical/modern synthesis. IEEE Trans. Autom. Control, 1981,26:7-16.
    
    [8] Safnov M. Tight bounds on the response of multivariable systems with component uncertainty. Proceedings of the 16th Annual Allerton Conference on Communications, Control and Computing, 1978. 451-460.
    
    [9] Stein G, Doyle J. Singular values and feedback: design examples. Proceedings of the 16th Annual Allerton Conference on Communications, Control and Computing, 1978. 461-470.
    
    [10] Sandell Jr N. Robust stability of multivariable feedback systems. Proceedings of the 16th Annual Allerton Conference on Communications, Control and Computing, 1978. 471-478.
    
    [11] MacFarlane A, Scott-Jones D. Vector gain. Int. J. of Control, 1979, 29:65-91.
    
    [12] Doyle J, Stein G. Robustness with observers. IEEE Trans. Autom. Control, 1979,24(4):607-611.
    [13] Safonov M, Laub A, Hartmann G. Feedback properties of multivariable systems: the role and use of the return difference matrix. IEEE Trans. Autom. Control, 1981,26(1):47-65.
    [14] Postlethewaite I, Edmunds J, MacFarlane A. Principal gains and principal phases in the analysis of linear multivariable feedback systems. IEEE Trans. Autom. Control, 1981,26(1):32-46.
    [15] Zames G. Feedback and optimal sensitivity: model reference transformations, multiplicative seminorms, and approximate inverses. 1979. 744-752.
    [16] Zames G. Feedback and optimal sensitivity: model reference transformations, multiplicative seminorms, and approximate inverses. IEEE Trans. Autom. Control, 1981,26:301-320.
    [17] Churchill R, Brown J. Complex variables and applications. McGraw-Hill, 1984.
    [18] Zames G. On the stability of nonlinear, time-varying feedback systems. Proceedings of the national Electronics Conference.
    
    [19] Zames G. On the input-output stability of nonlinear time-varying feedback systems, Part I: conditions derived using concepts of loop gain, conicity and positivity. IEEE Trans. Autom. Control,1966,11(2):228-238.
    [20] Zames G. On the input-output stability of nonlinear time-varying feedback systems, Part II:conditions involving circles in the frequency plane and sector nonlinearities. IEEE Trans. Autom.Control, 1966, 11(3):465-476.
    
    [21] Vidyasagar M. Control system synthesis: a factorization approach. MIT Press, Cambridge, MA,1985.
    
    [22] Sarason D. Generalized interpolation in H_∞. AMS. Trans., 1967, 127:179-203.
    
    [23] Adamjan V, Arov D, Krein M. Infinite block Hankel matrices and related extension prblems.AMS Trans., 1978,111:133-156.
    
    [24] Ball J, Helton J. A beurling-Lax theorem for the Lie group U(m,n) which contains most classical interpolation theory. J. Op. Theory, 1983,9:107-142.
    
    [25] Doyle J. Lecture notes in advances in multivariable control. Proceedings of ONR/Honeywell Workshop, Minneapolis.
    [26] Youla D, Jabr H, Bongiorno Jr. J. Modern Wiener-Hopt design of optimal controllers: Part I.IEEE Trans. Autom. Control, 1976,21:3-13.
    
    [27] Youla D, Jabr H, Bongiorno Jr. J. Modern Wiener-Hopt design of optimal controllers: Part II.IEEE Trans. Autom. Control, 1976, 21:319-338.
    
    [28] Glover K. All optimal hankel-norm approximations of linear multivariable systems and their L_∞,-error bounds. Int. J. of Control, 1984, 39:1115-1193.
    
    [29] Francis B. A course in H_∞ control theory. Lectures Notes in Control and Information Sciences, London: Spinger-Verlag, 1987.
    
    [30] Francis B, Doyle J. Linear control theory with an H_∞ optimality criterion. SIAM J. Control Optim., 1987,25:815-844.
    
    [31] Limebeer D, Hung Y. An analysis of pole-zero cancelations in H_∞-optimal control problems of the first kind. SIAM J. Control Optim., 1987,25:1457-1493.
    
    [32] Limebeer D, Halikias G. A controller degree bound for H_∞-optimal control problems of the second kind. SIAM J. Control Optim., 1988, 26(3):646-677.
    
    [33] Ball J, Cohen N. Sensitivit minimization in an H_∞ nornr.parameterization of all suboptimal solutions. Int. J. Control, 1987,46:785-816.
    
    [34] Jonckheere E, Juang J. Fast computation of achievable performance in mixed sensitivity H_∞ design. IEEE Trans. Autom. Control, 1987, 32:896-906.
    
    [35] Jonckheere E, Silverman L. Spectral theory of the linear quadratic optimal control problem: discrete-time single-input case. IEEE Trans. Circuits. Syst., 1978,25(9):810-825.
    
    [36] Foias C, Tannenbaum A. On the four-block problem, I, Operator Theory: Advances and Applications,. Integral Equations and Operator Theory, 1988, 32:93-112.
    
    [37] Foias C, Tannenbaum A. On the four-block problem, II, the Singular System. Integral Equations and Operator Theory, 1988, 11:726-767.
    [38] Hung Y. H_∞-optimal control-Part I: model matching. Int. J. Control, 1989,49:1291-1330.
    
    [39] Hung Y. H_∞-optimal control-Part II:solution for controllers,. Int. J. Control, 1989,49:1231-1359.
    
    [40] Kwakernaak H. A polynomial approach to minimax frequency domain optimization of multivari-able feedback systems. Int. J. Control, 1986,44:117-156.
    
    [41] Kimura H. Synthesis of H_∞ controllers based on conjugation. Proceedings of the IEEE Conf. Dec. and Control, Austin, Texas, 1988.
    
    [42] Glover K, Doyle J. State-space formulae for all stabilizing controllers that satisfy an H_∞ norm bound and relations to risk sensitivity. Sys. Control Lett., 1988, 11:167-172.
    
    [43] Petersen I. Disturbance attenuation and H_∞ optimization: a design method based on the algebraic Riccati equation. IEEE Trans. Autom. Control, 1987, 32:427-429.
    
    [44] Khargonekar P, Petersen I, Zhou K. Robust stabilization and H_∞-optimal control. IEEE Trans.Autom. Control, 1990, 35(3):356-361.
    
    [45] Zhou K, Khargonekar P. An algebraic Riccati equation approach to H_∞ optimization. Syst.Control Lett., 1988, 11:85-92.
    
    [46] Khargonekar P, Petersen I, Rotea M. H_∞-optimal control with state-feedback. IEEE Trans. Autom. Control, 1988, 33:786-788.
    
    [47] Scherer C. H_∞-control for plants with zeros on the imaginary axis. SIAM J. Control Optim.,1992,30(1):123-142.
    
    [48] Stoorvogel A, Trentleman H. The quadratic matrix inequality in singular H_∞ control with state feedback. SIAM J. Control Optim., 1990,28(5): 1190-1208.
    
    [49] Scherer C. H_∞ optimization without assumptions on finite or infinite zeros. SIAM J. Control Optim., 1992,30(1):143-166.
    
    [50] Mita T, Liu K, Ohuchi S. Correction of the fi results in H_∞ control and parameterization of H_∞ state feedback controllers. IEEE Trans. Autom. Control, 1993, 38(2):343-347.
    
    [51] Zhou K. On the parameterization of H_∞ controllers. IEEE Trans. Autom. Control, 1992,37(9): 1442-1446.
    
    [52] Limebeer D, Anderson B, Khargonekar P, et al. A game theoretic approach to H_∞ control for time varying systems. SIAM J. Control Optim., 1992, 30(2):262-283.
    
    [53] Whittle P. Risk-sensitive LQG control. Adv. Appl. Prob., 1981,13:764-777.
    [54] Whittle P. Risk-sensitive optimal control. J. Wiley, 1990.
    
    [55] Basar T, Bernhard P. H_∞-Optimal Control and Related Minimax Design Problems: A Dynamic game Approach. Systems and Control: Foundations and Applications. Birkhauser, Boston, 1991.
    
    [56] Green M, Limebeer D. Linear robust control. New Jersey: Prentice-Hall, 1995.
    
    [57] Green M. H_∞ controller synthesis by J-lossless coprime factorization. SIAM J. Control Optim.,1992, 30(3):522-547.
    [58] Dytn H, Gohberg I. A maximum entropy principle for contractive interpolants. J. Funct. Anal.,1986,65:83-125.
    
    [59] Mustafa D, Glover K. Relations between maximum entropy/H_∞ control and combined H_∞/LQG control. Syst. Control Lett., 1989,12(3):193-203.
    [60] Mustafa D, Glover K. Minimum entropy H_∞ control. Lectures Notes in Control and Information Science, Spinger-Verlag, 1990.
    [61] Gahinet P, Apkarian P. A linear matrix inequality approach to H_∞ control. Int. J. Robust Nonlin.Contr., 1994,4:421-448.
    
    [62] Iwasaki T, Skelton R. All controllers for the general H_∞ control problem: LMI existence conditions and state space formulas. Automatica, 1994, 30(8): 1307-1317.
    
    [63] Boyd S, Vandenberghe L. Convex optimization. Cambridge University Press, 2004.
    
    [64] Gahinet P, Nemirovskii A, Laub A, et al. The LMI control toolbox. Proceedings of the IEEE Conf. Dec. and Control, Lake Buena Vista, FL, USA, 1994. 2038-2041.
    
    [65] Sturm J. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optimization methods and software, 1999, 11(1):625-653.
    
    [66] Kharitonov V. Asymptotic stability of an equilibrium position of a family of systems of linear differential equations. Diferentisialjnie Uravnenia, 1978,14:2086-2088.
    
    [67] Barmish B. A generalization of Kharitonov's four polynomial concept for robustness stability problem with linearly dependent coefficient perturbations. IEEE Trans. Autom. Contr., 1989,34:157-165.
    
    [68] Dasgupta S. Kharitonov theorem revisited. Syst. Control Lett., 1988, 11:381-384.
    
    [69] Doyle J. Analysis of feedback systems with structured uncertainties. Proceedings of Inst. Elec.Eng., pt. D, 1982. 242-250.
    
    [70] Safonov M. Stability margins of diagonally perturbed multivariable feedback systems. Proceedings of Inst. Elec. Eng., 1982. 251-256.
    
    [71] Doyle J, Packard A, Zhou K. Review of LFTs, LMIs and μ. Proceedings of the IEEE Conf. Dec.and Control, England, 1991. 1227-1232.
    
    [72] Fan M, Tits A, Doyle J. Robustness in the presence of mixed parametric uncertainty and unmod-eled dynamics. IEEE Trans. Autom. Control, 1991, 36:25-38.
    
    [73] Stein G, Doyle J. Beyond singular values and loop shapes. AIAA Journal of Guaidance and Control, 1991,14(1):5-16.
    
    [74] Packard A, Doyle J. The complex structured singular value. Automatica, 1993,29:71-109.
    
    [75] Young P. Robustness with parametric and dynamic uncertainty[D]. USA: California Institute of Technology, 1993.
    
    [76] Tits A. The small μ theorem without real-rational assumption. Proceedings of Amer. Control Conf., Seattle WA, USA, 1995. 2870-2872.
    [77] Braatz R, Young P, Doyle J, et al. Computational complexity of μ calculation. Proceedings of Amer. Control Conf., 1993. 1682-1683.
    
    [78] Khammash M, Pearson J. Performance robustness of discrete-time systems with structured uncertainty. IEEE Trans. Autom. Control, 1991,36(4):398-412.
    
    [79] Khammash M. Necessary and sufficient conditions for the robustness of time-varying systems with applications to sampled-data systems. IEEE Trans. Autom. Control, 1983, 38(1):49-57.
    
    [80] Shamma J. Robust stability with time-varying structured uncertainty. IEEE Trans. Autom. Control, 1994, 39(4):714-724.
    
    [81] Paganini F, Doyle J. Analysis of implicitly defined systems. Proceedings of the IEEE Conf. Dec.and Control, Lake Buena Vista, FL, 1994. 3673-3678.
    
    [82] Young P, Dahleh M. Robust l_p stability and performance. Syst. Control Lett., 1995, 26(5):305-312.
    
    [83] Poolla K, Tikku A. Robust performance against time-varying structured perturbations. IEEE Trans. Autom. Control, 1995,40(9): 1589-1602.
    
    [84] Paganini F. Robust stability under mixed time-varying, time-invariant and parametric uncertainty.Automatica, 1996, 32(10):1381-1392.
    
    [85] Meinsma G, Iwasaki T, Fu M. When is (D,G)-scaling both necessary and sufficient. IEEE Trans.Autom. Control, 2000,45(9).1755-1759.
    
    [86] Asai T, Hara S, Iwasaki T. Simultaneous modeling and synthesis for robust control by LFT scaling. Proceedings of IFAC World Congr., 1996. 309-314.
    
    [87] Fu M, Barabanov N. Improved upper bounds of the structured singular value. Proceedings of the IEEE Conf. Dec. and Control, 1995. 3115-3120.
    
    [88] Sundareshnan M, Thathachar M. L_2-stability of linear time-varying systems-conditions involving noncausal multipliers. IEEE Trans. Autom. Control, 1972, 17:504-509.
    
    [89] Dasgupta S, Chockalingam G, Anderson B, et al. Lyapunov functions for uncertain systems with applications to the stability of time varying systems. IEEE Trans. Circ. Syst., 1994,41:93-106.
    
    [90] J(?)nsson U, Rantzer A. Systems with uncertain parameters: time variations with bounded derivatives. Proceedings of the IEEE Conf. Dec. and Control, 1994. 3074-3079.
    
    [91] Tchernychev A, Sideris A. Robust discrete-time control design with time-varying parametric uncertainties. Int. J. Robust Nonlin. Contr., 1999,9(4):199-213.
    
    [92] Tchernychev A, Sideris A. Multiplier-based robust H_∞ design with time-varying uncertainties.Automatica, 2000, 36(4):579-586.
    
    [93] Desoer C, Vidyasagar M. Feedback systems: input-output properties. New York: Academic,1975.
    
    [94] Khalil H. Nonlinear systems. Prentic Hall, Upper Saddle River, NJ, 2002.
    [95] Megretski A, Rantzer A. System analysis via integral quadratic constraints. IEEE Trans. Autom.Control, 1997,42(6):819-830.
    
    [96] Boyd S, Ghaoui L, Feron E, et al. Linear matrix inequalities in system and control theory. Philadelphia, PA: SIAM, 1994.
    
    [97] Ghaoui L, Niculescu, Eds. S. Advances in matrix inequality methods in control. Philadelphia,PA: SIAM, 2000.
    
    [98] J5nsson U, Rantzer A. Systems with uncertain parameters-timevariations with bounded derivatives. Int. J. Robust Nonlinear Control, 6(9):969-982.
    
    [99] Helmersson A. An IQC-based stability criterion for systems with slowly varying parameters. Proceedings of 14th IFAC Triennial World Congr., Beijing, China, 1999. 525-530.
    
    [100] Kdroglu H, Scherer C. Robust performance analysis for structured linear time-varying perturbations with bounded rates-of-variation. IEEE Trans. Autom. Control, 2007,52(2):197-211.
    
    [101] Wolodkin G, Poolla K. Spectral power distribution using time-varying operators. Proceedings of Amer. Control Conf., Baltimore, MD, 1994. 3147-3151.
    
    [102] Iwasaki T, Hara S. Generalized KYP lemma: unified frequency domain inequalities with design applications. IEEE Trans. Autom. Control, 2005,50(1):41-59.
    
    [103] Gahinet P, Apkarian P, Chilali M. Affine parameter-dependent Lyapunov functions and real parametric uncertainty. IEEE Trans. Autom. Control, 1996,41:436-442.
    
    [104] Zhou K, Khargonekar P, Stoustrup J, et al. Robust stability and performance of uncertain systems in state-space. Proceedings of the IEEE Conf. Dec. and Control, 1992. 662-667.
    
    [105] Feron E, Apkarian P, Gahinet G. Analysis and synthesis of robust control systems via parameter-dependent Lyapunov functions. IEEE Trans. Autom. Control, 1996,41:1041-1046.
    
    [106] Apkarian P, Tuan H. Parameterized LMIs in control theory. SIAM Control Optim., 2000,38(4): 1241-1264.
    
    [107] Geromel J, de Oliveira M, Hsu L. LMI characterization of structural and robust stability. Linear Alg. Appl., 1998, 285:69-80.
    
    [108] de Oliveira M, Bernussou J, Geromel J. A new discrete-time robust stability condition. Syst. Control Lett., 1999, 37(4):261-265.
    
    [109] Apkarian P, Tuan H, Bernussou J. Continuous-time analysis, eigenstructure assignment, and H_2 synthesis with enhanced linear matrix inequalities (LMI) characterizations. IEEE Trans. Autom. Contr., 2001,46(12):1941-1946.
    
    [110] Daafouz J, Bemussou J. Parameter dependent Lyapunov functions for discrete-time systems with time-varying parametric uncertainties. Syst. Control Lett., 2001,43:335-359.
    
    [111] Ramos D, Peres P. An LMI condition for the robust stability of uncertain continuous-time linear systems. IEEE Trans. Autom. Control, 2002,47:675-678.
    [112] Fridman E, Shaked U. A descriptor system approach to H_∞ control of linear time-delay systems.IEEE Trans. Autom. Control, 2002,47:253-270.
    
    [113] Cao Y, Lin Z. A descriptor system approach to robust stability analysis and controller synthesis.IEEE Trans. Autom. Control, 2004,49:2081-2084.
    
    [114] Geromel J, Korogui R. Analysis and synthesis of robust control systems using linear parameter dependent lyapunov functions. IEEE Trans. Autom. Control, 2006,51(12):1984-1989.
    
    [115] Leite V, Peres P. An improved LMI condition for robust D-stability of uncertain polytopic systems.IEEE Trans. Autom. Control, 2003,48(3):500-504.
    
    [116] Peaucelle D, Arzelier D, Bachelier O, et al. A new robust D-stability condition for real convex polytopic uncertainty. Syst. Control Lett., 2000,40:21-30.
    
    [117] Bliman P. A convex approach to robust stability for linear systems with uncertain scalar parameters. SIAM Control Optim., 2004,46:2016-2042.
    
    [118] Chesi G, Garulli A, Tesi A, et al. Polynomially parameter-dependent lyapunov functions for robust stability of polytopic systems: an LMI approach. IEEE Trans. Autom. Control, 2005,50(3):365-379.
    
    [119] Henrion D, Arzelier D, Peaucelle D, et al. On parameter-dependent lyapunov functions for robust stability of linear systems. Proceedings of the IEEE Conf. Dec. and Control, Paradise Island,Bahamas, 2004. 887-892.
    
    [120] Karimi A, Khatibi H, Longchamp R. Robust control of polytopic system by convex optimization.Automatica, 2007,43:1395-1402.
    
    [121] Trofino A, deSouza C. Biquadratic stability of uncertain linear systems. IEEE Trans. Autom.Control, 2001,46(8):1303-1307.
    
    [122] Peaucelle D, Arzelier D. Robust performance analysis with LMI-based methods for real parametric uncertainty via parameter-dependent lyapunov functions. IEEE Trans. Autom. Control, 2001,46(4):624-630.
    
    [123] Dettori M, Scherer C. New robust stability and performance conditions based onparameter dependent multipliers. Proceedings of the IEEE Conf. Dec. and Control, Sydney, Australia, 2000,4187-4192.
    
    [124] Iwasaki T, Hara S. Well-posedness of feedback systems: insights into exact robustness analysis and approxiamte computations. IEEE Trans. Autom. Control, 1998,43:619-630.
    
    [125] Iwasaki T. LPV systems analysis with quadratic separator for uncertain implicit systems. Proceedings of LMI Methods in Optimization, Identification Control, Conpiegne, France, 1999.
    
    [126] Helmersson A. Parameter-dependent Lyapunov functions based on linear fractional transformations. Proceedings of 14th IFAC Triennial World Congr., Beijing, China, 1999.
    
    [127] de Oliveira M, Geromel J, Hsu L. LMI characterization of shtructural and robust stability: the discrete-time case. Linear Algebra Appl., 1999,296:27-38.
    [128] Youla D, Bongiorno Jr. J, Lu C. Single-loop feedback stabiliztion of linear multivariable dynamical plants. Automatica, 1974,10:159-173.
    
    [129] Ozbay H, Garg S. Stable H_∞ controller design for the longitudinal dynamics of an aircraft. Technical report, NASA Technical Memerandum 106847,1995.
    [130] Vidysagar M, Viswanadham N. Algebraic design techniques for reliable stabilization. IEEE Trans. Autom. Control, 1982,27:1085-1095.
    
    [131] Bode H. Network analysis and feedback amplifier design. NJ: Van Nostrand: Princeton, 1945.
    
    [132] Freudenberg J, Looze D. Frequency domain properties of scalar and multivariable feedback systems, volume 104 of Lectures Notes in Control and Information Science. New York: Spinger-Verlag, 1988.
    
    [133] Looze D, Freudenberg J. Limitations of feedback properties imposed by open-loop right half plane poles. IEEE Trans. Autom. Control, 1991, 36(6):736-739.
    
    [134] Doyle J, Francis B, Tannenbaum A. Feedback Control Theory. New York: MacMillan Publishing Co., 1992.
    
    [135] Haider B, Kailath T. A survey of inherent design limitations. Proceedings of Amer. Control Conf.,Chicago, Illinois, USA, 2000. 2987-3001.
    
    [136] Berstein D. What makes some control problems hard? IEEE Control Syst. Mag., 2002, 22(4):8 -19.
    
    [137] Freudenberg J, Looze D. Right half plance poles and zeros and design trade-offs in feedback systems. IEEE Trans. Autom. Control, 1985, 30:555-565.
    
    [138] Chen J. Sensitivity integral relations and design trade-offs in linear multivariable feedback systems. IEEE Trans. Autom. Control, 1995,40(10):1700-1716.
    
    [139] Chen J. Logarithmic integrals, interpolation bounds, and performance limitations in mimo feedback systems. IEEE Trans. Autom. Control, 2000,45(6): 1098-1115.
    
    [140] Veillette R, Medani(?) J, Perkins W. Design of reliable control systems. IEEE Trans. Autom.Control, 1992,37(3):290-304.
    [141] Zeren M. Strong stabilization and stable H_∞ controller design[D]. USA: Electrical Engineering Department, the Ohio University, 1997.
    
    [142] Smith M, Sondergeld K. On the order of stable compensators. Automatica, 1986, 22:127-129.
    [143] Dorato P, Park H B, Li Y. An algorithm for interpolation with units in H_∞ with application to feedback stabilization. Automatica, 1989,25(3):427-430.
    [144] Ohta Y, Maeda H, Kodama S. Unit interpolation in H_∞: bounds of norm and degree of inter-polants. Syst. Control Lett., 1991,14:251-256.
    
    [145] Patel V. On least-degree unit internpolation in RH_∞. Automatica, 1996, 32(9): 1333-1335.
    [146] Doyle J. Guaranteed margins for LQG regulators. IEEE Trans. Autom. Control, 1978,23(4):756-757.
    [147] Johnson C. State-variable design methods may produce unstable feedback controllers. Int. J. of Control, 1979,29(4):607-619.
    
    [148] Lenz K, Khargonekar P, Doyle J. When is a controller H_∞-optimal. Math. Contr. Signals Syst.,1988,1:107-122.
    
    [149] Wallenborg A, (?) tr(?)m K. Limit cycle oscillations in high performance robot drives. Proceedings of International Conference on Control, Oxford, UK, 1988. 444-449.
    
    [150] Gunnarsson S, Ostring M. On regulator stability in control of flexible mechanical systems. Proceedings of Int. Symp. Robotics, Maui, Hawaii, USA, 2001.
    
    [151] Jeon S,Tomizuka M. Limit cycles due to friction forces in flexible joint mechanisms. Proceedings of IEEE ASME Int. Conf. Advance Intelligent Mechatronics, Monterey, California, USA, 2005.723-728.
    
    [152] Wise K, Nguyen T. Optimal disturbance rejection in missile autopilot design using projective controls. Proceedings of the IEEE Conf. Dec. and Control, Brighton, England, 1991. 2988-2993.
    
    [153] Garg S, Ouzts P, Lorenzo C. Intergrated methods for propulsion and airframe control technology. Technical report, McDonnel Douglas, NASA, United Technologies Pratt & Whitney, April 1994, 1994.
    
    [154] MacMartin D, How J. Implementation and prevention of unstable optimal compensators. Pro- ceedings of Amer. Control Conf., Baltimore, Maryland, USA, 1994. 2190-2195.
    
    [155] Petersen C. Optimal spatially fixed and moving virtual sensing algorithms for local active noise control[D]. Australia: School of Mechanical Engineering, the University of Adelaide, 2007.
    
    [156] Tseng W K, Chang Y P. A virtual microphone feedback control system for active noise control. Proceedings of IEEE International Conference on Mechatronics, Budapest, Hungary, 2006. 170-175.
    
    [157] Shaw L. Pole placement: stability and sensitivity of dynamic compensators. IEEE Trans. Autom.Control, 1971,16:210.
    
    [158] Cusumano S, Poolla K, Ting T. On robust stabilization synthesis for block structured modeling uncertainty. Proceedings of the IEEE Conf. Dec. and Control, 1987. 423-428.
    
    [159] Saif A, Gu D, Postlewaite I. Strong stabilization of MIMO systems via unimodular interpolation in H_∞. Int. J. Control, 69(6):797-818.
    
    [160] Saif A, Gu D, Postlewaite I. Strong stabilization of MIMO systems via H_∞ optimization. Syst.Control Lett., 1997, 32:111-120.
    
    [161] Zeren M, Ozbay H. On the strong stabilization and stable H_∞ controller design problem for MIMO systems. Automatica, 2000, 36:1675-1684.
    
    [162] Ozbay H, G(?)nde(?) . Strongly stabilizing controllers synthesis for a class of mimo plants. Proceedings of IFAC World Congr., Seoul, Korea, 2008. 359-363.
    [163] G(?)ndel(?) , Ozbay H. Strong stabilization of mimo systems with restricted zeros in the unstable region. Proceedings of the IEEE Conf. Dec. and Control, Cancun, Mexico, 2008. 2220-2225.
    
    [164] Toker O. On the order of simultaneously stabilizing controllers. IEEE Trans. Autom. Control,1996,41:430-433.
    
    [165] Yoon M, Kimura H. A topological result on strong stabilization problem. IEEE Trans. Autom.Control, 2006,51(4):657-661.
    
    [166] Khargonekar P, Poolla K, Tannenbaum A. Robust control of linear time-invariant plants using periodic compensation. IEEE Trans. Autom. Control, 1985, 30(11):1088-1095.
    
    [167] Khargonekar P, Pascoal A, Ravi R. Strong, simultaneous, and reliable stabilization of finite dimensional linear time-varying plants. IEEE Trans. Autom. Control, 1988, 33(12):1158—1161.
    
    [168] Abedor J, Poolla K. On the strong stabilization of delay systems. Proceedings of the IEEE Conf.Dec. and Control, Tampa, Florida, 1989. 2317-2318.
    
    [169] Suyama K. Strong stabilization of systems with time-delays. Proceedings of IEEE Industrial Electronics Society Conf., 1991. 1758-1763.
    
    [170] Ozbay H. On strongly stabilizing controller synthesis for time delay systems. Proceedings of IFAC World Congr., Seoul, Korea, 2008. 6342-6346.
    
    [171] Sideris A, Safonov M. Infinity-norm optimization with a stable controller. Proceedings of Amer.Control Conf., 1985. 804-805.
    [172] Ganesh C, Pearson J. Design of optimal control systems with stable feedback. Proceedings of Amer. Control Conf., 1986. 1969-1973.
    [173] Barabanov A. Design of H_∞ optimal stable stabilizing compensator. Proceedings of the IEEE Conf DecE and Control, Kobe, Japan, 1996. 734-738.
    
    [174] Boyd S. Stable H_∞ optimal controllers. Technical report, Information Systems laboratory, Stanford University, L-104-S7-1,1987.
    [175] Lenz K. Properties of optimal weighted sensitivity designs. IEEE Trans. Autom. Control, 1995,40:298-301.
    [176] Jacobus M, Jamshidi M, Abdallah C, et al. Suboptimal strong stabilization using fixed-order dynamic compensation. Proceedings of Amer. Control Conf., 1990. 2659-2660.
    [177] Toker O, Ozbay H. On the structure of H_∞ controllers. Proceedings of the IEEE Conf. Dec. and Control, Laker Buena Vista, FL, 1994. 3349-3954.
    [178] Nakayama T, Ohmori H, Sano A, et al. A design of H_∞ stable controllers. Proceedings of European Control Conf., 1995. 1830-1833.
    [179] Ito H, Ohmori H, Sano A. Design of stable controllers attaining low H_∞ weighted sensitivity.IEEE Trans. Automat. Contr., 1993,38:485-488.
    [180] Zeren M, Ozbay H. On the synthesis of stable H_∞ controllers. IEEE Trans. Autom. Control,1999,44:431-435.
    [181] Campo-Delgado D, Zhou K. H_∞ strong stabilization. IEEE Trans. Autom. Control, 2001,46:1968-1972.
    
    [182] Lee P, Soh Y. Synthesis of stable H_∞ controller via the chain scattering framework. Syst. Control Lett., 2002,46:121-127.
    
    [183] Kimura H. Chain scattering approach to H_∞ control. Systems and Control: Foundations and Applications, Basel: Birkhauser, 1997.
    
    [184] Chou Y, Wu T, Leu J. On strong stabilization and H_∞ strong-stabilization problems. Proceedings of the IEEE Conf. Dec. and Control, USA, 2003. 5155-5160.
    
    [185] Campo-Delgado D, Zhou K. A parametric optimization approach to H_∞ and H_2 strong stabilization. Automatica, 2003, 39:1205-1211.
    
    [186] G(?)m(?)oy S, Ozbay H. Remarks on strong stabilization and stable H_∞ controller design. IEEE Trans. Autom. Control, 2005,50(12):2083-2087.
    
    [187] Choi Y, Chung W. On the stable H_∞ controller parameterization under suffient condition. IEEE Trans. Autom. Control, 2001,46:1618-1623.
    
    [188] G(?)m(?)oy S, Ozbay H. Sensitivity minimization by stable controllers: an interpolation approach for suboptimal solutions. Proceedings of the IEEE Conf. Dec. and Control, New Orleans, LA,USA, 2007. 6071-6076.
    [189] Savkin A. H_∞ control via stable output feedback. Proceedings of the IEEE Conf. Dec. and Control, San Diego, California, USA, 1997. 4122-4123.
    
    [190] Ganesh C, Pearson J. H_2-optimization with stable controllers. Automatica, 1989, 25:629-634.
    [191] Halevi Y, Bernstein D, Haddad W. On stable full-order and reduced-order LQG controllers. Optim. Control Appl. Methods, 1991,12:163-172.
    [192] Arelhi R, Johnson M, Wilkie J. LQG stable stabilizing control: Some recent results. Proceedings of the IEEE Conf DecE and Control, San Diego, California, USA, 1997. 1467-1436.
    [193] Wang Y, Bernstein D. H_2-suboptimal stable stabilization. Proceedings of the IEEE Conf. Dec. and Control, San Antonio, TX, USA, 1993. 154-162.
    [194] Kapila V, Haddad W. H_2 and mixed H_2/H_∞ stable stabilization. Proceedings of the IEEE Conf.Dec. and Control, New Orleans, LA, USA, 1995. 1911-1915.
    [195] Yang G, Wang J, Soh Y, et al. Stable controller synthesis for linear time-invariant systems. Int. J.Control, 2002,75:154-162.
    
    [196] Savkin A. Almost optimal LQ-control using stable periodic controllers. Automatica, 1998,34:1251-1254.
    
    [197] Wolfe J, Speyer J. The periodic optimality of LQG controllers satisfying strong stabilization.Automatica, 2003, 39:1735-1746.
    [198] Djaferis T. To stabilize a k real parameter affine family of plants it suffices to simultaneously stabilize 4~k polynomials. Syst. Control Lett., 1991,16:187-193.
    [199] Birdwell J, Castanon D, Athans M. On reliable control system design with and without feedback reconfigurations. Proceedings of the IEEE Conf. Dec. and Control, San Diego, California, USA,1979. 419-426.
    
    [200] Saeks R, Murray J. Fractional representation, algebraic geometry, and the simultaneous stabilization problem. IEEE Trans. Autom. Control, 1982,27:895-903.
    
    [201] Ghosh B. Transcendental and interpolation methods in simultaneous stabilization and simultaneous partial pole palcement problems. SIAM J. Control Optim., 1986, 24(6):1091-1109.
    
    [202] Blondel V, Campion G, Gevers M. A sufficient condition for simultaneous stabilization. IEEE Trans. Autom. Control, 1993, 38(8): 1264-1266.
    
    [203] Wei K. Stabilization of a linear plant via a stable compensator having no real unstable zeros. Syst.Control Lett., 1990,15(3):259-264.
    
    [204] Wei K. The solution of a transcendental problem and its applications in simultaneous stabilization problems. IEEE Trans. Autom. Control, 1992, 37:1305-1315.
    
    [205] Blondel V. Simultaneous stabilization of linear systems, volume 191 of Lectures Notes in Control and Information Science. London: Spinger-Verlag, 1994.
    
    [206] Toker O, Ozbay H. On the NP-hardness of solving bilinear matrix inequalities and simultaneous stabilization with static output feedback. Proceedings of Amer. Control Conf., Seattle, WA, 1995.
    
    [207] Syrmos V, Abdallah C, Dorato P, et al. Static output feedback: a survey. Automatica, 1997,33(2):125-137.
    
    [208] Kwakernaak H. A condition for robust stability. Syst. Control Lett., 1982,2(1):1—5.
    
    [209] Saberi A. Simultaneous stabilization with almost distrubance decoupling-uniform rank system.Automatica, 1987, 23(5):653-656.
    
    [210] Emre E. Simultaneous stabilization with fixed closed-loop characteristic polynomial. IEEE Trans.Autom. Control, 1983, 28(1):103-104.
    
    [211] Wei K, Barmish B. An iterative design procedure for simultaneous stabilization of mimo systems.Automatica, 1988, 24(5):643-652.
    
    [212] Maeda H, Vidyasagar M. Some results on simultaneous stabilization. Syst. Control Lett., 1984,5(3):205-208.
    
    [213] Blondel V. A counterexample to a simultaneous stabilization condition for systems with identical unstable poles and zeros. Syst. Control Lett., 1991,17(5):339-341.
    
    [214] Debowski A, Kurylowicz A. Simultaneous stabilization of linear single-input single-output plants.Int. J. Control, 1986,44(5): 1257-1264.
    
    [215] Ghosh B, Byrnes C. Simultaneous stabilization and simultaneous pole-placement by non- switching dynamic. IEEE Trans. Autom. Control, 1983,28:735-741.
    
    [216] Chen H, Chow J, Kale M, et al. Simultaneous stabilization using stable system inversion. Automatica, 31(4):531-542.
    [217] Chow J. Pole-placement design approach for systems with multiple operating condtions. IEEE Trans. Autom. Control, 1990,35:278-288.
    
    [218] Ghosh B, Wang X. Sufficient conditions for generic simultaneous pole assignment and stabiliza- tion of linear MIMO dynamic systems. IEEE Trans. Autom. Control, 2000,45:734-738.
    
    [219] Fonte C, Zasadzinski M, Kazantev C, et al. On the simultaneous stabilization of three or more plants. IEEE Trans. Autom. Control, 2001,46:1101-1107.
    
    [220] Jia Y, Ackermann J. Condition and algorithm for simultaneous stabilization of linear plants.Automatica, 2001, 37:1425-1434.
    
    [221] G(?)nde(?), Kabuli M. Simultaneously stabilizing controller design for a class of MIMO systems.Automatica, 2001, 37:1989-1996.
    
    [222] Saif A, Gu D, Kavranoglu D, et al. Simultaneous stabilization of MIMO systems via robustly stabilizing a central plant. IEEE Trans. Autom. Control, 2002,47:363-369.
    
    [223] G(?)nde(?). Simultaneous stabilization of mimo systems with integral action controllers. Automatica, 2008,44:1156-1160.
    
    [224] Wu D, Gao W, Chen M. Algorithm for simultaneous stabilization of single-input systems via dynamic feedback. Int. J. Control, 1990,51:631-342.
    
    [225] Howitt G, Luus R. Simultaneous stabilization of linear single-input systems by linear state feedback control. Int. J. Control, 1991,54:1058-1072.
    
    [226] Howitt G, Luus R. Control of a collection of linear systems by linear state feedback control. Int.J. Control, 1993,58:79-96.
    
    [227] Paskota M, Sreeram V, Teo K, et al. Optimal simultaneous stabilization of linear single-input systems via linear state feedback control. Int. J. Control, 1994, 60:483-498.
    
    [228] Geromel J, Peres P, Souza S. On a convex parameter space method for linear control design of uncertain systems. SIAM J. Contr. Optim., 1991,29(2):381-402.
    [229] Cao Y, Lam J, Sun Y. Simultaneous stabilization via static output feedback and state feedback.IEEE Trans. Autom. Control, 1999,44:1277-1282.
    [230] Lee P, Soh Y. Simultaneous H_∞ stabilization. Int. J. of Control, 2004,77(2): 111-117.
    
    [231] Lee P, Soh Y. Synthesis of simultaneous stabilizing H_∞ controller. Int. J. of Control, 2005,78(18):1437-1446.
    
    [232] Kabamba P. Control of linear systems using generalized sampled-data hold functions. IEEE Trans. Autom. Control, 1987, 32:772-783.
    
    [233] Kabamba P, Yang C. Simultaneous controller design for linear time-invariant systems. IEEE Trans. Autom. Control, 1991,36:106-111.
    
    [234] Cao Y, Lam J, Sun Y X. Simultaneous LQ optimal control design for discrete-time systems and sampled-data systems. Proceedings of the IEEE Conf. Dec. and Control, Sydney, Australia, 2000.3690-3695.
    [235] Feuer A, Goodwin G. Generalized sample hold functions - Frequency domain analysis of robustness, sensitivity, and inter-sample difficulties. IEEE Trans. Autom. Control, 1994,37:1042-1047.
    
    [236] Miller D, Rossi M. Simultaneous stabilization with near optimal lqr performance. IEEE Trans. Autom. Control, 2001,46(10):1543-1555.
    
    [237] Miller D, Chen T. Simultaneous stabilization with near-optimal H_∞ performance. IEEE Trans.Autom. Control, 2002,47(12):1986-1998.
    
    [238] Savkin A. Simultaneous H_∞ control of a finite collection of linear plants with a single nonlinear digital controller. Syst. Control Lett., 1998, 33:281-289.
    
    [239] Sogaard-Andersen P, Niemann H. Trande-offs in LTR-based feedback design. Proceedings of Amer. Control Conf., Pittsburgh, Pennsylvania, 1989. 922-928.
    
    [240] Chen B, Saberi A, Sannuti P. Necessary and sufficient conditions for a nonminimum phase plant to have a recoverable target loop - a stable compensator design for ltr. Automatica, 1992,28(3):493-507.
    
    [241] Doyle J, Glover K, Khargonekar P, et al. State-space solutions to standard H_2 and H_∞ control problems. IEEE Trans. Autom. Control, 1989, 34:831-847.
    
    [242] Nesterov Y, Nemirovsky A. A general approach to polynomia-time algorithms design for convex programming. Technical report, Centr. Econ. & Math. Inst., USSR Acad. Sci., Moscow, USSR,1988.
    
    [243] Nesterov Y, Nemirovsky A. Interior-point polynomial methods in convex programming, volume 13 of Studies in Applied Mathematics. Philadelphia, PA: SIAM, 1994.
    
    [244] Scherer C. Relaxatons for robust linear matrix inequality problems with verifications for exactness. SIAM J. Mateer. Anal. Appl., 2005,27(2):365-395.
    
    [245] Scherer C. LMI relaxations in robust control. Eur. J. Control, 2006,12(1):3-29.
    
    [246] Goh K, Safonov M, Papavassilopoulos G. A global optimization approach for the BMI problem.Proceedings of the IEEE Conf. Dec. and Control, Lake Buena Vista, FL, 1994. 2009 - 2014.
    
    [247] Mebahi M, Papavassilopoulos G, Safonov M. Matrix cones, complementarity problems, and the bilinear matrix inequality. Proceedings of the IEEE Conf. Dec. and Control, New Orlean, LA,1995. 3102-3107.
    
    [248] Kawanishi M, Ikuyama Y. BMI optimization based on unimodal normal distribution crossover GA with relaxed LMI convex estimation. Proceedings of Amer. Control Conf., 2005. 2999-3004.
    
    [249] Goh K, Safonov M, Ly J. Robust synthesis via bilinear matrix inequalities. Int. J. Robust Nonlinear Control, 1996,6:1079-1095.
    
    [250] Kawanishi M, Sugie T, Kanki H. BMI global optimization based on branch and bound method taking account of the property of local minima. Proceedings of the IEEE Conf. Dec. and Control,1997. 781-786.
    [251] Fukuda M, Kojima M. Branch-and-Cut algorithms for the bilinear matrix inequality eigenvalue problem. Comput. Optim. Appl., 2001,19(1):79-105.
    [252] Tawarmalani M, Sahinidis N. A polyhedral branch-and-cut approach to global optimization.Math. Program.: Series B, 2005,103(2):225-249.
    [253] Vandenbussche D, Nemhauser G. A branch-and-cut algorithm for nonconvex quadratic programs with box constraints. Math. Program.: Series A, 2005,102(3):559-575.
    
    [254] Gu G, Qiu L. Networked stabilization of multi-input systems with channel resource allocation.Proceedings of IFAC World Congr., 2008. 625-630.
    [255] Cao Y, Sun Y, Lam J. Static output feedback stabilization: an ILMI approach. Automatica, 1998,34(12):1641-1645.
    [256] Kanev S, Scherer C, Verhaegen M. Robust output-feedback controller design via local BMI optimization. Automatica, 2004,40(7):1115-1127.
    
    [257] Zheng F, Wang Q, Lee T. On the design of multivariable PID controllers via LMI approach. Automatica, 2002, 38:517-526.
    
    [258] He Y, Wang Q. An improved ILMI method for static output feedback control with application to multivariable PID control. IEEE Trans. Autom. Control, 2006,51(10):1678-1683.
    
    [259] Hassibi A, How J, Boyd S. A path-following method for solving BMI problems in control. Proceedings of Amer. Control Conf., San Diego, California, USA, 1999. 1385-1389.
    
    [260] Ostertag E. An improved path-following method for mixed H_2/H_∞ controller design. IEEE Trans. Autom. Controlc, 2008, 53(8):1967-1971.
    
    [261] Ostertag E. Continuous- and discrete-time path-following design of mixed H_2/H_∞ state-feedback controllers. Proceedings of World Congress, IFAC, Seoul, Korea, 2008. 3988-3993.
    
    [262] Bender D, Laub A. The linear quaddratic optimal regulator for descriptor systems. IEEE Trans.Autom. Control, 1987, 32:672-688.
    
    [263] Cobb J. Descriptor variable systems and optimal state regulation. IEEE Trans. Autom. Control,1983,28:601-611.
    
    [264] Cobb J. Controllability, observability and duality in singular systems. IEEE Trans. Autom. Control, 1984,29:1076-1082.
    
    [265] Cobb J. Feedback and pole placement in descriptor systems. Int. J. of Control, 1984, 33:1135-1146.
    
    [266] Masubuchu I, Kamitane Y, Ohara A, et al. H_∞ control for descriptor systems: a matrix inequalities approach. Automatica, 1997, 33:669-673.
    
    [267] Takaba K, Morihira N, Katayama T. A generalized Lyapunov theorem for descriptor system. Syst.Control Lett., 2000,40:21-30.
    
    [268] de Oliveira M, Bernussou J, Geromel J. A new discrete-time robust stability condition. Syst.Control Lett., 1999,37:261-265.
    [269] Fridman E. New Lyapunov-Krasovskii functionals for stability of linear retarded and neutral type systems. Syst. Control Lett., 2001,43:309-319.
    
    [270] Fridman E, Shaked U. New bounded real lemma representations for time-delay systems and their aplications. IEEE Trans. Autom. Control, 2001,46:1973-1979.
    
    [271] Barmish B, Demarco C. A new method for improvement of robustness bounds for linear state equations. Proceedings of the Conf. Information Science Systems, Princeton, NJ, 1986.
    
    [272] Packard A, Zhou K, Pandey P, et al. A collection of robust control problems leading to LMI's.Proceedings of the IEEE Conf. Dec. and Control, 1991.
    
    [273] Khargonekar P, Rotea M. Mixed H_2/H_∞ control: a convex optimization approach. IEEE Trans.Autom. Control, 1991, 36:824-837.
    
    [274] Rotea M, Khargonekar P. H~2-optimal control with an H~∞-constraint: the state feedback case. Automatica, 1991, 27(2):307-316.
    
    [275] Yeh H, Banda S, Chang B. Necessary and sufficient conditions for mixed H_2 and H_∞ optimal control. IEEE Trans. Autom. Control, 1992, 37(3):355-358.
    
    [276] Doyle J, Zhou K, Glover K, et al. Mixed H_2 and H_∞. performance objectives II: optimal control. IEEE Trans. Autom. Control, 1994, 39(8):1575-1587.
    
    [277] Sznaier M, Rotstein H. An exact solution to general 4-blocks discrete-time mixed H_2/H_∞ problems via convex optimization. Proceedings of Amer. Control Conf., Battlmore, Maryland, USA,1994. 2251-2256.
    
    [278] Zhou K, Glover K, Bodenheimer B, et al. Mixed H_2 and H_∞ performance objectives I: robust performance analysis. IEEE Trans. Autom. Control, 1994, 39(8):1564-1574.
    
    [279] Frazho A, Grigoriadis K, Kherat S. Alternating projection methods for mixed H_2/H_∞ nehari problems. IEEE Trans. Autom. Control, 1995,40(12):2127-2131.
    [280] Haider B, Kailath T. LMI based design of mixed H_2/H_∞ controllers: the state feedback case.Proceedings of Amer. Control Conf., San Diego, California, USA, 1999. 1866-1870.
    [281] Costa O, Marques R. Mixed H_2/H_∞-control of discrete-time markovian jump linear systems. IEEE Trans. Autom. Control, 1998,43(1):95-100.
    
    [282] Masubuchi I, Ohara A, Suda N. LMI-based controller synthesis: an unified formulation and solution. Int. J. Robust Nonlin. Contr., 1998, 8:669-686.
    [283] Hindi H A, Hassibi B, Boyd S. Multiobjective H_2/H_∞-optimal control via finite dimensional Q-parametrization and linear matrix inequalities. Proceedings of Amer. Control Conf., Philadelphia,Pennsylvania, USA, 1998. 3244-3249.
    [284] Scherer C, Gahinet P, Chilali M. Multiobjective output-feedback control via LMI optimization.IEEE Trans. Autom. Control, 1997,42(7):896-911.
    [285] Chilali M, Gahinet P. H_∞, design with pole placement constraints: an LMI approach. IEEE Trans.Autom. Control, 1996,41(3):358-367.
    [286] Scherer C. Multiobjective H_2/H_∞ control. IEEE Trans. Autom. Control, 1995,40(6): 1054-1062.
    [287] Shimomura T, Fujii T. Multiobjective control design via successive over-bounding of quadratic terms. Proceedings of the IEEE Conf. Dec. and Control, Sydney, Australia, 2000. 2063-2068.
    [288] Sznaier M, Rotstein H, Bu J, et al. An exact solution to continuous-time mixed H_2/H_∞ control problems. IEEE Trans. Autom. Control, 2000,45:2095-2101.
    
    [289] Chen X, Zhou K. Multiobjective H_2/H_∞ control design. SIAM J. Control Optim., 2001,40(2):628-660.
    
    [290] da Silveira M A. Robust optimal tracking and regulation for linear systems: the H_2/H_∞ approach.Proceedings of the IEEE Conf. Dec. and Control, Orlando, Florida, USA, 2001. 4015-4020.
    
    [291] Arzelier D, Peaucelle D. An iterative method for mixed H_2/H_∞ synthesis via static output-feedback. Proceedings of the IEEE Conf DecE and Control, Las Vegas, Nevada, USA, 2002.3464-3469.
    
    [292] Correa G, Sales D. On a class of approximate solutions to multi-objective H_2/H_∞ problems. Int.J. of Control, 2002,75(3):177-194.
    
    [293] Da Silveira M, Ades R. The solution of the H_2/H_∞ problem by direct methods. SIAM J. Control Optim., 2002,41(4):1089-l 117.
    
    [294] Yang C, Sun Y. Mixed H_2/H_∞ state-feedback design for microsatellite attitude control. Control Engineering Practice, 2002,10:951-970.
    
    [295] Han J, Skelton R. An LMI optimization approach for structured linear controllers. Proceedings of the IEEE Conf. Dec. and Control, Maui, Hawaii, USA, 2003. 5143-5148.
    
    [296] Kanev S, Scherer C, Verhaegen M, et al. A BMI optimization approach to robust output-feedback control. Proceedings of the IEEE Conf. Dec. and Control, Maui, Hawaii, USA, 2003. 851-856.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700