用户名: 密码: 验证码:
无穷维随机系统的稳定性、可控性及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现实世界中的任何系统都存在随机因素,为了更准确的描述实际系统,设计更好的控制方案,在建立实际系统的模型时就必须充分考虑随机因素的影响–建立随机系统模型.无穷维随机系统是用随机偏微分方程、随机积分方程或抽象空间中的随机发展方程来描述的一类随机系统,主要特点是包含有随机噪声且状态变量属于无穷维的函数空间.目前,无穷维随机系统模型已经广泛地应用于现代量子力学、流体力学、大气海洋预报、图像处理、工业控制、经济、生物学等领域,关于无穷维随机系统的研究已经成为现代控制理论和数学上的研究热点.
     本文基于无穷维随机分析、线性算子半群理论、现代偏微分方程的基本理论,利用Lyapunov方法、Banach不动点定理、线性算子不等式等方法,系统的研究了无穷维随机系统的稳定性和可控性问题,提出了针对无穷维随机系统新的分析方法,获得了若干具有重要意义的理论和应用结果.本学位论文的主要工作有以下几个方面:
     1、对无穷维随机系统及其稳定性和可控性的研究进展、研究方法进行了概述,并简单介绍了关于无穷维空间的随机积分及其常用性质和重要不等式,列出了无穷维随机偏微分方程的Ito|^公式.
     2、对在非Lipschitz条件下的非线性漂移系数和扩散系数的随机双曲方程解的存在唯一性进行了讨论.利用适度解的Green函数表示,通过构造解的逼近列,在适当的空间证明其收敛到对应的适度解,得到了具有广泛代表意义的随机双曲方程适度解的存在唯一性.并且,所得结果包含了非线性系数满足通常的Lipschitz条件和线性增长条件的情形.
     3、利用经典的Banach不动点定理分析了具有脉冲影响的无穷维半线性随机系统的完全可控性问题.通过引入适当的反馈控制与可控性算子,利用无穷维脉冲随机微分方程适度解的常数变易公式、无穷维随机分析的B-D-G不等式,证明了系统在具有脉冲激励条件下,在适当小的时间段内,系统仍然是完全可控的,并给出具体例子说明其应用.
     4、对无界区域上一阶非线性随机双曲系统的稳定性进行了分析.利用傅里叶变换、C0半群理论,在无穷小生成元满足强双曲条件下,建立了适度解的均方指数稳定和几乎必然指数稳定的充分条件.并且,给出一个实际例子说明其应用.
     5、对作用在时滞项是有界算子的无穷维随机线性时滞系统的稳定性进行了分析.利用一种新的工具–线性算子不等式(Linear Operator Inequality, LOI),对抽象的无穷维线性随机时滞系统,建立了系统状态按照给定速率衰减的均方指数稳定的充分条件.这里时滞既可以是常时滞,也可以是变时滞,或多时滞、多变时滞.并且指出,无穷维情形下的算子不等式可以看作是有限维线性矩阵不等式的推广.
     6、基于线性算子不等式对随机时滞热传导方程、随机时滞波动方程的稳定性问题进行了研究.对常系数随机时滞热传导方程,借助偏微分方程的Green公式、Poincare′不等式,分析了时滞和噪声对系统均方指数稳定性的影响.而对一维常系数线性随机时滞波动方程,则由于双曲系统具有能量守恒性,研究了系统存在耗散项的情况下,构造适当的Lyapunov函数,得到稳定性结果,以线性矩阵不等式的形式给出了强解均方指数稳定的充分条件.
     7.对随机半线性抛物方程的边界镇定和H∞问题进行了研究.通过设计边界静态反馈控制律,以线性矩阵不等式(LMI)的形式分别给出了使得系统均方指数镇定和鲁棒镇定的充分条件.
     最后总结全文并指出进一步可研究的方向.
Stochastic perturbation is inevitable in any real world system. To describe the real systemsmore exactly and further to design better controllers, it is necessary to take account of stochasticfactors. Infinite dimensional stochastic systems are described by stochastic partial differentialequations, stochastic integral equations or stochastic evolution equations in abstract spaces. Itsmain characters are being in?uenced by stochastic noises and the state variables belonging toinfinite dimensional function space. Nowadays, infinite dimensional stochastic systems havebeen widely applied in many fields, such as modern quantum mechanics, hydromechanics,ocean atmosphere forecasting, image processing, industrial control, economics, biology, etc.Infinite dimensional stochastic systems and their control theory have become a hot spot inmodern control theory and mathematics.
     Based on the theory of infinite dimensional stochastic analysis, linear operator semigroup,and modern partial differential equations, this dissertation explores some new analysis tech-nique and systematically studies the stability and controllability of infinite dimensional stochas-tic systems by means of Lyapunov method, Banach fixed point theorem and linear operatorinequality. Some important theoretical and practical results are obtained. The main contentsand contribution of this dissertation are summarized as follows:
     1. An introduction to the latest progress and research method in stability and controlla-bility of infinite dimensional stochastic systems is given. Also, stochastic integral in infinitedimensional spaces and its properties, some important inequalities are presented. And then theIt(o|^) formula for infinite dimensional stochastic partial differential equations is given.
     2. The existence and uniqueness of the solution of stochastic hyperbolic equation withnon-Lipschitz drift and diffuse coefficients are discussed. By using Green function presentationof mild solution and the formula for the variation of parameters, approximate sequence of mildsolution are constructed in some suitable space and proven converging to the real solution.The obtained existence and uniqueness theorem is typical. It is easy to find that the Lipschitzcondition is only a special case of our result.
     3. The complete controllability problem of semilinear impulsive stochastic systems ininfinite dimensional space is concerned by using Banach fixed point theorems. Utilizing theformula for the variation of parameters, B-D-G inequality and introducing feedback control,the systems are proven to be completely controllable in certain small interval. An example isgiven to illustrate the theorem.
     4.Stability of first order nonlinear stochastic hyperbolic systems in whole space is con-cerned. Employing Fourier transformation and C0 semigroup theory, sufficient conditions en-suring exponentially stable in mean square and almost surely exponentially stable are givenunder strong hyperbolic assumption. An example is provided to illustrate our theory.
     5. The stability of a class of linear stochastic delay systems in infinite dimensional space isconsidered. The system delay is admitted to be unknown, time-varying, multi delays and multivarying delays, but the operator acting on the delayed states is bounded. Sufficient conditionsensuring exponential stability of abstract infinite dimensional stochastic time delay systems atgiven decaying rate are derived in the form of LOI. We point out the LOI in infinite dimensionalspaces is a generalization of LMI in finite dimensional spaces.
     6. Based on linear operator inequality, the stability of stochastic heat equations andstochastic wave equations with time delay is considered. For stochastic delay heat equationswith constant coefficients, the in?uence of delay and noise to the mean square exponential sta-bility is discussed by Green formula and Poincare′inequality. Noting the conversation of energy,stability of one order linear stochastic delay wave equation with dissipation term is considered.By constructing Lyapunov functions, sufficient conditions ensuring mean square exponentialstability of strong solution is obtained in the form of LMI.
     7. The boundary stabilization and robust H_∞problem of semilinear stochastic parabolicequations are considered. By designing boundary static state controller, sufficient conditions ofmean square exponential stability and robust stabilizations are derived in the form of LMI.
     Finally, the main results of the dissertation are summarized, and the issues of future inves-tigation are proposed.
引文
[1] Adamas R. A. Sobolev space[M]. New York, Academic Press, 1976.
    [2] Aihara S. I., Bagchi A. Parameter identification for hyperbolic stochastic systems[J]. Jour-nal of Mathematical Analysis and Applications, 1991, 166:485-499.
    [3] Andrey S., Miroslav K. Boundary control of an anti-stable wave equation with anti-damping on the uncontrolled boundary[J]. Systems & Control Letters, 2009, 58:617-623.
    [4] Arnold L. Stochastic differential equations: theory and applications[M]. NewYork: JoknWiley & Sons, 1974.
    [5] Baklan V. V. On the existence of solutions of stochastic equations in Hilber space[J].Depov Akad. nauk. Ukr., 1963, 10:1299-1303.
    [6] Balachandran, Kim J.-H., Karthikeyan S. Controllability of semi-linear stochastic inte-grodifferential equations[J]. Kybernetika, 2007, 43:31-44.
    [7] Balachandran, Karthikeyan S. Controllability of stochastic integrodifferential systems[J].International Journal of Control, 2007, 80:486-491.
    [8] Balachandran K., Dauer J. Controllability of nonlinear systems in Banach spaces[J], Jour-nal Optimal Theory and Applications, 2002, 53:345-352.
    [9] Balasubramaniam, Dauer J. Controllability of semilinear stochastic delay evolution equa-tions in Hilbert spaces[J]. International Journal of Mathematics and Mathematical Sci-ences, 2002, 1-10.
    [10] Bao J. D., Deng F. Q., Luo Q. Robust stochastic stabilization of uncertain Markovianjumping systems with distributed time-delay Based on LMIs approach[J]. Proeeedings ofthe IEEE International Symposium on Intelligent Control, Houston, USA, 2003.
    [11] Barbu D. Local and global existence for mild solutions of stochastic differential equa-tions[J], Portugal Mathematics. 1998, 55(4): 411-424.
    [12] Barbu V. , Da Prato, Luciano Tubaro. Stochastic wave equations with dissipative damp-ing[J]. Stochastic Processes and their Applications, 2007, 117: 1001-1013.
    [13] Baxendale P. H., Lototsky S. V. Stochastic differential equations: Theory and Applica-tions[M]. New Jersey: World Scientific, 2007.
    [14] Benchohra M., Gorniewicz L., Ntouyas S. K., etl. Controllability results for impulsivefunctional differential inclusions[J]. Rep. Math. Phys., 2004, 54:211-228.
    [15] Bensoussan. Stochastic Navier-Stokes equations[J]. Acta Appl. Math, 1995, 38: 267-304.
    [16] Bensoussan , Viot M. Optimal control of stochastic linear distributed parameter sys-tems[J]. SIAM Journal of Control, 1975, 13: 904-926.
    [17] Bensoussan, Temam. Nonlinear Stochastic partial differential equations[J]. Israel Journalof Mathematics, 1972, 11: 95-121.
    [18] Bihari I. A generalization of a lemma of bellman and its application to uniquenass prob-lems of differential equations[J]. Acta. Math. Acad. Sci. Hungar, 1956, 7: 81-94.
    [19] Boukas E. K. Exponential stabilizability of stochastic systems with markovian jumpingparameters[J]. Automatica, 1999, 35:1437-1441.
    [20] Boukas E. K. Stabilization of stochastic singular nonlinear hybrid systems[J]. NonlinearAnalysis, 2006, 64: 217-228.
    [21] Boukfaoui Y., Erraoui M. Remarks on the existence and approximation for semilinearstochastic differential equations in Hilbert spaces[J]. Stochastic Analysia and Applica-tions. 2002, 20(3): 495–518.
    [22] Brannan J., Duan J., Wanner T. Dissipative quasi-geostrophic dynamica under randomforcing[J]. Journal of Mathematics Analysic and Applications, 1998, 228: 221-233.
    [23] Caraballo T., Garrido-Atienza M. J. , Real J. Existence and uniqueness of solutions for de-lay stochastic evolution equations[J]. Stochast Analysis and Application, 2002, 20: 1225-1256.
    [24] Caraballo T., Liu K. Exponential stability of mild solution of stochastic partial differentialequations with delays[J]. Stochastic Analysis and Applications, 1999, 17(5): 743-763.
    [25] Caraballo T., Liu K. On exponential stability criteria of stochastic partial differential equa-tions[J]. Stochastic Process and Their Applications. 1999, 83: 289-301.
    [26] Caraballo T., Liu K., Truman A. Stochastic functional partial differential equations: ex-istence, uniquness and asymptotic stability[J]. Proc. Royal Soc. London A, 2000, 456:1775-1802.
    [27] Caraballo T., Real J. On the pathwise exponential stability of nonlinear stochastic partialdifferential equations[J]. Stochast Analysis and Applications, 1994, 12: 517-525.
    [28] Caraballo T., Lang J., Taniguchi T. The exponential behaviour and stabilizability ofstochastic 2D-Navier-Stokes equations[J]. Journal of Differential Equations, 2002 ,179:714-737.
    [29] Caraballo T., Robinsonb C. Stabilisation of linear PDEs by Stratonovich noise[J]. Systems& Control Letters, 2004, 53 :41-50
    [30] Carlos M. M., Rolando R. Regular of solutions to linear stochastic Schro¨dinger equa-tions[J] . Infinite Dimensional Analysis, Quantum Probability and Related Topics, 2007,10(2) : 237-259.
    [31] Charles R. D., Khachik V. S., Peter S. A numerical method for some stochastic differentialequations with multiplicative noise[J]. Physics Letters A, 2005, 344:149-155.
    [32] Chen H. F., Guo L. Identification and stochastic adaptive control[M]. Birkhauser, Boston,1991.
    [33] Chojnowska M. A. Stochastic differential equations in Hilbert spaces and some of theirapplications[M]. Thesis, Institute of Methematics, Polish Academy of Sciences, 1977.
    [34] Chow P. L. Stochastic partial differential equations in Turbulence[J]. in Probabilistic Anal-ysis and Related Topic, Academic Press, 1978, 1:1-43.
    [35] Chow P. L. Stability of nonlinear stochastic evolution equations[J]. Journal of Mathemat-ical Analysis and Applications, 1982, 89: 400-419.
    [36] Chow P. L., Menaldi J. Stochastic PDE for nonlinear vibration of elastic panels[J]. Differ-ential Integral Equations, 1999, 12: 419-434.
    [37] Chow P. L. Stochastic partial differential equations[M]. Chapman & Hall/CRC, Boca Ra-ton, 2007.
    [38] Curtain R. F., Falb P. Stochastic differential equations in Hilbert spaces[J]. Journal ofDifferential Equations, 1971, 10:412-430.
    [39] Da Prato, Debussehe, Temam. Stochastie Burger’s equation nonlinear differential equa-tion[J]. APPI, 1994, l:389-402.
    [40] Da Prato, Zabczyk J. Stochastic equations in infinite dimensions[M] . Cambridge Univer-sity Press, 1992.
    [41] Da Prato, Zabczyk J. Ergodicity for infinite dimensional systems[M]. Cambridge Univer-sity Press, Cambridge, 1996.
    [42] Daleckii. Differential equations with functional derivatives and stochastic equations forgeneralized random process[J]. Dokl. Akal. Nauk, SSSR, 1966, 166: 1035-1038.
    [43] Dauer J. P. , Mahmudov N. I., Controllability of stochastic semilinear functional differ-ential equations in Hilbert spaces[J]. Journal of Mathematical Analysis and Applications,2004, 290(2): 373-394.
    [44] David N., Sardanyonsb L. Q. Gaussian density estimates for solutions to quasi-linearstochastic partial differential equations[J] .Stochastic Processes and their Applications2009, 119: 3914–3938.
    [45] Dawson. Stochastic evolution equations[J]. Math Biosci.,1972,154(3-4):187-316
    [46] Dawsona D. A., Feng S. Large deviations for the Fleming-Viot process with neutral mu-tation and selection[J]. Stochastic Processes and their Applications , 2001, 92: 131-162.
    [47] Deng H., Krstic M. Stochastic nonlinear stabilization–I: A backstepping design[J]. Sys-tems Control Letter, 1997, 32:143-150.
    [48] Dong Z., Xu T. G., Zhang T. S. Invariant measures for stochastic evolution equations ofpure jump type[J]. Stochastic Processes and their Applications, 2009, 119(2): 410-427.
    [49] Dubov M. A. Mordukhovich B. S. On controballability on infinite dimensional stochasticlinear systems[J]. IFAC Proceedings Series, Vol.2, Pergamon Press, New York, 1987.
    [50] Duncan T. E., Maslowski B., Pasik-Duncan B. Adaptive boundary and point control oflinear stochastic distributed parameter systems[J], SIAM J. Control Optim., 1994, 32:648-672.
    [51] Duncan T. E., Maslowski B., Pasik-Duncan B. Stochastic equations in Hilbert space witha multiplicative fractional Gaussian noise[J]. Stochastic Processes and their Applications,2005, 115(8): 1357-1383.
    [52] Duncan T. E., Pasik-Duncan B., Maslowski B. Adaptive boundary control of linearstochastic distributed parameter systems[J]. Proceedings of 22th Conference on Decisionand Control Texes, 1983, 369-374.
    [53] Fattorini. Infinite dimensional optimization and control theory[M]. Cambridge UniversityPress, 1999.
    [54] Fattorini, Some remarks on complete controllability[J], SIAM Journal of Control 1967, 4:686-694.
    [55] Flandoli, Sehmalufss. Random attractor for the 3-D stochastic Navier-Stokes equationwith multiplicative white noise[J]. Stochastics and Stochastics Rep, 1996 ,59:21-45.
    [56] Fridman. E., Orlov Y. Exponential stability of linear distributed parameter systems withtime-varying delays[J]. Automatica, 2009, 45(2):194-201.
    [57] Fridman. E., Orlov Y. An LMI approach to H∞boundary control of semilinear parabolicand hyperbolic systems[J]. Automatica, 2009, 45(2):2060-2066.
    [58] Friedman A. Stochastic differential applications[M]. Academic Press, Volumn 1, 1975,Volumn 2, 1983.
    [59] Frisch. Wave propagation in random media[R]. in“Probabilistic Method in Applied Math-ematics”, Academic Press, 1968.
    [60] Fujisaki M., Kallianpur G., Kunita H. Stochastio differential equations for the nonlinearfiltering problem[J]. Osaka J.Math, 1972, 919-940.
    [61] Goldys B., Maslowski B. Parameter estimation for controlled semilinear stochastic sys-tems: identifiability and consistency[J]. Journal of Multivariate Analysis, 2002,80: 322-343
    [62] Guo B. Z., Guo W. Stabilization and parameter estimation for an Euler–Bernoulli beamequation with uncertain harmonic disturbance under boundary output feedback control[J].Nonlinear Analysis, 2005, 61(5): 671-693.
    [63] Guo B. Z., Shao Z. C. On exponential stability of a semilinear wave equation with vari-able coefficients under the nonlinear boundary feedback[J]. Nonlinear Analysis: Theory,Methods & Applications, 2009, 71(12): 5961-5978.
    [64] Gross L. Potential theory in Hilbert[J]. Journal of Functional Analysis, 1965, 1:89-123.
    [65] Guo B., Huang D. Random attractor for a dissapative quasi-geostrophic dynamics understochastic forcing[J]. Advances in Mathematics(China)[J], 2008, 1(3): 147-154.
    [66] Gyongy. The stability of stochastic partial differential equations and applications on sup-ports[M]. Lecture Notes in Mathematics, No.1390, Springer-Verlag, 1989, 91-118.
    [67] Hasminskii. Stochastie stability of dieffrential equations[M]. Sijth offand Noordoff,AIPhen aan den, 1981
    [68] Haussmann U. G. Asymptotic stability of the linear Ito? equation in infinite dimensional[J].Journal of Mathematical Analysis and Applications, 1978, 65: 219-235.
    [69] Hu Y, Peng S. G. Maximum principle for stochastic evolution control system[J]. Stochasticand Stochastic Reports, 1990, 34:1-3.
    [70] Ichikawa. Optimal control of a linear stochastic evolution equation with state and controldenpendent noise[J]. Proc. IMA Conference, Recent Theoretical Developments in Con-trol, Academic Press, Leicester, England, 1976.
    [71] Ichikawa. Stability of semilinear stochastic evolution equations[J]. Journal of Mathemati-cal Analysis and Applications, 1982, 90:12-44
    [72] Ichikawa. Semelinear stochastic evolution equations:boundedness, stability and invariantmeasure[J]. Stochastics. 1984, 12: 1-39.
    [73] Ito? K. Foundations of Stochastic differential equations in infinite dimensional spaces[J].CBMS Notes, SIAM, Baton Rouge, Vol. 47, 1984.
    [74] Kalman. A new approach to linear filtering and prediction problems[J], Trans. ASME, Ser.D, J. Basic Engg., 1960, 82: 35-45.
    [75] Karoui EI. Peng S. Quenez M. C. Backward stochastic differential equations in finance[J].Math. Finance., 1997, 7: 1-71.
    [76] Karthikeyan S., Balachandran K. Controllability of nonlinear stochastic neutral impulsivesystems[J]. Nonlinear Analysis: Hybrid Systems, 2009, 3(3):266-276.
    [77] Keller J. B. Stochastic equations and wave propagation in random media[J] .ProceedingSympiosm Application of Mathematical, 1964, 16:145-170.
    [78] Khasminskii.On the stability of solution of stochastic evolution equations[J]. DynkiFestch. Prog. Probab, 1994, 34:185-197.
    [79] Kolmanovskii V., Myshkis A. Applied theory of functional differential equations[M].Kluwer, 1999.
    [80] Krylov N. N, Rozovisky B.L. Stochastic evolution equations[J]. J. Sov. Math.,1981, 38:65-113.
    [81] Krylov N. N, Rozovisky B.L.On the Cauchy problem for linear stochastic partial differen-tial equations[J]. Nauk, SSSR, 1977, 41:1267-1284.
    [82] Kunita H. Stochastic ?ow and stochastic differential equations[M], Cambridge Press,1978.
    [83] Kushner. On the optimal control of a system governed by a linear parabolic equation withwhite noise inputs[J]. SIAM J. Control Optimiz., 1978, 10:275-286.
    [84] Kunita H. Stochastic ?ow and stochastic partial differential equations[J]. Proc. Intern.Congr. Math., Berkeley, 1986, 1021-1031.
    [85] Kwiecinska. Stabilization of evolution equation by noise[J]. Proc. Amer. Math. Soc. 2001,130:3067-3074.
    [86] Lakshmikantham V., Bainov D. D., Simeonov P. S. Theory of impulsive differential equa-tions[M], World Scientific, Singapore, 1989.
    [87] Li P. , Ahmed N. U. Feedback stabilization odf some nonlinear stochastic systems onHilbert space[J]. Nonlinear Analysis, Theory, Methods and Applications, 1991, 17: 31-43.
    [88] Wan L. , Duan J. Exponential stability of non-autonomous stochastic partial differentialequations with finite memory[J]. Statist. Probab. Lett. 2008, 78(5): 490–498.
    [89] Liptzer R. S.& Shiryaev A. N. Stochastic of stochastic processes[M]. Nauka., 1968.
    [90] Liu K., Mao X.R . Exponential stability of non-linear stochastic evolution equations[J].Stochastic Process and Their Applications, 1998, 78:173-193.
    [91] Liu K. Lyapunov functional and asyptotic stability of stochastic delay evolution equa-tions[J]. Stochastics and Stochastics Reports, 1998, 63(1&2): 1-26.
    [92] Liu K. & Aubery Turman. Moment and almost sure Laypunov exponent of mild solutionof stochastic evolution equations with variable delays via approximates[J]. J.Math. KyotoUniv., 2002, 41:749-768.
    [93] Liu K. Stability of infinite dimensional stochastic differential equations with applications,in Pitman Monographs Surveys in Pure and Applied Mathematics, vol. 135[M], Chapman& Hall/CRC, 2006.
    [94] Luo J. W. Fixed points and exponential stability of mild solutions of stochastic partialdifferential equations with delays[J]. Journal of Mathematical Analysis and Applications.2008, 342:753-760.
    [95] Luo J. W. Stability of stochastic partial differential equations with infinite delays Journalof Computational and Applied Mathematics, 2008, 222: 364-371.
    [96] Luo J. W., Liu K. Stability of infinite dimensional stochastic evolution equations withmemory and Markovian jumps. Stochastic Process and Their Applications., 2008, 118:864-895.
    [97] Luo Y. P., Xia W. H., Liu G. R., Deng F. Q. LMI approach to exponential stabilizationof distributed parameter control systems with delay. Acta Automatica Sicina, 2009, 35(3):299-304.
    [98] Luo J. W., Zou J. Z., Hou Z. T. Comparison Principle and stability criteria for stochas-tic differential delay equations with Makrovian switching[J]. Science in China-Series A,2003, 46(1):129-138.
    [99] Mahmudov N. I. On controllability of linear stochastic systems in Hilbert spaces[J]. Jour-nal of Mathematical Analysis and Applications, 2001, 259: 64-82.
    [100] Mahmudov N. I. On controllability of semilinear stochastic systems in Hilbert spaces[J].IMA Journal of. Math. Control Inform. 2002, 19: 363-376.
    [101] Mahmudov N. I. Controllability of semilinear stochastic systems in Hilbert spaces[J].Journal of Mathematical Analysis and Applications, 2003, 288: 197-211.
    [102] Mahmudov N. I. Existence and Uniqueness Results for neutral SDEs in HilbertSpaces[J]. Stochastic Analysis and Applications, 2006, 24: 79-95.
    [103] Mahmoud M. E., Khairia E. E., Osama L. M., etl. Numerical methods for some nonlinearstochastic differential equations[J]. Applied Mathematics and Computation, 2005, 168:65-75.
    [104] Malliavin P. Stochastic calculus of variations and hypoellitic operators[J]. Processdingsof international symposium SDE, Kyoto, ed. K. Ito, Kinokuniya, Tokyo,1978,195-263.
    [105] Mao X. R. Stochastic Differential Equations and Applications[M]. Horwood, Chichester,1997.
    [106] Mao X. R., Marion G., Renshaw E. Environmental Brownian noise suppresses explosionsin population dynamics[J]. Stochastic Processes and their Applieations, 2002, 97: 95-110.
    [107] Mao X. R. Exponential Stability of Stochastic Dieffrential Equations[M]. NewYork, Ma-reelDekker, 1994.
    [108] Nguyen T. D. Boundary output feedback of second-order distributed parameter sys-tems[J]. Systems & Control Letters, 2009, 58: 519-528.
    [109] Novikov E.A. Functionals and the random force method in turbulence theory[J]. Sov.Phys. JEPT, 1965, 20: 1290-1294.
    [110] ?ksendal B. Optimal control of stochastic partial differential equations[J]. StochasticAnalysis and Applications, 2005, 23: 165-179.
    [111] Pardoux E. Integrales stochastiques Hilbertiennes[J].Cahiers Mathematiques de la Deci-sion, University Paris Dauphine, No.7617, 1976.
    [112] Pardoux E. Stochastic partial differential equations and filtering of diffusion processes[J].Stochastics, 1979, 3:127-167.
    [113] Pazy A. Semigroups of linear operators and applications to partial differential equa-tions[M]. Berlin: Springer-Verlag, 1983.
    [114] Peng S. G. A nonlinear Feynman-Kac formula and applications[J], In proceedings ofSymposium of system sciences and Control Theory. Chen & Yong eds., Wordl Scientific,1992,173-184.
    [115] Ren J. G., Zhang X. C. Freidlin–Wentzell’s large deviations for stochastic evolutionequations[J]. Journal of Functional Analysis, 2008, 254: 3148-3172.
    [116] Russel D. L., Nonharmonic Fourier series in the control theory of distributed parametersystems[J], Journal of Mathematical Analysis and Applications, 1967, 18: 542-560.
    [117] Sakthivel R., Mahmudovb N. I., Kim J.-H. On controllability of second order nonlinearimpulsive differential systems[J]. Nonlinear Analysis, 2009, 71:45-52.
    [118] Sakthivel R., KIM J.-H. On controllability of nonlinear stochastic systems[J], Reports onmathematic physics, 2006, 58.
    [119] Sakthivel R., Luo J. W. Asymptotic stability of impulsive stochastic partial differen-tial equations with infinite delays[J], Journal of Mathematical Analysis and Applications,2009, 356 : 1-6.
    [120] Sakthivel R, Mahmudov NI, Kim J.-H. Appromixate controllability of nonlinear impul-sive differential systems[J]. Rep. Math. Phys. 2007, 60:85–96.
    [121] Sandra C. Stabilization by noise for a class of stochastic reaction-diffusion equations[J].Probab. Theory Relat. Fields, 2005, 133: 190-214.
    [122] Subalakshmi R., Balachandran K. Park J. Y. Controllability of semilinear stochastic func-tional integrodifferential systems in Hilbert spaces[J]. Nonlinear Analysis, Hybrid Sys-tems, 2009, 3(1): 39-50.
    [123] Subalakshmi R., Balachandran K. Approximate controllability of nonlinear stochasticimpulsive integrodifferential systems in hilbert spaces[J]. Chaos, Solitons and Fractals,2009, 42: 2035-2046
    [124] Sworder D. D. Feedback control of a class of linear systems with jump parameters[J].IEEE Trans Automatic control, 1969, 14: 9-14.
    [125] Tanigiuchi T. Moment asymptotic behavior and almost sure Laypunov exponent ofstochastic functional differential equations with finite delays via Lyapunov Razumkhinmethod[J]. Stochastics,1996, 58: 191-208.
    [126] Taniguchi T. Almost sure exponential stability for stochastic partial functional differen-tial equations[J]. Stochastic Analysis and Applications, 1998, 16: 965-975.
    [127] Taniguchi T., Liu K. Truman A. Existence, uniqueness, and asymptotic behavior of mildsolution to stochastic functional differential equations in Hilbert spaces[J]. Journal of Dif-ferential Equations, 2002, 181: 72-91.
    [128] Taniguchi T. The existence and uniqueness of energy solutions to local non-Lipschitzstochastic evolution equations[J]. Journal of Mathematical Analysis and Applications,2009, 360: 245-253.
    [129] Wang T. X. Stability in abstract functional differential equations. II. Applications[J].Journal of Mathematical Analysis and Applications, 1994, 186:835-861.
    [130] Wang P. K. C. On the almost sure stability of linear stochastic distributed parameterdynamic systems[J]. A.S.M.E.
    [131] Wang Y., Huang Z. Backward stochastic differential equations with non-Lipschitz coef-ficients[J]. Statistics and Probability Letters, 2009, 79:1438-1443.
    [132] Wonham W. M. Random differential equations in control theory[J]. Probabilistic Meth-ods in Applied Mathematics In Bharucha-Reid, Academic Press, New York, 197, 12: 131-212. J. Mechanics, 1966, 182-186.
    [133] Wu S. J., Han D. Exponential stability of functional differential systems with impul-sive effect on random moments[J]. Computer and Mathematics with Applications, 2005,50:321-328.
    [134] Wu H., Sun J., p-Moment stability of stochastic differential equations with impulsivejump and Markovian switching[J], Automatica, 2006 ,42: 1753-1759.
    [135] Wang Z. D. Multivalued Stochastic Evolution Equations with Non-Lipschitz Coeffi-cients[J], MATHEMATIC APPLICATA, 2008, 21(1): 193-200.
    [136] Xia X., Liu K. Stability and asymptoties growth rate of stochastic Navier-Stokes equa-tions[J]. Int. J. Appl. Math. 1991, 4: 391-409.
    [137] Xie B. The stochastic parabolic partial differential equation with non-lipschitz coef-ficienta on the unbounded domain[J]. Journal of Mathematical Anal. and Appl. 2008,339(1): 705-718.
    [138] Xie B. Stochastic differential equations with non-Lipschitz coefficients in Hilbertspaces[J]. Stochastic Anal. and Appl. 2008, 26(2): 408–433.
    [139] Xu S. Y., Lam J., Mao X. R., Zou Y. A new LMI condition for delay-dependent robuststability of stochastic time-delay systems[J]. Asian Journal of Control, 2005, 7(4):419-423.
    [140] Yuan C., MAo X. R. Asymptotic stability in distribution of stochastic differential equa-tions with Makrovian switching[J]. Stochastic Processes and Their Applications, 2003,103: 277-291.
    [141] Yue D., Han Q. L. Delay-dependent exponential stability of stochastic systems with timevarying delay, nonlinearity, and Markovian switching[J]. IEEE Transactions on AutomaticControl, 2005, 50(2):217-222.
    [142] Yoshifumi S., Shinichi A., Ishikawa. On the State Estimation for Stochastic DistributedParameter Systems with the Boundary Regulation[J], Proceedings of 24th Conference onDecision and Control, Floride , 1985, 1178-1183.
    [143] Zabczyk J.On optimal stochastic control of discrete-time systems in Hilbert space[J].SIAM J. Control., 1975, 13:1217-1234.
    [144] Zakai. On the optimal filtering of diffusion processes[J]. Z. Wahrsch. Veqw. Gebiete,1969, 11: 230-243.
    [145] Zangeneh B. Z. Semilinear stochastic evolution equations with monotone nonlineari-ties[J]. Stochastics and Stochastic Reports, 1995, 53: 129-174.
    [146] Zhang X. C. Existence and uniqueness of solutions for a class of semilinear parabolicPDEs with non-Lipschitz coefficients[J]. Journal of Mathematical Anal. and Appl. 2006,314: 579-589.
    [147] Zhou X. Y. A unified treament of maximum principle and dynamic programming instochastic control[J]. Stochastic and Stochastic Reports. 1991, 36: 137-169.
    [148]郭雷,程代展,冯德兴.控制理论导论-从基本概念到研究前沿[M].北京:科学出版社, 2005
    [149]郭柏灵,蒲学科.随机无穷维动力系统[M]. 2009,北京:北京航空航天大学出版社.
    [150]沈轶,廖晓昕.随机时滞神经网络的指数稳定性.中国学术期刊科技快报, 1998,1:120-125.
    [151]龚光鲁.随机微分方程引论[M].北京:北京大学出版社, 1987.
    [152]黄志远,严加安.无穷维随机分析引论[M].北京:科学出版社, 2001.
    [153]黄志远.随机分析学基础[M].北京:科学出版社, 2001.
    [154]刘永清,冯昭枢.大型动力系统的理论与应用一随机,稳定与控制[M].广州:华南理工大学出版社, 1992
    [155]朱位秋.非线性随机动力学与控制–Hamtlino理论体系框架[M].北京:科学出版社,2003.
    [156]胡迪鹤.随机过程概论[M].武汉:武汉大学出版社, 1986.
    [157]钱学森,宋健.工程控制论(修订版)[M].北京:科学出版社,1981.
    [158]廖晓听.动力系统的稳定性理论和应用[M].北京:国防工业出版社, 2000.
    [159]胡宣达.随机微分方程稳定性理论[M].南京:南京大学出版社, 1985.
    [160]刘永清,邓飞其.随机系统的变结构控制[M].广州:华南理工大学出版社, 1998.
    [161]王康宁.最优控制的数学理论[M],北京:国防工业出版社, 1995.
    [162]王康宁.分布参数控制理论[M],北京:科学出版社, 1986.
    [163]吴述金,韩东,付还宁.随机脉冲随机微分方程解的存在唯一性[J].数学学报, 2008,51(6):1041-1052.
    [164]黄代文.地球物理流体动力学中某些偏微分方程及其无穷维动力系统[D].绵阳:中国工程物理研究院, 2007.
    [165]姚瑞明,薄立军.二或三维空间上椭圆型随机偏微分方程的间断有限元方法[J].中国科学A辑:数学, 2007, 37(7):535-550.
    [166]吴立刚,王常虹,高会军等.时滞不确定随机系统基于参数依赖Lyapunov函数的稳定性条件[J].控制论与应用, 2007, 24(4):607-612.
    [167]郭雷.时变随机系统-稳定性、控制与估计[M].长春:吉林科学技术出版社, 1993.
    [168]方洋旺,潘进.随机系统分析与应用[M].西北工业大学出版社, 2006.
    [169]曹桂兰.无穷维空间上的随机微分方程[D].华中科技大学博士毕业论文, 2005.
    [170]罗琦.随机反应扩散方程的稳定性[D].华南理工大学博士学位论文. 2005.
    [171]罗琦,邓飞其,包俊东等.具分布参数的随机Hopfield神经网络的镇定[J].中国科学(E辑), 2004, 34(6): 619-628.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700