用户名: 密码: 验证码:
并联构型装备开放式数控系统关键技术研究与开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文密切结合并联构型装备实用化和产业化发展的实际需求,系统研究了并联装备开放式数控系统建造中的若干关键技术,包括开放式数控系统的设计理论及开发方法、插补算法、速度控制、运动学标定技术等内容。论文取得了如下创造性成果:
     采用二次插补策略,分别构造了操作空间和关节空间的实时插补算法。分析了插补原理性轮廓误差在工作空间全域内的变化规律,指出在PVT插补模式下由二次插补算法引起的全域轮廓误差上界远小于数控系统本身的分辨率,能够有效满足并联构型装备实现高速高精度轨迹控制的要求。
     将速度过渡算法与二次插补策略综合考虑,导出了基于直线加减速的精确实时插补算法,保证了运动轨迹的精度和速度平稳性。在不影响轮廓精度的前提下,实现了多程序段间的速度平滑转接,提高了数控系统的加工运行效率。
     以“PC+可编程多轴运动控制器”的开放式结构为核心,构建了数控系统硬件平台。采用双端口RAM与中断通讯相结合的方式建立了主从CPU间的协调运行机制。通过构造系统内部的环形缓存实时数据流,实现了主机的多任务重叠流水处理。在此基础上,采用模块化设计思想,开发出与ISO标准兼容的数控代码解释、友好的人机交互界面和系统管理功能,以及自动、点动、手轮、回零等数控功能。
     以3-HSS并联机床为对象,提出一种可将影响末端可控和非可控误差的几何误差源有效分离的误差建模方法,在此基础上构造了具有分层递阶格式的几何误差参数辨识模型。提出一种采用二次激光测量有效分离末端姿态和位置误差信息的检测手段,并采用修正控制模型输入的策略实现了末端位置精度的软件补偿。计算机仿真和试验结果表明,本文提出的一整套运动学标定方法是行之有效的。
     样件切削试验和几何精度检测结果表明,3-HSS并联机床的精度水平已达到普通型加工中心的检验标准,数控系统运行稳定、功能完备,可满足实际加工需求,进而为并联构型装备的实用化发展奠定了良好基础。
This dissertation deals with some key issues in the development of open architecture CNC system of parallel kinematic machines (PKMs), including interpolation, velocity transition, kinematic calibration and the design methodology of open architecture CNC. The following contributions have been made.
     Considering the kinematic characteristics of PKMs, a two-step interpolation strategy is proposed. The theoretical trajectory error due to the two-step interpolation strategy and the nonlinear mapping is estimated in the entire workspace. The simulation results show that the upper error bound of the PVT algorithm is far less than the resolution of CNC system for the moderate feed rate.
     On the basis of the two-step interpolation strategy and linear acceleration rule, a real-time interpolation algorithm is presented. Moreover, the velocity transition technique for the different segments is adopted to enable the machine to achieve sufficient tracking accuracy.
     The“PC+PMAC”architecture is employed in the development of the hardware of the open CNC system. Meanwhile, the CNC software is designed on the basis of a coordinating mechanism to enhance the communication speed between the master-slave CPUs using the techniques such as interrupt, dual-loop buffer, and real-time dataflow for multiple task handling, etc. A number of embedded modules are also developed such as human-machine interface (HMI), NC code interpreter compatible to ISO standard, Handwheel, Home, Jog, Auto, etc.
     Taking the 3-HSS parallel kinematic machine as an example, the error mapping function is formulated in such a way that the geometric errors affecting the compensatable and uncompensatable pose errors can be separated. Based upon the previous investigation, a hierarchical approach is proposed to implement the geometric error identification using leaser interferometer. This allows the error compensation to be carried out by modifying the trajectory commands resided in the CNC system. The simulation and experiment results verify the validity and effectiveness of the proposed approach.
     A real cutting experiment has been carried out on the 3-HSS parallel machine tool. The metrological results show that the accuracy in terms of both dimensions and geometry is fairly good in comparison with the conventional milling machines.
引文
1 A. Gasparetto, V. Zanottoa, A new method for smooth trajectory planning of robot manipulators, Mechanism and Machine Theory, 2007, 42(4): 455-471
    2 A. Gasparetto, V. Zanottoa, A technique for time-jerk optimal planning of robot trajectories, Robotics and Computer-Integrated Manufacturing, 2008, 24(3): 415-426
    3 Altintas Y, Erol N A, Open Architecture Modular Tool Kit for Motion and Machining Process Control, Annals of the CIRP, 1998, 47(1): 295-300
    4 Altintas, Y., Erkorkmaz, K., Feedrate Optimization for Spline Interpolation in High Speed Machine Tools, Annals of CIRP, 2003, 52(1): 297-302.
    5 Altintas, Y., Newell, N., Ito, M., Modular CNC Design for Intelligent Machining. Part I: Design of a Hierarchical Motion Control Module for CNC Machine Tools, Transactions of ASME, Journal Manufacturing Science and Engineering, 1996, 118: 506-513
    6 Chih-Ching Lo, Feedback Interpolators for CNC Machine Tools, Transactions of the ASME, 1997, 119:587-592
    7 Chih-Ching Lo, Real-time Generation and Control of Cutter Path for 5-axis CNC Machining, International Journal of Machine Tools & Manufacture, 1999, 39:471-488
    8 Chuan Shi, Peiqing Ye, Kaiming Yang, The Look-ahead Based Adaptive Motion Control for High-Speed Machining of Complicated Contours, Assembly and Manufacturing, ISAM '07 IEEE International Symposium, 2007: 31-37
    9 Clavel R. DELTA. A Fast Robot with Parallel Geometry, In 18th Int. Symp. On Industrial Robot, Lausanne, 26-28 April, 1988: 91-100
    10 Dasgupta B, Mruthyunjaya T S. Advances in Mechanical Engineering. Proc. of the International Conference of Advance in Mechanical Engineering, 1996, 1: 199-218
    11 Di Gregorio R et, Parenti-Castelli V. Influence of Leg Flexibility on the Kinematic Behavior of a 3-dof Fully-Parallel Manipulator, The world congress on the theory of machine and mechanisms, Oulu, Finland, June 20-24, 1999: 1091-1098
    12 Dumur D, Boucher P, Roder J, Advantages of an Open Architecture Structure for the Design of Predictive Controllers for Motor Drives, Annals of the CIRP, 1998,47(1): 291-294
    13 Erkorkmaz, K., Altintas Y, Quintic Spline Interpolation with Minimal Feed Fluctuation, Trans. ASME, J. Manufac. Sc. And Eng., 2005, 127(2):339-349
    14 Fattah A, Angeles J, Misra A K. Dynamics of a 3-DOF Spatial Parallel Manipulator with Flexible Links, IEEE International Conference on Robotics and Automation, 1995, 627-632
    15 Fu-Chung Wang and P. K. Wright, Open Architecture Controllers for Machine Tools, Part 2: A Real Time Quintic Spline Interpolator, Transactions of the ASME, 1998, 120:425-432
    16 Fu-Chung Wang and P. K.Wright, Open Architecture Controllers for Machine Tools, Part 2: A Real Time Quintic Spline Interpolator, Transactions of the ASME, 1998, 120:425-432
    17 G. Pritschow, Y. Altintas, F. Javone, Y. Koren, M. Mitsuishi, S. Takata, H. Van Brussel, M. Weck, K. Yamazaki, Open Controller Architecture-Past, present and future, Annals of CIRP, 2001, 50(2): 446-463.
    18 Gosselin C, Angeles J. A Globe Performance Index for the Kinematic Optimization of Robotic Manipulators, ASME Journal of Mechanical Design, 1991 113(3): 220-226.
    19 Hee-Sub Lee, Jae Wook Jeon, Joung Youn Choi, A high-performance open architecture motion controller, Industrial Electronics, ISIE 2001, IEEE International Symposium, 2001(2): 886-890
    20 Hennes N, Staimer D. Application of PKM in Aerospace Manufacturing High Performance Machining Centers Ecospeed, Ecospeed-F and Ecoliner. Proceedings of 4 Parallel Kinematics Seminar. Chemnitz, Germany, 2004: 557-568
    21 Hideo MATSUKA, Chihiro SAWADA, Japanese PC-based Open Control Systems for Manufacturing Equipment, Int. J. Japan Soc. Prec. Eng., 1996, 30(3):204-209
    22 Hiromu NAKAZAWA, Isao SUGAYA, Study on Human-Oriented Interface for CNC Machine Tools, JSME Series C, 1996, 39(2):397-403
    23 Huang T, Whitehouse D J, Wang J S. Local Dexterity, Optimum Architecture and Design Criteria for Parallel Machine Tools, Annals of CIRP, 1997, 47(1): 347-351
    24 Huang T., Wang J. S., Gosselin C.M., Whitehouse D. J., Closed Form Solution to the 2D Orientation Workspace of Gough-Stewart Parallel Manipulators, IEEE Transaction on Robotics and Automation, 1999, in print
    25 Huang T., Wang J. S., Whitehouse D. J., Closed Form Solution to Hexapod-based Virtual Axis Machine Tools, ASME J. of Mechanical Design, 1999, 121(1):26-31
    26 Huang T., Wang J. S., Whitehouse D. J., Design of Hexapod Based Machine Tools with Specified Workspace and Well-conditioned Dexterity, Proceeding of the 10th TMM World Congress, Oulu, Finland, 1999, 1146-1151
    27 Huang T., Whitehouse D. J., Wang J. S., Local Dexterity, Optimum Architecture and Design Criteria for Parallel Machine Tools, Annals of CIRP, 1997, 47(1):347-351
    28 Huang, T. et al. A simple yet effective approach for error compensation of a tripod-based parallel kinematic machine. Annals of the CIRP, 2000,49(1): 285-288
    29 Huang, T., Chetwynd, D. G., Whitehouse, D. J., Wang, J. S., A general and novel approach for parameter identification of 6-DOF parallel kinematic machines using a minimum set of pose error data, Mechanism and Machine Theory, 2005, 40(2): 219-239
    30 Huang, T., Li, Y., Tang, G. B., Chetwynd, D. G., Error modeling, sensitivity analysis and assembly process of a class of 3-DOF parallel kinematic machines with parallelogram struts, Science in China (E), 2002, 45(5): 467-476
    31 Huang, T., Mei, J. P., Li, Z. X., Zhao, X. M., Chetwynd, D. G., A method for estimating servomotor parameters of a parallel robot for rapid pick-and-place operations, ASME Journal of Mechanical Design, 2005, 127(4): 596-601
    32 Huang, T., Tang, G. B., Li, S.W., Chetwynd, D. G., Kinematic calibration of a class of parallel kinematic machines (PKM) with fewer than six degrees of freedom, Science in China (E), 2003, 46(5): 515-526
    33 Huang, T., Wang, P.F., Mei, J.P., Zhao, X. M., Chetwynd, D.G., Time minimum trajectory planning of a 2-DOF translational parallel robot for pick-and-place operations, CIRP Annals, 2007, 56(1): 365-368
    34 Huang, T., Whitehouse, D. J., Chetwynd, D. G., A unified error model for tolerance design, assembly and error compensation of 3-DOF parallel kinematic machines with parallelogram struts, Annals of CIRP, 2002, 51(1): 297-301
    35 Hunt K H. Kinematic geometry of mechanisms. Oxford, Great Britain. Oxford University Press, 1978
    36 Hunt K H. Structural Kinematics of In-Parallel-Actuated Robot-Arms, ASME J. Mech., Transmission, and Automation in Design, 1983, 105(4): 705-712
    37 Irene Fassi, Gloria J. Wiens. Multiaxis Machining: PKMs and Traditional Machining Centers. Journal of Manufacturing Processes, 2000, 2(1): 1-14
    38 Izosimov B, Sliding mode control of electric motor. IFAC, 1981:1059-2065
    39 Ji Z. M. Dynamics Decomposition for Stewart Platforms, J. of Mechanical Design, 1994, 116: 67-69
    40 Jih-Hua Chin, Tsung-Ching Lin, Cross-Coupled Precompensation Method for the Contouring Accuracy of Computer Numerically Controlled Machine Tools, International Journal of Machine Tools & Manufacture, 1997, 37(7):947-967
    41 Ko, J., Hu, S. J., Huang, T, Reusability assessment for manufacturing systems, Annals of CIRP, 52 (1): 113-116, 2005
    42 Koren, Y., et al. 2000, Reconfigurable manufacturing systems, Annals of the CIRP (Keynote paper), 49/2:527-540.
    43 Lebret, Liu, Lewis. Stewart Platform Dynamic Analysis, J. of Robotic Systems, 1993, 629-655
    44 Li C, Wang T, Kuo M J. Dynamic Load-Carrying Capacity and Inverse Dynamics of Multiple Cooperating Robotic Manipulators, IEEE Transaction on Robotics and Automation, 1994, 10(1): 71-77
    45 Liang Chen and Masaomi Tsutsumi, Measurement and Compensation of Corner-tracking Errors of CNC Machine Tools, Int. J. Japan Soc. Prec. Eng., 1996, 30(4):331-336
    46 Lu Ren Mills, J. K. Dong Sun, Experimental Comparison of Control Approaches on Trajectory Tracking Control of a 3-DOF Parallel Robot, Control Systems Technology, IEEE Transactions, 2007, 15(5): 982-988
    47 Merlet J P, Parallel Robots, Kluwer Academic Publishers, 2000
    48 Miller K. Experimental Verification of Modeling of DELTA Robot Dynamics by Direct Application of Hamilton’s Principle, IEEE International Conference on Robotics and Automation, 1995, 532-537
    49 Mitsushi M, Nagao T, Okabe H, Hashiguchi M, Tanaka K, An open architecture CNC CAD/CAM Machining System with Data-base Sharing and Mutual Information Feedback, Annals of the CIRP, 1997, 46(1):269-274
    50 Nguyen C C, Antrazi S S, Zhou Z L, Experimental study of motion control and trajectory planning for a Stewart plaform robot manipulator, In: Proceedings of the IEEE International Conference on Robotics and Automation, 1991,2: 1873-1878
    51 Nidal Farhata, Vicente Mataa, ValeroaIdentification of dynamic parameters of a 3-DOF RPS parallel manipulator ,Mechanism and Machine Theory, 2008, 43(1): 1-17
    52 Ota H et al. Forward kinematic calibration method for parallel mechanism using pose data measured by a double ball bar system. Invited Speech of CIRP Workshop, Paris, 2001
    53 Pierrot, F. , Marquet F. ,Company, O. ,Gil T. , H4 parallel robot : Modeling, design and preliminary experiments ICRA'01: International Conference on Robotics and Automation , 2001, pp. 3256-3261
    54 Pierrot, F., Company, O., H4: a new family of 4-dof parallel robots, in Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Atlanta, 1999, 508—513.
    55 Pittens K H et, Podhorodeski R P. A Family of Stewart Platforms with Optimal Dexterity, J. of Robotic Systems, 1993, 10(4): 463-479
    56 PMAC Hardware Reference, Version 1.16. Delta Tau Data System Inc, 1992.11
    57 PMAC Software Reference, Version 1.16. Delta Tau Data System Inc, 1992.11
    58 PMAC Users Manual, Version 1.16. Delta Tau Data System Inc, 1992,11
    59 Pritschow G, Junghans D C, Sperling G W, Open System Controllers-a Challenge for the Future of the Machine Tool Industry, Annals of the CIRP, 1993,42(1): 449-452
    60 Pritschow, G., Wurst, K. H.. Systematic Design of Hexapods and Other Parallel Link Systems, Annals of the CIRP, 1997, 46(1): 291-295.
    61 Pritschow, G.. Parallel Kinematics (PKM)-Limitations and New Solution, Annals of the CIRP, 2000, 49(1): 275-280.
    62 Raymond Echalmers, Open-architecture CNC continue advancing, Manufacturing Engineering, 2001, 127(1):48-52
    63 Rida T. Farouki, Jairam Manjunathaiah, Guo-Feng Yuan, G Codes for the Specification of Pythagorean-Hodograph Tool Paths and Associated Feedrate Functions on Open-Architecture CNC Machines, International Journal of Machine Tools & Manufacture, 1999, 39:123-142
    64 S. Schofield and P. Wright, Open Architecture Controllers for Machine Tools, Part 1: Design Principles, Transactions of the ASME, 1998, 120:417-424
    65 S. Y. Chu, C. C. Tag, Tuning of PID controllers based on gain and phase margin specifications using funw neural network, Fuzzy Sets and Systcm, 1999, 101(l): 21-30
    66 Stewart D. A platform with six degrees of freedom. In: Proceedings of institute of Mechanical Engineering, London, 1965, 180 (15): 371-386
    67 Stoughton R et, Arai T. A Modified Stewart Platform Manipulator with Improved Dexterity, IEEE Trans, On Robotics and Automation, April 1993, 9(2): 166-173
    68 Tsai L W, Robot Analysis: The Mechanics of Serial and Parallel Manipulators, New York: Wiley-Interscience Publication, 1999
    69 Tsai L W. Kinematics of a Three-DOF Platform with Three Extensible Limbs, In Recent Advances in Robot Kinematics, Kluwer Academic Publishers,1996: 401-410
    70 Tsai L W. Solving the Inverse Dynamics of a Stewart-Gough Manipulator by the Principle of Virtual Work, ASME J. Mech. Design, 2000, 122: 3-9
    71 W. Brian Rowe, Y. Li, B. Mills, D.R. Allanson, Application of Intelligent CNC in Grinding, Computers in Industry, 1996, 31:45-60
    72 Wang, Y., Huang T, Gosselin, C.M., Interpolation error prediction of a 3-DOF parallel kinematic machine, ASME Journal of Mechanical Design, 126(5): 932-937, 2004
    73 Weck M, Staimer D, Parallel kinematic machine tools– current state and future potentials, Annals of the CIRP, 2002, 51(2): 671-683
    74 Weck, M., et al., 1998, Parallel kinematics——The importance of enabling technologies, The 1st European-American Forum on Parallel Kinematic Machines, September, Milano, Italy.
    75 Y. Cao, V. J. Modi, C. W. de Silva, M. Chu, Y. Chen and A. K. Misra ,Trajectory tracking experiments using a novel manipulator ,Acta Astronautica, 2003, 52,(7): 523-540
    76 Y. Koren, "Will PKM Be Adopted by Industry?" in Parallel Kinematic Machines: Theoretical Aspects and Industrial Requirements, C.R. Boer, L. Molinari-Tosatti, and K.S. Smith, eds. (Springer-Verlag, 1999), PP271-273.
    77 Yamazaki K, Hanaki Y, Mori M, Tezuka K, Autonomously Proficient CNC Controller for High-performance Machine Tools Based on an Open Architecture Concept, Annals of the CIRP, 1997,46(1):275-278
    78 Yang, Z. Y., Huang, T., A new method for tuning PID parameters of a 3-DOF reconfigurable parallel kinematic machine, In: Proceedings of IEEE on Robotics and Auromation, 2004: 2249-2254, New Orleans, Louisiana, U.S.A.
    79 Yang, Z. Y., Huang, T., Dynamic modeling and Trail Tracking Control of Miniature Reconfigurable Parallel Machine, In: Proceedings of the 11th World Congress in Mechanism and Machine Science, 2004: 1730-1735, Tianjin, China.
    80 Yang, Z. Y., Xu, M., Huang, T., Ni, Y., Variable identification and automatic tuning of the main module of a servo system of parallel mechanism, Frontiers of Mechanical Engineering in China, 2007, 2(1): 82-88
    81 Yoram Koren, Control of Machine Tools, Transactions of the ASME, 1997, 119: 749-755
    82 Yukio T, Gang S, Hiroaki F, DBB-Based Kinematic Calibration Method for In-Parallel Actuated Mechanisms Using a Fourier Series, ASME Journal of Mechanical Design, 2004, 126: 856-865
    83 Zhuang H, Yan J, Masory O. Calibration of Stewart platform and other parallel manipulators by minimizing inverse kinematic residual. J. of Robotic System, 1998, 15(7): 395-40
    84 Ziegler J G, Nichols N B. Optimum settings for automatic controllers, Trans. ASME, 1942, 64: 759-768h
    85毕承恩,丁乃健,现代数控机床,机械工业出版社, 1991
    86蔡光起,胡明等.机器人化三腿磨削机床的研制,制造技术与机床, 1998(10): 4-6
    87蔡光起,原所先等.三自由度虚拟轴机床静力学及动力学的若干研究,中国机械工程, 1999, 10(10): 1108-1111
    88陈金成,徐志明,基于分段三次样条曲线的高速加工平滑运动轮廓自适应算法研究,机械工程学报, 2002, 38(5):61-65
    89何克忠,李伟,计算机控制系统,清华大学出版社, 1998
    90郇极,开放式数控系统的数字伺服接口和通讯协议,中国机械工程, 1998, 9(5): 20-21
    91郇极,尹旭峰,基于数字伺服现场总线技术的开放式数控系统,中国机械工程, 1999, 10(10):1132-1134
    92黄田,唐国宝,李思维等,一类少自由度并联构型装备运动学标定方法研究,中国科学(E辑), 2003, 33(9): 829-838
    93黄田,汪劲松.并联机床设计基础理论研究进展,中国科协第30次青年科学家论坛,北京,航空工业出版社, 1999, 25-38
    94黄田,赵兴玉,王洋,梅江平,倪雁冰.并联机床伺服进给电机参数选择的一种方法,自然科学进展, 2001,11(5): 522-529
    95黄真,空间机构学,北京:机械工业出版社, 1991
    96黄真,孔令富,方跃法,并联机器人机构学理论与控制,北京:机械工业出版社, 1997
    97孔德庆,并联机构主模块鲁棒控制及其机电伺服控制系统研究,天津大学硕士论文, 2003
    98孔德庆,黄田,张洪波,张巨勇,考虑交流伺服电机动力学特性的并联机构鲁棒轨迹跟踪控制方法研究,自动化学报, 2007, 33(1): 37-43
    99雷为民,乔建中,李本忍,智能数控实现技术分析,小型微型计算机系统, 1999, 20(8): 593-599
    100李亚, 3-HSS并联机床精度设计与运动学标定方法研究: [博士学位论文],天津:天津大学, 2002
    101李永东,交流电机数字控制系统,机械工业出版社, 2002
    102廖德岗,姚银燕,基于开放式体系结构的数控机床可靠性及抗干扰设计,制造业自动化, 2000, 22(2):42-46
    103林亦鸿,李小力,开放式数控系统的构造、界面与协议,中国机械工程, 1998, 9(5):22-24
    104刘海涛,梅江平,赵学满,黄田, Chetwynd, D. G..一种2自由度球面并联机构动力学建模与伺服电机参数预估,中国科学(E辑):技术科学, 2008, 38(1): 1-14
    105刘敏杰,李从心,刘海峰.基于速度变换的Stewart平台机械手动力学分析, 2000, 36(5:38-41
    106刘权秀,朱志红,唐小琪,双口RAM在数控系统运动控制单元中的应用,嵌入式系统, 2001, (10): 45-46
    107刘胜,彭侠夫,现代伺服系统设计,哈尔滨工程大学出版社, 2001
    108刘延杰,高速高精度平面并联机器人及其控制方法研究: [博士学位论文],哈尔滨:哈尔滨工业大学, 2003
    109卢桂章,机器人控制的现状与问题,控制理论与应用, 1990, 7(2):1-10
    110马香峰,机器人机构学,北京:机械工业出版社, 1992
    111梅江平,可重构并联机构主模块机电伺服控制系统研究及硬件设计,博士学位论文, 2002
    112梅江平,倪雁冰,王辉,并联机床数控平台建造,组合机床与自动化加工技术, 2002, 1: 9-11
    113闵松,彭伟发,赵金,交流伺服系统新型控制器的设计,电力系统及其自动化学报, 2002, 14(3): 63-66
    114倪雁冰,梅江平,王辉,并联机床安全保障系统设计,制造技术与机床, 2001, 11: 9-10
    115宁亭,吴辉,航天Ⅰ型数控系统软件设计中的关键技术,华中理工大学学报, 1994, 22(12): 71-73
    116牛志刚,张建民,并联机构实轴伺服电机的振动抑制,中国机械工程, 2005, 16(23): 2076-2079
    117齐占庆,王振臣,机床电气控制技术,北京:机械工业出版社, 2008
    118秦忆,周永鹏等,现代交流伺服系统,北京:机械工业出版社, 1999
    119阮晓东.用立体视觉测量多自由度机械装置姿态的研究,中国机械工程,2000,22(5): 573-575
    120孙迪生,王炎,机器人控制技术,机械工业出版社, 1997
    121孙勇,张东亮,基于Windows 95/NT的开放式数控系统实时性分析,机械与电子, 2000(1):43-45
    122汪劲松,黄田等,并联机床─机床行业面临的机遇与挑战,中国机械工程, 1999, 10(42): 1103-1107
    123汪劲松,王忠华,黄田, D.J.Whitehouse,并联机床的非线性特性及其在插补精度分析中的应用,中国科学: E辑, 2003, 33(9): 820-828
    124汪劲松,朱煜,张华.并联机床虚拟产品设计系统及基本框架研究,计算机集成制造系统, 2001, 5(35): 57-62
    125王辉,黄田,倪雁冰,并联机床手轮功能的实现,机械工程学报, 2002,38(S1): 212-214
    126王水来,周云飞,朱志红,复杂曲面实时插补系统的开发,中国机械工程, 1998, 9(5): 38-41
    127王太勇,李波,万淑敏,基于现场总线的可重构数控系统的研究,计算机集成制造系统, 2006, 12(10): 1662-1667
    128王伟,张晶涛,柴天佑, PID参数先进整定方法综述,自动化学报, 2000, 26(3): 347-355
    129王洋,并联机床开放式数控系统研究: [博士学位论文],天津:天津大学, 2002
    130王洋,黄田,倪雁冰等,基于正交球面并联机构的新型数控回转台姿态求解及实时控制,自然科学进展, 2002, 12(7): 726-731
    131王洋,黄田,倪雁冰等,基于正交球面并联机构的新型数控回转台姿态求解及实时控制,自然科学进展, 2002.6
    132王洋,倪雁冰,黄田等,并联机床插补算法与原理性插补误差预估,机械工程学报, 2001, 37(6): 15-18
    133王忠华,王劲松,杨向东,虚拟轴机床数控系统直线和圆弧插补仿真研究,中国机械工程, 1999, 10(10):1121-1123
    134魏永明,叶佩青,李铁民,杨向东,虚拟轴机床CNC系统的软件设计及系统特点,制造技术与机床, 1999, 1:27-29
    135熊有伦,机器人学,北京:机械工业出版社, 1993
    136徐创文,进给伺服系统特性对加工精度的影响分析,航空精密制造技术, 2002, 38(5):43-46
    137严俊薇,严俊永,计算机实时控制软件导论,北京:清华大学出版社, 1990
    138杨志永,黄田,梅江平.基于全域优化的高速并联机械手控制器参数整定技术研究,机械工程学报, 2006, 42(9): 123-129
    139杨志永,黄田,倪雁冰, 3-HSS并联机床动力学建模及鲁棒轨迹跟踪控制.机械工程学报, 2004, 40(11): 75-81
    140叶伯生,杨叔子, CNC系统中的三次参数样条曲线的插补算法,华中理工大学学报, 1996, 24(9): 9-11
    141游有鹏,王珉,朱剑英, NURBS曲线高速高精度加工的插补控制,计算机辅助设计与图形学学报, 2001, 13(10):943-947
    142游有鹏,王珉,朱剑英,参数曲线的自适应插补算法,南京航空航天大学学报, 2000, 32(6): 667-671
    143张得礼,周来水,数控加工运动的平滑处理,航空学报, 2006, 27(1):125-130
    144张可村,赵英良,数值计算的算法与分析,北京:科学出版社, 2003
    145张立新,尹文生,汪劲松,基于RT-Linux的开放式并联机床数控系统,第5界海内外青年设计与制造科学会议论文集,大连, 2002: 98-103
    146赵新华,彭商贤,一种分析并联机器人位置正解的高效算法,天津大学学报, 2000, 33(2): 134-137
    147赵兴玉,黄田,基于子结构技术的并联装备动力学分析,自然科学进展, 2005, 15(7): 849-855
    148中国机床工具工业协会赴EMO97工作组. EMO97新技术系列报道之一:六条腿机床取得重大进展. WMEM, 1998, 1: 17-22
    149周凯,陆启建,高速高精度采样插补技术,中国机械工程, 1998, 9(10): 15-18
    150周凯,数控系统体系结构研究,中国机械工程, 2002, 13(5): 406-409
    151周祖德,魏仁选,陈幼平,开放式控制系统的现状、趋势与对策, 1999, 10(10):1090-1093
    152 http://www.ds-technologie.de/v2/en/home/index.php
    153 http://www.parallemic.org/WhosWho/Companies/Profile001.html
    154 http://www.SMTTricept.com

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700