用户名: 密码: 验证码:
钛酸纳米管材料的改性及其组装行为的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
出于对提高一维纳米材料的溶剂溶解性和利用其优异性能来制备功能纳米材料及器件的强烈需要,最近数年来,一维无机、有机纳米材料例如碳纳米管(CNT)等的功能化或表面修饰吸引了人们越来越多的关注,尤其是在其表面进行分子设计,更是广受科学界的关注。因而,用大分子价键修饰纳米管是制备可溶性无机纳米管的一个重要方法,由于高分子长链有助于纳米管在许多溶剂中溶解,即使较低程度的改性。目前“接上去”和“接出来”这两种方法得以发展起来,实现了将聚合物共价接枝到固体基底的表面。前者是直接将特定大分子末端所含有活性官能团(例如-OH等)与一维纳米材料表面存在或预先处理所得到活泼官能团直接反应得到的。这种方法操作简单,但是存在接枝后聚合物链的热和溶剂稳定性差、接枝密度低、接枝厚度不可控等缺点。因为人们的注意已经转移到“接出来”这种方式,可以通过在纳米材料基底的外表面直接用商业化的那些聚合单体来生长大分子。不过在一维纳米材料大分子功能化领域依然存在很多问题,例如:(1)大分子接枝质量的可控性;(2)所接枝大分子结构和性能的设计;(3)制备基于纳米管状材料的智能纳米材料(或称为分子器件)。本论文的工作是基于上述发展趋势以及研究背景展开的。利用活性/可控原子转移自由基聚合(ATRP)这一构筑聚合物材料的强有力工具和非共价接枝改性的方法,本文对钛酸纳米管功能化“接出来“方式进行了推进,在钛酸纳米管(TNT)表面实现了一系列丙烯酸类、苯乙烯类和丙烯酰胺类ATRP活性聚合单体的原位聚合和共聚反应。基于原位ATRP“接出来”方式,解决了(1)大分子的接枝量可以通过调节单体和钛酸纳米管引发剂(TNTs-Br)的加料比得到很好控制;(2)通过分子设计,使两嵌段大分子接枝到了钛酸纳米管;(3)获得了智能型温度和pH敏感的钛酸纳米管/聚合物复合纳米材料。
     具体开展了以下几方面的研究工作:
     1.制备聚甲基丙烯酸甲酯功能化的钛酸纳米管
     通过“接出来”方式,应用原位ATRP (原子转移自由基聚合)法,成功将聚甲基丙烯酸甲酯(PMMA)接枝到钛酸纳米管的外表面。聚合物的厚度通过单体与引发剂TNTs-Br的相对加料量来控制。所得到的基于钛酸纳米管纳米复合材料用FTIR、1H NMR、SEM、TEM和TGA进行了表征。同时,这一方法延展到了共聚体系获得两嵌段聚合物功能化的钛酸纳米管(PMMA-b- PHEMA-g- TNTs)。这种方法为制备新颖的、具有设计的化学结构、基于钛酸纳米管的纳米材料、纳米结构和纳米器械等开辟了一条道路。
     2.钛酸纳米管的聚苯乙烯功能化
     将由TNTs-Br引发原位ATRP聚合的新策略扩展到苯乙烯单体,在Cu(I)Br/N, N, N′, N",N"-五甲基二乙基三胺(PMDETA)催化下,100oC下,TNTs-Br引发苯乙烯单体聚合得到了聚苯乙烯(PS)接枝的钛酸纳米管PS-g-TNTs。PS的分子量和聚合物层的厚度都得到控制。样品的TEM图表明形成了以钛酸纳米管为核,聚合物为壳的核-壳型纳米结构。FTIR, 1H NMR, SEM及TGA用来表征此纳米材料的化学结构等。为了进一步讨论钛酸纳米管和PS之间的共价连接,对所得的PS修饰钛酸纳米管进行了化学降解和热降解来剥落PS层。对PS-g-TNTs和剥掉PS的钛酸纳米管基于TEM和SEM的对比研究更加清楚的表明了共价接枝这一特点。这为钛酸纳米管表面ATRP的应用进一步铺平了道路。
     3.特殊功能性聚合物对钛酸纳米管的功能化
     在钛酸纳米管表面引发单体N-异丙基丙烯酰胺的原位聚合,得到温敏水溶性聚合物功能化的钛酸纳米管。FTIR、1H NMR、TEM、SEM、TGA、AFM等手段证明了聚N-异丙基丙烯酰胺修饰钛酸纳米管的结构及形貌,变温UV-vis和1H NMR谱说明产物具有良好的温度敏感性。引发单体甲基丙烯酸-2- (N,N-二乙氨基)乙酯的聚合,得到pH敏感水溶性聚合物接枝的钛酸纳米管纳米管。
     4.聚赖氨酸与钛酸纳米管有机/无机纳米杂化材料的制备
     通过静电作用力,成功制备了聚赖氨酸/钛酸纳米管有机/无机纳米杂化材料。研究发现,在酸性环境中,聚赖氨酸/钛酸纳米管有机/无机纳米杂化材料具有良好的水溶性;在碱性环境中聚赖氨酸/钛酸纳米管有机/无机纳米杂化材料从水中沉淀出来,同时我们也发现,在纳米管表面得到的聚赖氨酸的纳米结构也发生变化。低溶液pH值时,聚赖氨酸以“珠穿线”方式缠绕到钛酸纳米管上;高溶液pH值时,聚赖氨酸包覆到钛酸纳米管表面形成聚合物层。不同形状的聚赖氨酸纳米结构有可能作为模板来定位吸附其它有意义的生物分子,有望用于生物或化学传感器排列,为研制功能化纳米器件提供了可能。
     5.直链淀粉/钛酸纳米管复合物的分级自组装行为研究
     单个纳米材料例如纳米颗粒、纳米管和纳米棒等的分级自组装是通过自底而上方法构建复合超分子体系的仿生技术,最近越来越引起人们的关注。本章通过一种新技术实现了尺寸和结构复杂化可控性高的单根纳米管的分级自组装。直径是10nm左右的纯钛酸纳米管被直链淀粉在表面缠绕进行改性,功能化的钛酸纳米管进而自组装形成直径约100-500nm的纤维束,相邻的纳米管之间的直链淀粉与直链淀粉之间的相互作用使单根纳米管沿着纤维束的轴线排列。有趣的是,纤维束进一步促进未反应的直链淀粉组装形成微米尺寸的、梭状六方体单晶,高度取向的钛酸纳米管为核,外层是直链淀粉的壳。如此结构的分级自组装体系可以通过改变钛酸纳米管和直链淀粉的浓度而分别改变。这项工作开创了一种简单的自底而上、制造有序的从一维到三维的杂化体材料的路线。
     6.一维棒状病毒体----烟草花叶病毒在多肽调控下的组装
     通过静电相互作用,成功制备了一种新型的聚赖氨酸/烟草花叶病毒(TMV)有机/无机杂化纳米管,并实现了pH调控下纳米管的多维、多尺度组装。研究表明,在中性和酸性环境下,TMV在聚赖氨酸作用下趋向以“肩并肩”方式组装,形成一维的纳米纤维和两维的结构;在碱性环境下,TMV以“头-尾”方式连接成Y型接头,并进一步组装形成三维的网络结构。另外,我们还发现了聚赖氨酸在TMV作用下的特殊构象转变,包裹在纳米管表面的聚赖氨酸在从酸性到碱性的整个pH范围内都会采取螺旋构象,这和其在溶液中的构象转变是完全不同的。这种环境响应的复合组装体在纳米电子元件、纳米感应器、药物基因传输系统有着广泛的潜在应用。
Functionalization and regulation of one-dimensional nanomaterials, such as titanate nanotube (TNT) has aroused increasing interest due to the strong desire to improve inorganic nanomaterials’solubility and the fascinating capacity to fabricate novel nanomaterials and nanodevices by molecular design and tailoring. The modification of nanotubes via anchoring macromolecules onto the surface is most favorite method to improve the solubility in organic solvents. Thus, the“grafting to”and“grafting from”approaches were developed in order to bond polymers to nanotubes. The former involves direct reaction of existing polymers containing terminal functional groups (e.g., OH) with the anterior functional groups (e.g., -OH) on TNTs. The apparent limitation of the“grafting to”approach lies in; (1) the specific requirement of the polymer terminal functional groups, (2) the low grafting density, and (3) limited control over the grafted polymer quantity. Therefore, the attention has shifted to the grafting from approach, which makes direct growth of general polymers on the sidewalls of TNTs from commercially available monomers possible. Up to now, three main challenges still span the macromolecule-functionalization area of TNTs: (1) the controllability of the grafted quantity; (2) design and tailoring of structure and property for the coupled macromolecules; and (3) fabrication of TNTs-based smart nanocomposites (or molecular devices). This thesis will attempt to meet the challenges, and then to unlock the new interpenetrating area of chemistry, materials, physics, and TNTs.
     Taking advantage of the merits of living/controlled atom transfer radical polymerization (ATRP), a very powerful tool for building of polymeric materials, the thesis of this dissertation advanced the grafting from approach, and realized a series of in situ polymerization and copolymerization of acrylate-, styrene-, and acrylamide-type ATRP-active monomers on the surfaces of titanate nanotubes. Depending on the presented in situ ATRP“grafting from”approach, three big problems aforementioned were basically resolved: (1) the grafted polymer quantity can be well controlled by the feed ratio of monomer/TNTs-supported initiators (TNTs-Br); (2) amphiphilic polymer layers were coated on TNTs surfaces by molecular design and tailoring; and (3) smart thermal- and pH- sensitive TNTs-polymer nanohybrids were successfully prepared.
     The details are as follows:
     1. Preparation of PMMA grafted TNTs
     In situ ATRP“grafting from”approach was successfully applied to graft poly (methyl methacrylate) (PMMA) onto the surfaces of TNTs. The thickness of the coated polymer layers can be conveniently controlled by the feed ratio of MMA/TNTs-Br. The resulting TNTs-based polymer brushes were characterized and confirmed with FTIR, 1H NMR, SEM, TEM and TGA. Moreover, the approach has been extended to copolymerization system, affording novel hybrid core-shell nanoobjects with TNTs as the core and amphiphilic poly (methyl methacrylate)-block-poly (hydroxyethyl methacrylate) (PMMA-b-PHEMA) as the shell. The approach presented here may open an avenue for exploring and preparing novel TNTs-based nanomaterials and molecular devices with tailor-made structure, architecture and properties.
     2. Functionalization of TNTs with polystyrene and defunctionalization of the products
     A core-shell hybrid nanostructure, possessing a hard backbone of TNT and a soft shell of brush-like polystyrene (PS), was successfully prepared by in situ ATRP, using Cu(I)Br/N,N,N’,N”,N”- pentamethyldiethylenetriamine (PMDETA) as the catalyst, at 100oC in diphenyl ether solution. The molecular weight of PS was well controlled, as was the thickness of the shell layer. TEM images of the samples provided direct evidence for the formation of a core-shell structure, i.e., the TNTs coated with polymer layer. FTIR, 1H NMR, SEM and TGA were used to determine the chemical structure, morphology and the grafted PS quantities of the resulting products. In order to further establish the covalent linkage between PS and nanotubes moieties, the resulting PS-functionalized TNTs were defunctionalized by hydrolysis decomposition. Comparative studies, based on TEM images between the PS-functionalized and chemically defunctionalized TNTs samples revealed the covalent coating character. Further copolymerization of tert-butyl acrylate (tBA) with the PS-linked TNTs as initiators was realized, illustrating that the PS species is still“living”although the lower controllability of PDI. It is expected that achieving these hybrid objectives, on the basis of such simple grafting, will pave the way for the design, fabrication, optimization, and eventual application of more functional TNTs-related nanomaterials.
     3. Smart thermal and pH- sensitive and photoluminecent TNTs
     Thermo-responsive titanate nanotubes (PNIPAAm-g-TNTs) were successfully prepared by in situ ATRP, and the chemical structure and morphology were determined using FTIR, 1H NMR, SEM, TEM, TGA and AFM. Temperature-variable UV-vis and 1H NMR and repeated DSC proved that the product had good thermo-responsive property and perfect reversibility.
     The pH-sensitive property of titanate nanotubes hybrids were also obtained by the surface-initiated ATRP process by fabricating PDEAEMA-g-TNTs.
     4. The preparation of polylysine/TNTs hybrid nanomaterials
     We present novel intelligent polylysine/titanate (PLL/TNTs) nanotubes hybrid nanomaterials, in which the complexation of anionic TNTs and cationic PLL through electrostatic interactions between them can be manipulated by pH value. In addition, the topology of PLL coated on TNTs changed with changing of the solution pH. Below the isoelectric point (pI) of PLL, it is positive charged and adopts random coil conformation. Under this situation, the PLL is found to adsorb onto TNTs with“bead-on-string”binding topology. Higher than pI, the PLL is negative charged and adoptsα-helix conformation, which makes PLL immobilize on surfaces of TNTs to form a polymer layer. We also explored what driving force can induce the pH-responsive solubility of PLL/TNTs in aqueous medium.
     5. Hierarchical self-assembly of individual amylose/titanate nanotubes
     Hierarchical self-assembly of individual nanostructures such as nanoparticles, nanorods and nanotubes, is a bioinspired technology to construct complex supramolecular architectures through a bottom-up approach, and has received more and more attention in recent year. Herein, we reported a novel strategy to realize the hierarchical self-assembly of individual nanotubes with a high controllability in dimension and structure complexity. Pristine TNTs around 10nm were first helically wrapped with amylose on the surface, and then the functional TNTs were self-assembled into fibers around 100-500nm in diameter with the nanotubes aligned along the fiber axis through amylose-amylose interactions between adjacent nanotubes. Interestingly, the fibers will further organize the free amylose to self-assemble into micrometer-sized shuttle-like hexagonal single crystal with an inner highly orientated TNTs core and outer amylose shell. Such a hierarchical self-assembly was achieved solely by changing the concentration of the TNTs and amylose. The finding opens a simple bottom-up route for fabrication of ordered hybrid materials from one dimension (1D) to three dimensions (3D).
     6. Nanobiocomposite Fibers by Controlled Assembly of Rod-like Tobacco Mosaic Virus
     One-dimensional composite materials were generated by electrostatic interaction between tobacco mosaic virus (TMV) and biomacromolecule. These composite have the head-to-tail and network assembly of TMV. Two factors contribute to the formation of such TMV-composite materials: (1) the accumulation and electrostatic interaction on the surface of TMV; and (2) the possibility of prolongation and stabilization of TMV helices. Because of polylysine are tailored to the exterior surface of TMV, electrostatic interaction can induce TMV to form branched structures with knot-like connections. Further, concentration and pH value of solution can munipulate the assembly morphology of TMV. TEM and SEM are used to analyze the morphology and structure of composite. This strategy to assembly TMV into 1D supramolecular assembly could be utilized in the fabrication of advanced nanomaterials based on virus for potential applications including electronics, optics, sensing, and biomedical engineering.
引文
1.张立德,牟季美等.纳米材料和纳米结构.北京:科学出版社, 2001
    2. Birringer R, Gleiter H, Klein HP, Marquardt P. Nanocrystalline materials an approach to a novel solid structure with gas-like disorder? Physics Letters A 1984, 102, 365-369
    3.马江虹,翟玉春,于旭光等.一维纳米材料的研究进展稀有金属与硬质合金.稀有金属与硬质合金2004, 32, 41
    4. Bachtold A, Hadley P, Nakanishi T. Logic circuits with carbon nanotube transistors. Science 2001, 294, 1317-1320
    5. Iijima S. Helical Microtubules of Graphitic Carbon. Nature 1991, 354, 56-58 6. Rems
    20. Sun X, Li Y. Synthesis and characterization of ion-exchangeable titanate nanotubes. Chemistry - A European Journal 2003, 9, 2229-2238
    21. Ma R, Bando Y, Sasaki T. Nanotubes of lepidocrocite titanates. Chemical Physics Letters 2003,
    380, 577 -582
    22. Nakahira A, Kato W, Tamai M, Isshiki T, Nishio K, Aritani H. Synthesis of nanotube from a layered H2Ti4O9·H2O in a hydrothermal treatment using various titania sources. J. Mater. Sci. 2004, 39, 4239 -4245
    23. Suzuki Y, Yoshikawa S. Synthesis and thermal analyses of TiO2-derived nanotubes prepared by the hydrothermal method. J. Mater. Res. 2004, 19, 982 -985
    24. Zhu HY, Lan Y, Gao XP, Ringer SP, Zheng ZF, Song DY, Zhao, JC. Phase transition between nanostructures of titanate and titanium dioxides via simple wet-chemical reactions. J. Am. Chem. Soc. 2005, 127, 6730 -6736
    25. Thorne A, Kruth A, Tunstall D, Irvine JTS, Zhou WZ. Formation, structure, and stability of titanate nanotubes and their proton conductivity. J. Phys. Chem. B 2005, 109, 5439 -5444
    26. Wang YA, Yang J, Zhang J, Liu H, Zhang Z. Microwave-assisted preparation of titanate nanotubes. Chemistry Letters 2005, 35, 1168 -1169
    27. Meng XD, Wang DZ, Liu JH, Zhang SY. Preparation and characterization of sodium titanate nanowires from brookite nanocrystallites. Materials Research Bulletin 2004, 39, 2163 -2170
    28. Yuan ZY, Zhang XB, Su BL. Moderate hydrothermal synthesis of potassium titanate nanowires. Applied Physics A 2004, 78, 1063 -1066
    29. Masaki N, Uchida S, Yamane H, Sato T. Characterization of a new potassium titanate, KTiO2(OH) synthesized via hydrothermal method. Chem. Mater. 2002, 14, 419 -424
    30. Tomiha M, Masaki N, Uchida S, Sato T. Hydrothermal synthesis of alkali titanates from nano size titania powder. Journal of Materials Science 2002, 37, 2341 -2344
    31.王晓冬,李伟,金振声等.纳米管钛酸钠的组成分析.化学研究2003, 14, 5 -8
    32. Ma RZ, Fukuda K, Sasaki T, Osada M, Bando Y. Structural features of titanate nanotubes/nanobelts revealed by raman, X-ray absorption fine structure and electron diffraction characterizations. J. Phys. Chem. B 2005, 109, 6210 -6214
    33. Sasaki T, Watanabe M, Komatsu Y, Fujiki Y. Layered hydrous titanium dioxide: Potassium ion exchange and structural characterization. Inorganic Chemistry 1985, 24, 2265-2271
    34. Joint Committee on Powder Diffraction Standards, 4720124
    35. Chen Q, Du G H, Zhang S, Peng L M. The structure of trititanate nanotubes. Acta. Cyrst. 2002, 58, 587-593
    36. Zhang S, Peng LM, Chen Q, Du GH, Dawson G, Zhou WZ. Formation mechanism of H2Ti3O7 nanotubes. Phys. Rev. Lett. 2003, 91, 2561031-2561034
    37. Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K. Titania nanotubes prepared by chemical processing. Adv. Mater. 1999, 11, 1307 -1311
    38.陈清,杜高辉,彭练矛.层状钛酸(H2Ti3O7)形成的纳米管.电子显微学报2002, 21, 265 -269
    39. Burdett JK, Hughbanks T, Miller GJ, Richardson Jr. JW, Smith JV. Structural-electronic relationships in inorganic solids: powder neutron diffraction studies of the rutile and anatasepolymorphs of titanium dioxide at 15 and 295 K. J. Am. Chem. Soc. 1987, 109, 3639 -3646
    40. Fahmi A, Minot C, Silvi B, CausáM. Theoretical analysis of the structures of titanium dioxide crystals. Phys. Rev. B 1993, 47, 11717 -11724
    41. Kukoveczá, Hodos M, Horváth E, Radnóczi G, Kónya Z, Kiricsi I. Oriented crystal growth model explains the formation of titania nanotubes. Journal of Physical Chemistry B 2005, 109, 17781 -17783
    42.王晓冬,杨建军,殷好勇,张治军,金振声.纳米管TiO2光催化降解丙烯的研究.感光科学与光化学2002, 20, 424 -427
    43. Qian L, Teng F, Jin ZS, Zhang ZJ, Zhang T, Hou YB, Yang SY, Xu XR. Improved optoelectronic characteristics of light-emitting diodes by using a dehydrated nanotube titanic acid (DNTA)?polymer nanocomposite. J. Phys. Chem. B 2004, 108, 13928 -13931
    44. Qian L, Yang SY, Jin ZS, Zhang ZJ, Zhang T, Teng F, Xu XR. Enhanced performance of light-emitting diodes based on a nanocomposite of dehydrated nanotube titanic acid and poly(vinylcarbazole) (PVK). Physics Letters A 2005, 335, 56 -60
    45. Wen Z, Gu Z, Huang S, Yang J, Lin Z, Yamamoto O. Research on spray-dried lithium titanate as electrode materials for lithium ion batteries. Journal of Power Sources 2005, 146, 670 -673
    46. Hao YJ, Lai QY, Liu DQ, Xu ZU, Ji XY. Synthesis by citric acid sol-gel method and electrochemical properties of Li4Ti5O12 anode material for lithium-ion battery. Materials Chemistry and Physics 2005, 94, 382 -387
    47. Li JR, Tang ZL, Zhang TJ. H-titanate nanotube: A novel lithium intercalation host with large capacity and high rate capability. Electrochemistry Communications 2005, 7, 62 -67
    48.冯彩霞,金振声,杨建军.镶嵌CdS的纳米管钛酸制备及其光催化性能研究.感光科学与光化学2004, 22, 272 -276
    49. Hodos M, Horváth E, Haspel H, Kukovecz A, Kónya Z, Kiricsi I. Photosensitization of ion-exchangeable titanate nanotubes by CdS nanoparticles. Chemical Physics Letters 2004, 399, 512 -515
    50.张纪伟,冯彩霞,金振声.纳米管钛酸催化丙酮液相缩聚反应.石油化工2006, 35, 346 -349
    51. Wang X, Jin Z, Feng C, Zhang Z, Dang H. Alternative adsorption-desorption of C3H6 on nanotube-like silver titanate/ Journal of Solid State Chemistry 2005, 178, 638 -644
    52.李伟,王晓冬,金振声.高比表面积TiO2纳米管的制备与表征.化学研究2002, 13, 12 -14
    53.赵国宏,李伟,王仲来.纳米管钛酸多孔层石英毛细管色谱柱的制备及热处理对色谱保留性能影响研究.分析化学2004, 32, 299 -304
    54. Zhang M, Jin Z, Wang X.. Effect of annealing temperature on morphology, structure and photocatalytic behavior of nanotube H2Ti2O4(OH)2. J. Mole Catal A Chem. 2004, 217, 203-210
    55. Takeuchi Y, Hirakawa K, Susumu K, Segawa H. Electrochemical determination of charge transfer direction of "center-to-edge" phosphorus (V) porphyrin arrays. Electrochemistry 2002, 70, 449-451
    56. Satoshi U, Ryoji C, Miho T, Naruhiko M, Masayuki S. Application of titania nanotubes to a dye-sensitized solar cell. Electrochemistry 2002, 70, 418-420
    57. Ide Y, Ogawa M. Surface modification of a layered alkali titanate with organosilanes. Chem. Commun. 2003, 11, 1262-1263
    58. Tokudome H, Miyauchi M. Titanate nanotube thin film via alternate layer deposition. Chem. Commun. 2004, 8, 958-959
    59. Zhang C, Jiang X, Tian B. Modification and assembly of titanate sodium nanotubes. Colloids and Surfaces A Physicochem and Eng Asp 2005, 257-258, 521-525
    60. Hiromasa T, Masahiro M. Electrochromism of titanate-based nanotubes. Angew. Chem. Int. 2005, 117, 2010-2013
    61. Chien SH, Liou YC, Kuo MC. Preparation and characterization of nanosized Pt/Au particles on TiO2-nanotubes. Synthetic Metals 2005, 152, 333 -336
    62. Yang SG, Quan X, Li XY, Fang N, Zhang N, Zhao HM. Enhanced photocatalytic activity of nanotube-like titania by sulfuric acid treatment. Journal of Environmental Sciences 2005, 17, 290 -293
    63. Wan MX, Huang J, Shell YQ. Microtubes of conducting polymers. Synth. Met.1999, 101, 708-711
    64. Wan MX, Li JC. Formation mechanism of polyaniline microtubules synthesized by a template-free method. J. Polym. Sci. Part A Polym. Chem. 2000, 38, 2359-2364
    65. Yang YS, Wan MX. Microtubules of polypyrrole synthesized by an electrochemical template-free method. Mater. Chem. 2001, 11, 2022-2027
    66. Ding HJ, Wan MX, Wei Y. Controlling the diameter of polyaniline nanofibers by adjusting the oxidant redox potential. Adv. Mater. 2007, 19, 465-469
    67. Wei ZX, Zhang ZM, Wan MX. Formation mechanism of self-assembled polyaniline micro/nanotubes. Langmuir 2002, 18, 917-921
    68. Tian Z, Chen Y, Yang W, Yao J, Zhu L, Shuai Z. Low-dimensional aggregates from stilbazolium-like dyes. Angew. Chem. Int. Ed. 2004, 43, 4060-4063
    69. Ji HX, Hu JS, Tang QX, Hu WP, Song WG, Wan LJ. Bis(ethylenedithio)tetrathiafulvalene harge-transfer salt nanotube arrays. Adv. Mater. 2006, 18, 2753-2757
    70. Wang ZW, Chen WJ, Liu XJ. Spontaneous formation of tubular microstructure vesicle from PTA/SDS system. Chinese Science Bulletin 2005, 50, 857-861
    71. Ajayan PM, Ebbesen TW. Nanometre-size tubes of carbon. Rep. Prog. Phys. 1997, 60, 1025-1062
    72. Estermann M, McCusker LM, Baerlocher C, Merrouche A, Kessler H. A synthetic gallophosphate molecular sieve with a 20-tetrahedral-atom pore opening. Nature 1991, 352, 320 -323
    73. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 1992, 269, 710-712
    74. Monnier A, Schüth F, Huo Q, Kumar D, Margolese D, Maxwell RS, Stucky GD, Krishnamurty M, Petroff P. Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures. Science 1993, 261, 1299-1303
    75. Stucky GD, Huo Q, Firouzi A, Chmelka BF, Schacht S, Voigt-Martin IG, Schüth F. Stud. Surf. Sci.Catal. 1997, 105, 3-28
    76. Song L, Hobaugh MR, Shustak C, Cheley S, Baley H, Gouaux JE. Structure of staphylococcalα-hemolysin, a heptameric transmembrane pore. Science 1996, 274, 1859-1866
    77. Schirmer T, Keller TA, Wang YF, Rosenbusch JP. Structural basis for sugar translocation through maltoporin channels at 3.1 ? resolution. Science 1995, 267, 512-514
    78. Cowan SW, Schirmer T, Rummel G, Steiert M, Ghosh R, Pauptit RA, Jansonius JN, Rosenbusch JP. Nature 1992, 358, 727-733
    79. Weitz MS, Schultz GE. Peptide Nanotubes and Beyond. J. Mol. Biol. 1992, 227, 493-509
    80. Merritt EA, Sarfaty S, Van den Akker F, L′Hoir C, Martial JA, Hol WGJ. Crystal structure of cholera toxin B-pentamer bound to receptor G (M1) pentasaccharide. Protein Sci. 1994, 3, 166-175
    81. Doyle DA, Cabral JM, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R. The structure of the potassium channel: Molecular basis of K+ conduction and selectivity. Science 1998, 280, 69-77
    82. Ketchem RR, Hu W, Cross TA. High-resolution conformation of gramicidin A in a lipid bilayer by solid- state NMR. Science 1993, 261, 1457-1460
    83. Klug A. From macromolecule to biological molecular assembly. Angew. Chem. Int. Ed. 1983, 22, 565-582
    84. Caspar D, Namba K. Switching in the self-assembly of tobacco mosaic virus. Adv. Biophys. 1990, 26, 157-185
    85. Namba K, Stubbs G. Structure of tobacco mosaic virus at 3.6 ? resolution: Implications for assembly. Science 1986, 231, 1401-1406
    86. Liu MX, Gan LH, Chen G. A novel synthesis of two-dimensiona1 nanopattemed TiO2 thin film. Chin. Chem. Lett. 2006, 17, 1085-1088
    87. Wu S, Tao B, Shen YP. Chemical vapor deposition mechanism of copper film on silicon substrates. Chin. J. Chem. Phys. 2006, 19, 248-252
    88. Tago T, Hatsuta T, Miyajirna K. Novel sythesis of silica-coated ferrite nano-particles prepared using water-in-oil microemulsion. J. Am. Ceram. Soc. 2002, 85, 2188-2194
    89. Yang J, Mei S, Ferreira JMF. Hydrothernal synthesis of nanosized titania powders: influence of tetraalkyl ammonium hydroxides on particle characteristics. J. Am. Ceram. Soc. 2001, 84, 1696-1702
    90. Fang JY, Stokes KL, Wiemann. Microemulsion-processed Bismuth nanoparticles. Mater. Sci. Eng. B 2001, 83, 254-257
    91. Thio YS, Argon AS, Cohen RE. Role of interfacial adhesion strength on toughening polypropylene with rigid particles. Polymer 2004, 45, 3139-3148
    92. Xiong MN, Wu LM. Preparation and characterization of acrytic/nano-silica composite latex. Polym. Int. 2002, 51, l-7
    93. Wu ZS, Zhou JF. Structure characterization and tribological behavior of surface-modification ZrO2 nanoparticles. Chem. Res. 2001, 12, 428-431
    94. Liu B, Xu GQ, Gan LM. Photoluminescence and structural characteristics of CdS nanoclusterssynthesized by hydrothermal microemulsion. J. Appl. Phys. 2001, 89, 1059-1063
    95. Li GA, Li X, Song JP. Preparation and fluorescence properties of Co-doped nanocomposite film based on supra molecular structure. Chin. Chem. Phys 2006, 19, 183-186
    96. Gotoh Y, Ohkoshi Y, Nagura M. Preparetion and optical absorption property of poly (acrylicacid)/copper sulfide nanocomposite films. Polylm. J. 2001, 33, 303-305
    97. Saitoh M, Yamamoto T, Okino H. Double-layer type microwave absorber made of magnetic-dieleetric composite material. Mater. Res. Innovat. 2002, 5, 208-213
    98. Britz DA, Khlobystov AN. Noncovalent interactions of molecules with single walled carbon nanotubes. Chemical Scociety Review 2006, 35, 637
    99. O'Connell MJ, Bachilo SH, Huffman CB, Moore VC, Strao MS, Haroz EH, Rialon KL, Smalley RE. Band gap fluorescence from individual single-walled carbon nanotubes. Science 2002, 297, 593-596
    100. Moore VC, Strano MS, Haroz EH, Hauge RH, Smalley RE, Schmidt J, Talmon Y. Individually suspended single-walled carbon nanotubes in various surfactants. Nano Letters 2003, 3, 1379-1382
    101. Star A, Steuerman DW, Heath JR, Stoddart JF. Starched carbon nanotubes. Angewandte Chemie International Edition 2002, 41, 25082512
    102. Kim OK, Je J, Baldwin JW, Kooi S, Pehrsson PE, Buckley LJ. Solubilization of single-wall carbon nanotubes by supramolecular encapsulation of helical amylose. J. Am. Chem. Soc. 2003, 125, 4426-4427
    103. Wang ZH, Wang YM, Luo GA. A selective voltammetric method for uric acid detection atβ-cyclodextrin modified electrode incorporating carbon nanotubes. Analyst 2002, 127, 1353-1358
    104. Wang ZH, Luo GA, Xiao SF, Wang GY. Effect of porous interfacial layer of carbon nanotube modified electrodes on electrochemical discrimination of dopamine from ascorbic acid. Chemical Research In Chinese Universities 2003, 24, 236-240
    105. Azamian BR, Davis JJ, Coleman KS, Bagshaw CB, Green MLH. Bioelectrochemical single-walled carbon nanotubes. J. Am. Chem. Soc. 2002, 124, 12664-12665
    106. Dieckmann GR, Dalton AB, Johnson PA, Razal J, Chen J, Giordano GM, Mu?oz E, Draper RK. Controlled Assembly of Carbon Nanotubes by Designed Amphiphilic Peptide Helices. J.Am. Chem. Soc. 2003, 125, 1770-1777
    107. Yang WT, Ranby B. Bulk surface photografting process and its applications. J. Appl. Polym. Sci. 1996, 63, 533-555
    108. Jordan R, Ulman A, Kang JF. Surface-initiated anionic polymerization of styrene by means of self assembled monolayers. J. Am. Chem. Soc. 1999, 121, 1016-1022
    109. Zhao B, Brittain WJ. Synthesis of tethered polystyrene-block-poly (methyl methacrylate) monolayer on a silicate substrate by sequential carbocationic polymerization and atom transfer radical polymerization. J. Am. Chem. Soc. 1999, 121, 3557-3558
    110. Wang JS, Matyjaszewski K. Controlled/"living" radical polymerization. atom transfer radical polymerization in the presence of transition-metal complexes. J. Am. Chem. Soc. 1995, 117,5614-5615
    111. Coessens V, Pintauer T, Matyjaszewski K. Functional polymers by atom transfer radical polymerization. Prog. Polym. Sci. 2001, 26, 337-377
    112. Qiu J, Charleux B, Matyjaszewski K. Controlled/living radical polymerization in aqueous media: homogeneous and heterogeneous systems. Prog. Polym. Sci. 2001, 26, 2083-2134
    113. Matyjaszewski K, Xia J. Atom Transfer Radical Polymerization. Chem. Rev. 2001, 101, 2921-2990
    114. Ejaz M, Yamamoto S, Ohno K. Controlled graft polymerization of methyl methacrylate on silicon substrate by the combined use of the Langmuir-Blodgett and atom transfer radical polymerization techniques. Macromolecules 1998, 31, 5934-5936
    115. Edmondson S, Osborne VL, Huck WTS. Polymer brushes via surface-initiated polymerizations. Chem. Soc. Rev. 2004, 33, 14-22
    116. Pyun J, Kowalewski T, Matyjaszewski K. Synthesis of polymer brushes using atom transfer radical polymerization. Macromol. Rapid Commun. 2003, 24, 1043-1059
    117. Liu X, Fu L, Hong S, Dravid VP, Mirkin CA. Arrays of magnetic nanoparticles patterned via "dip-pen" nanolithography. Adv. Mater. 2002, 14, 231-234
    118. Zhang H, Jin R, Mirkin CA. Synthesis of open-ended, cylindrical Au-Ag alloy nanostructures on a Si/SiOx surface. Nano Lett. 2004, 4, 1493-1495
    119. Smith JC, Lee KB, Wang Q, Finn MG, Johnson JE, Mrksich M, Mirkin CA. Nanopatterning the chemospecific immobilization of cowpea mosaic virus capsid. Nano Lett. 2003, 3, 883-886
    120. Manoharan HC, Lutz CP, Eigler DM. Quantum mirages formed by coherent projection of electronic structure. Nature 2000, 403, 512-515
    121. Hla SW, Meyer G, Rieder KH. Inducing single-molecule chemical reactions with a UHV-STM: A new dimension for nano-science and technology. Chem. Phys. Chem. 2001, 2, 361-366
    122. Cruchon-Dupeyrat S, Porthun S, Liu GY. Nanofabrication using computer-assisted design and automated vector-scanning probe lithography. Appl. Surf. Sci. 2001, 175-176, 636-642
    123. Hang SH, Mirkin CA. A nanoplotter with both parallel and serial writing capabilities. Science 2001, 288, 1808-1811
    124. Whitesides GM, Grzybowski B. Self-assembly at all scales. Science 2002, 295, 2418-2421
    125. Percec V, Glodde M, Bera TK, Miura Y, Shiyanovskaya I, Singer KD, Balagurusamy VSK, Heiney PA, Schnell I, Rapp A, Spiess HW, Hudson SD, Duan H. Self-organization of supramolecular helical dendrimers into complex electronic materials. Nature 2002, 419, 384-387
    126. Lehn JM. Toward self-organization and complex matter. Science 2002, 295, 2400-2403
    127. Zhang SG. Fabrication of novel biomaterials through molecular self-assembly. Nat. Biotechnol. 2003, 21, 1171-1178
    128. Kim F, Kwan S, Akana J. Langmuir-blodgett nanorod assembly [13]. J. Am. Chem. Soc. 2001, 123, 4360-4361
    129. Andres RP, Bielefeld JD, Henderson JI. Self-assembly of a two-dimensional superlattice of molecularly linked metal clusters. Science 1996, 273, 1690-1693
    130. Patil V, Mayya KS, Pradhan SD. Evidence for novel interdigitate bilayer formation of fatty acidsduring three-dimensional self-assembly on silver colloidal particles. J. Am. Chem. Soc. 1997, 119. 9281-9282
    131. Mirkin CA, Letsinger RL, Mucic RC. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 1996, 382, 607-609
    132. Boal AK, Rotello VM. Fabrication and self-optimization of multivalent receptors on nanoparticle scaffolds [12]. J. Am. Chem. Soc. 2000, 122, 734-735
    133. Caruso F, Susha AS, Giersig M. Magnetic core-shell particles: preparation of magnetite multilayers on polymer latex microspheres. Adv. Mater. 1999, 11, 950-953
    134. Caruso F, Caruso R, Mohwald H. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science 1998, 282, 1111-1114
    135. Bowden NB, Weck M, Choi IS. Molecule-mimetic chemistry and mesoscale self-assembly. Acc. Chem. Res. 2001, 34, 231-238
    136. Bico J, Roman B, Moulin L. Elastocapillary coalescence in wet hair. Nature 2004, 432, 690-690
    137. Duan X, Huang Y, Cui Y. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 2001, 409, 66-69
    138. Huang Y, Duan X, Wei Q. Directed assembly of one-dimensional nanostructures into functional networks. Science 2001, 291, 630-633
    139. Paul S, Pearson C, Molloy A. Langmuir-Blodgett film deposition of metallic nanoparticles and their application to electronic memory structures. Nano Lett. 2003, 3, 533-536
    140. Murray CB, Kagan CR, Bawendi MG. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annual Review of Materials Science 2000, 30, 545-610
    141. Collier JH, Messersmith PB. Phospholipid strategies in biomineralization and biomaterials research. Annual Review of Materials Science 2001, 31, 237-261
    142. Collier CP, Saykally RJ, Shiang JJ, Henrichs SE, Heath JR. Reversible tuning of silver quantum dot monolayers through the metal- insulator transition. Science 1997, 277, 1978-1981
    143. Fink J, Kiely CJ, Bethell D, Schiffrin DJ. Self-organization of nanosized gold particles. Chem. Mater. 1998, 10, 922-926
    144. Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ. Storhoff JJ. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 1996, 382, 607609
    145. Denkov ND, Velev OD, Kralchevsky PA, Ivanov IB, Yoshimura H, Nagayama K. Mechanism of formation of two-dimensional crystals from latex particles on substrates. Langmuir 1992, 8, 3183-3190
    146. Ye YH, LeBlanc F, HachéA, Truong VV. Self-assembling three-dimensional colloidal photonic crystal structure with high crystalline quality. Appl. Phys. Lett. 2001, 78, 52-54
    147. Wong S, Kitaev V, Ozin GA. Colloidal crystal films: advances in universality and perfection. J. Am. Chem. Soc. 2003, 125, 15589-11598
    148. Wang L, Ebina Y, Takada K, Sasaki T. Ultrathin films and hollow shells with pillared architectures fabricated via layer-by-layer self-assembly of titania nanosheets and aluminum keggin ions. J. Phys. Chem. B 2004, 108, 4283-4288
    149. Yang P. Wires on water. Nature 2003, 425, 243-244
    150. Diehl MR, Yaliraki SN, Beckman RA. Self-assembled, deterministic carbon nanotube wiring networks. Angew. Chem. 2002, 114, 353-356
    151. Nguyen CV, Delzeit L, Cassell AM. Preparation of nucleic acid functionalized carbon nanotube arrays. Nano Lett. 2002, 2, 1079-1081
    152. Lau KKS, Bico J, Teo KBK. Superhydrophobic carbon nanotube forests. Nano Lett. 2003, 3, 1701-1705
    153. Liu H, Li S, Zhai J. Self-assembly of large-scale micropatterns on aligned carbon nanotube films. Angew. Chem. Int. Ed. 2004, 43, 1146-1149
    154. Chakrapani N, Wei B, Carrillo A. Capillarity-driven assembly of two-dimensional cellular carbon nanotube foams. Proc. Natl. Acad. Sci. 2004, 101, 4009-4012
    155. Li J, Cassell A, Delzeit L. Novel three-dimensional electrodes: Electrochemical properties of carbon nanotube ensembles. J. Phys. Chem. B 2002, 106, 9299-9305
    156. Correa-Duarte MA, Wagner N, Rojas-Chapana J. Fabrication and biocompatibility of carbon nanotube-based 3D networks as scaffolds for cell seeding and growth. Nano Lett. 2004, 4, 2233-2236
    157. Hu H, Ni Y, Montana V. Chemically Functionalized Carbon Nanotubes as Substrates for Neuronal Growth. Nano Lett. 2004, 4, 507-511
    158. Duggal R, Hussain F, Pasquali M. Self-assembly of single-walled carbon nanotubes into a sheet by drop drying. Adv. Mater. 2006, 18, 29-34
    159. Sano M, Kamino A, Okamura J. Noncovalent self-assembly of carbon nanotubes for construction of‘cages’. Nano Lett. 2002, 2, 531-533
    160. Kong XY, Wang ZL. Spontaneous polarization-Induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts. Nano Lett. 2003, 3, 1625-1631
    161. Gao PX, Ding Y, Mai W. Materials science: Conversion of zinc oxide nanobelts into superlattice-structured nanohelices. Science 2005, 309, 1700-1704
    162. Jiang L, Li G, Ji Q, Peng H. Morphological control of flower-like ZnO nanostructures. Materials Letters 2007, 61, 1964-1967
    163. Remskar M, Mrzel A, Skraba Z. Self-assembly of subnanometer-diameter single-wall MoS2 nanotubes. Science 2001, 292, 479-481
    164. Kong H, Gao C, Yan DY. Controlled functionalization of multiwalled carbon nanotubes by in situ atom transfer radical polymerization. J. Am. Chem. Soc. 2004, 126, 412-413
    165. Kong H, Gao C, Yan DY, Functionalization of multiwalled carbon nanotubes by atom transfer radical polymerization and defunctionalization of the products. Macromolecules 2004, 37, 4022-4030
    166. Kong H, Li WW, Gao C, Yan DY, Jin Y, Walton DRM, Kroto HW. Poly (N-isopropylacrylamide) -coated carbon nanotubes: temperature-sensitive molecular nanohybrids in water. Macromolecules 2004, 37, 6683-6686
    167. Xu Y, Gao C, Kong H, Yan DY, Jin YZ, Watts PCP. Growing multihydroxyl hyperbranched polymers on the surfaces of carbon nanotubes by in situ ring-opening polymerization.Macromolecules 2004, 37, 8846-8853
    168. Kong H, Luo P, Gao C, Yan DY. Polyelectrolyte-functionalized multiwalled carbon nanotubes: Preparation, characterization and layer-by-layer self-assembly. Polymer 2005, 46, 2472-2485
    169. Kong H, Gao C, Yan DY. Constructing amphiphilic polymer brushes on the convex surfaces of multi-walled carbon nanotubes by in situ atom transfer radical polymerization. J. Mater. Chem. 2004, 14, 1401-1405
    170. Zeng HL, Gao C, Wang Y, Watts PCP, Kong H, Cui X, Yan DY, In situ polymerization approach to multiwalled carbon nanotubes-reinforced nylon 1010 composites: Mechanical properties and crystallization behavior. Polymer 2006, 47, 113-122
    171. Zeng HL, Gao C, Yan DY. Poly (ε-caprolactone)-functionalized carbon nanotubes and their biodegradation properties. Adv. Mater. Sci. 2006, 16, 812-818
    172. Li WW, Gao C, Qian H, Ren J, Yan DY. Multiamino-functionalized carbon nanotubes and their applications in loading quantum dots and magnetic nanoparticles. J. Mater. Chem. 2006, 16, 1852-1859
    173. Yao Y, Li WW, Wang SB, Yan DY, Chen XS. Polypeptide modification of multiwalled carbon nanotubes by a graft-from approach. Macromolecular Rapid Communication 2006, 27, 2019-2025
    174. Li WW, Kong H, Gao, C, Yan DY. pH-responsive poly (2-diethylaminoethyl methacrylate) -functionalized multiwalled carbon nanotubes. Chinese Science Bulletion 2005, 20, 2276-2280
    175. Shi ZQ, Gao XP, Song DY, Zhou Y, Yan DY. Preparation of poly(ε-caprolactone) grafted titanate nanotubes. Polymer 2006, 48, 7516-7522
    176. Zhou ZY, Zeng HL, Gao C, Yan DY. In situ polymerization approach to multiwalled carbon nanotubes reinforced polyundecanoylamide composites. Acta Polymerica Sinica 2008, 2, 188-191
    1. Yuwono AH, Liu B, Xue J, Wang J, Elim HI, Ji W. Controlling the crystallinity and nonlinear optical properties of transparent TiO2-PMMA nanohybrids. J. Mater. Chem. 2004, 14, 2978-2987
    2. Lu SR, Zhang HL, Zhao CX, Wang XY. Studies on the properties of a new hybrid materials containing chain-extended urea and SiO2-TiO2 particles. Polymer 2005, 46, 10484-10492
    3. Djokovic V, Nedeljkovic JM. Stress relaxation in hematite nanoparticles-polystyrene composite. Macromol. Rapid. Commun. 2000, 21, 994-997
    4. Zheng J, Ozisik R, Siegel RW. Disruption of self-assembly and altered mechanical behavior in polyurethane/zinc oxide nanocomposites. Polymer 2005, 46, 10873-10882
    5. Friedrich K, Zhang Z, Schlarb AK. Effects of various fillers on the sliding wear of polymer composites. Compos. Sci. Technol. 2005, 65, 2329-2343
    6. Pandey JK, Reddy KR, Kumar AP, Singh RP. An overview on the degradability of polymer nanocomposites. Polym. Degrad. Stab. 2005, 88, 234-250
    7. Giannelis EP, Krishnamoorti R, Manias E. Polymer-silicate nanocomposites: Model systems for confined polymers and polymer brushes. Adv. Polym. Sci. 1999, 138, 108-147
    8. Kawasumi M. The discovery of polymer-clay hybrids. J. Polym. Sci. Part A: Polym. Chem. 2004, 42, 819-824
    9. Njuguna J, Pielichowski K. Polymer nanocomposites for aerospace applications: Characterization. Adv. Eng. Mater. 2004, 6, 204-210
    10. Shi X, Hudson JL, Spicer PP, Tour JM, Krishnamoorti R, Mikos AG. Injectable nanocomposites of single-walled carbon nanotubes and biodegradable polymers for bone tissue engineering. Biomacromolecules 2006, 7, 2237-2242
    11. Li H, Chen Y, Xie Y. Photo-crosslinking polymerization to prepare polyanhydride/needle-like hydroxyapatite biodegradable nanocomposite for orthopedic application. Mater. Lett. 2003, 57, 2848-2854
    12. Caseri W. Nanocomposites of polymers and metals or semiconductors: Historical background and optical properties. Macromol. Rapid. Commun. 2000, 21, 705-722
    13. Zhao HX, Li RKY. Crystallization, mechanical, and fracture behaviors of spherical alumina-filled polypropylene nanocomposites. J. Polym. Sci. Part B: Polym. Phys. 2005, 43, 3652-3664
    14. Kuo MC. Tsai CM, Huang JC, Chen M. PEEK composites reinforced by nano-sized SiO2 and A1 2O3^Os particulates. Mater. Chem. Phys. 2005, 90, 185-195
    15. Ash BJ, Siegel RW, Schadler LS. Glass-transition temperature behavior of alumina/PMMA nanocomposites. J. Polym. Sci. Part B: Polym. Phys. 2004, 42, 4371-4383
    16. Carter SA, Scott JC, Brock PJ. Enhanced luminance in polymer composite light emitting devices.Appl. Phys. Lett. 1997, 71, 1145-1147
    17. Benaissa M, Jose-Yacaman M, Xiao T.D, Strutt P.R. Microstructural study of hollandite-type MnO2 nano-fibers. Appl. Phys. Lett. 1997, 71, 2120-2122
    18. Yoshida K, Taira Y, Atsuta M. Properties of opaque resin composite containing coated and silanized titanium dioxide. J. Dent. Res. 2001, 80, 864-868
    19. Croce F, Appetecchi GB, Persi L, Scrosati B. Nanocomposite polymer electrolytes for lithium batteries. Nature 1998, 394, 456-458
    20. Ahn JH, Wang GX, Liu HK, Dou SX. Tin-based composite materials as anode materials for Li-ion batteries. J. Power Sources 2003, 119-121, 45-49
    21. Petrella A, Tamborra M, Curri ML, Cosma P, Striccoli M, Cozzoli PD, Agostiano A. Colloidal TiO2 Nanocrystals/MEH-PPV Nanocomposites: Photo(electro)chemical Study. J. Phys. Chem. B 2005, 109, 1554-1562
    22. Kocher M, Daubler T K, Harth E, Scherf U, Gugel A, Neher D. Photoconductivity of an inorganic/organic composite containing dye-sensitized nanocrystalline titanium dioxide. Appl. Phys. Lett. 1998, 72, 650-652
    23. Zan L, Tian L, Liu Z, Peng Z. A new polystyrene-TiO2 nanocomposite film and its photocatalytic degradation. Appl. Catal. 2004, A 264, 237-242
    24. Perruchot C, Khan MA, Kamitsi A, Armes SP, von Werne T, Patten TE. Synthesis of Well-Defined, Polymer-Grafted Silica Particles by Aqueous ATRP. Langmuir 2001, 17, 4479-4481
    25. Haga Y, Watanabe T, Yosomiya R. Angew. Makromol. Chem. 1991, 89, 23-34
    26. Janssen RQF, Derks GJW, van Herk AM, German AL. Spec. Pub. R. Soc. Chem. 1993, 138, 102-116
    27. Janssen RQF, van Herk AM, German AL. FATIPEC Congress 1994, 22, 104-118
    28. Erdem B, Sudol ED, Dimonie VL, El-Aasser MS. Encapsulation of inorganic particles via miniemulsion polymerization. III. Characterization of encapsulation. J. Polym. Sci. Part A: Polym. Chem. 2000, 38, 4441-4450
    29. Erdem B, Sudol ED, Dimonie VL, El-Aasser MS. Encapsulation of inorganic particles via miniemulsion polymerization. II. Preparation and characterization of styrene miniemulsion droplets containing TiO2 particles. J. Polym. Sci. Part A: Polym. Chem. 2000, 38,4431-4440
    30. Erdem B, Sudol ED, Dimonie VL, El-Aasser MS. Encapsulation of inorganic particles via miniemulsion polymerization. Macromol. Symp. 2000, 155, 181-198
    31. Oliveira AM, Silva MLCP, Alves GM, Santos AM. Encapsulamento do diocido de titanio (TiO2) pela techica de polimerizacao em emulsao. Polimeros: Ciencia Tecnol. 2002, 12 ,123-129
    32. Marim de Oliveira A, Pinto da Silva MLC, Alves GM, de Oliveira PC, dos Santos AM. Encapsulation of TiO2 by emulsion polymerization with methyl metacrylate (MMA). Polym. Bull. 2005, 55 ,477-484
    33. Ajayan PM, Schadler LS, Giannaris C, Rubio A. Single-walled carbon nanotube-polymer composites: Strength and weakness. Adv. Mater. 2000, 12, 750-753
    34. Baughman RH, Zakhidov AA, de Heer WA. Carbon nanotubes - The route toward applications.Science 2002, 297,787-792
    35. Lu MD, Yang SM. Syntheses of polythiophene and titania nanotube composites. Synth. Met. 2005, 154 ,73-76
    36. Teo BK, Li CP, Sun XH, Wong NB, Lee ST. Silicon-Silica Nanowires, Nanotubes, and Biaxial Nanowires: Inside, Outside, and Side-by-Side Growth of Silicon versus Silica on Zeolite. Inorg. Chem. 2003, 42 ,6723-6728
    37. Jordan J, Jacob KI, Tannenbaum R, Sharaf MA, Jasiuk I. Experimental trends in polymer nanocomposites - A review. Mater. Sci. Eng. A 2005, A393, 1-11
    38. Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K. Formation of Titanium Oxide Nanotube. Langmuir 1998, 14, 3160-3163
    39. Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K. Titania nanotubes prepared by chemical processing. Adv. Mater. 1999, 11, 1307-1311
    40. Seo DS, Lee JK, Kim H. Preparation of nanotube-shaped TiO2 powder. J. Cryst. Growth 2001, 229 ,428-432
    41. Chen Q, Zhou WZ, Du GH, Peng LM. Trititanate nanotubes made via a single alkali treatment. Adv. Mater. 2002, 14 ,1208-1211
    42. Zhang S, Peng LM, Chen Q, Du GH, Dawson G, Zhou WZ. Formation Mechanism of H2Ti3O7 Nanotubes. Phys. Rev. Lett. 2003, 91, 2561031-2561034
    43. Zhang QH, Gao L, Zheng S, Sun J. Preparation of long TiO2 nanotubes from ultrafine rutile nanocrystals. Chem. Lett. 2002, 2 ,226-227
    44. Kasuga T. Formation of titanium oxide nanotubes using chemical treatments and their characteristic properties. Thin Solid Films 2006, 496 ,141-145
    45. Dimitrios Tasis, Nikos Tagmatarchis, Alberto Bianco, Maurizio Prato. Chemistry of carbon nanotubes. Chem. Rev. 2006, 106, 1105-1136
    46. Nakayama Y, Akita S. Nanoengineering of carbon nanotubes for nanotools. New J. Phys. 2003, 5, Art. No. 128
    47. Bavykin DV, Lapkin AA, Plucinski PK, Friedrich JM, Walsh FC. TiO2 nanotube-supported ruthenium (III) hydrated oxide: A highly active catalyst for selective oxidation of alcohols by oxygen. J. Catal. 2005, 235, 10-17
    48. Asahi R, Morikawa T, Ohwaki T, Aoki K, Tagal Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 2001, 293, 269-271
    49. Park NG, Kang M, Kim K, Ryu K, Chang S. Morphological and Photoelectrochemical Characterization of Core-Shell Nanoparticle Films for Dye-Sensitized Solar Cells: Zn-O Type Shell on SnO2 and TiO2 Cores. Langmuir 2004, 20, 4246-4253
    50. Wagemaker M, Kentgens A, Mulder FM. Equilibrium lithium transport between nanocrystalline phases in intercalated TiO2 anatase. Nature 2002, 418, 397-399
    51. Kavan Ladislav, Rathousky J, Gra1tze Michael, Shklover Valery, Zukal Arnost. Surfactant-templated TiO2 (anatase): Characteristic features of lithium insertion electrochemistry in organized nanostructures. J. Phys. Chem. B. 2000, 104, 12012-12020
    52. Ide Y, Ogawa M. Surface modification of a layered alkali titanate with organosilanes. ChemCommun 2003, 11, 1262~1263
    53. Tokudome H, Miyauchi M. Titanate nanotube thin films via alternate layer deposition. Chem Commun 2004, 8, 958~959
    54. Zhang C, Jiang X, Tian B. Modification and assembly of titanate sodium nanotubes. Colloids and Surfaces A: Physicochem and Eng Asp 2005, 257-258, 521~525
    55. Byrne MT, McCarthy JE, Bent M, Blake R, Gun’ko YK, Horvath E, Konya Z, Kukovecz A, Kiricsi I, Coleman JN. Chemical functionalisation of titania nanotubes and their utilisation for the fabrication of reinforced polystyrene composites. J. Mater. Chem. 2007, 17 ,2351-2358
    56. Zhao B, Brittain WJ. Polymer brushes: surface-immobilized macromolecules. Prog. Polym. Sci. 2000, 25, 677-710
    57. Kizhakkedathu JN, Jones RN, Brooks DE. Synthesis of well-defined environmentally responsive polymer brushes by aqueous ATRP. Macromolecules 2004, 37, 734-743
    58. Edmondson S, Huck WTS. Controlled growth and subsequent chemical modification of poly(glycidyl methacrylate) brushes on silicon wafers. J. Mater. Chem. 2004, 14, 730-734
    59. Brown AA, Khan NS, Steinbock L, Huck WTS. Synthesis of oligo (ethylene glycol)methacrylate polymer brushes. European Polymer Journal 2005, 41, 1757-1765
    60. Milner ST. Polymer brushes. Science 1991, 251, 905-914
    61. Fleer GJ, Cohen-Stuart MA, Scheutjens JMHM, Cosgrove T, Vincent B. Polymers at interfaces. Chapman & Hall: London. 1993
    62. Ebata K, Furukawa K, Matsumoto N. Synthesis and characterization of end-grafted polysilane on a substrate surface. J. Am. Chem. Soc. 1998, 120, 7367-7368
    63. Tsubokawa N, Hosoya M, Yanadori K, Sone Y. Grafting onto carbon black. Reaction of functional groups on carbon black with acyl chloride-capped polymers. J. Macromol. Sci. Chem. 1990, A27, 445-457
    64. Shi ZQ, Gao XP, Song DY, Zhou YF, Yan DY. Preparation of Poly(ε-caprolactone) Grafted Titanate Nanotubes. Polymer 2007, 48 , 7516-22
    65. Yang W. Randy B. Radical living graft polymerization on the surface of polymeric materials. Macromolecules 1996, 29, 3308-3310
    66. de Boer B, Simon HK, Werts MPL, Van der Vegte EW, Hadziioannoi G.“living”free radical photopolymetization initiated from surface-grafted iniferter monolayers. Macromolecules 2000, 33, 349-356
    67. Prucker O, Ruhe J. Mechanism of radical chain polymerizations initited by zao compounds covalently bound to the surface of spherical particles. Macromolecules 1998, 31, 602-613
    68. Matyjaszewski K, Xia JH. Atom transfer radical polymerization. Chem. Rev. 2001, 101, 2921-2990
    69. Iddon PD, Robinson KL, Armes SP. Polymerization of sodium 4-styrenesulfonate via atom transfer radical polymerization in protic media. Polymer 2004, 45, 759-768
    70. Feng W, Brash J, Zhu SP. Atom transfer radical grafting polymerization of 2-methacryloyloxyethyl phophorylcholine from silicon wafer surfaces. J. Polym. Sci: Part A: Polym. Chem. 2004, 42, 2931-2942
    71. Xu FJ, Cai QJ, Kang ET, Neoh KG. Well-defined polymer-germanium hybrids via surface-initiated atom transfer radical polymerization on hydrogen-terminated Ge(100)substrates. Organometallics 2005, 24, 1768-1771
    72. Granville AM, Brittain WJ. Stimuli-response semi-fluorinated polymer brushes on porous silica substrate. Macromol. Rapid. Commun. 2004, 25, 1298-1302
    73. Pyun J, Jia SJ, Kowalewski T, Patterson GD, Matyjaszewski K. Synthesis and characterization of organic/inorganic hybrid nanoparticles: kinetics of surface-initiated atom transfer radical polymerization and morphology of hybrid nanoparticle ultrathin films. Macromolecules 2003, 36, 5094-5104
    74. Viswanathan G, Chakrapan N, Yang H, Wei B, Chung H, Cho K, Ryu C. Y, Ajayan PM. Single-Step in Situ Synthesis of Polymer-Grafted Single-Wall Nanotube Composites. J. Am. Chem. Soc. 2003, 125, 9258-9259
    75. Wang JS, Matyjaszewski K. Controlled/"living" radical polymerization. atom transfer radical polymerization in the presence of transition-metal complexes. J. Am. Chem. Soc. 1995, 117, 5614-5615
    76. Coessens V, Pintauer T, Matyjaszewski K. Functional polymers by atom transfer radical polymerization. Prog. Polym. Sci. 2001, 26, 337-377
    77. Qiu J, Charleux B, Matyjaszewski K. Controlled/living radical polymerization in aqueous media: homogeneous and heterogeneous systems. Prog. Polym. Sci. 2001, 26, 2083-2134
    78. Matyjaszewski K, Xia J, Atom Transfer Radical Polymerization. Chem. Rev. 2001, 101, 2921-2990
    79. Liu T, Jia S, Kowalewski T, Matyjaszewski K, Casado-Portilla R, Belmont J. Grafting Poly(n-butyl acrylate) from a Functionalized Carbon Black Surface by Atom Transfer Radical Polymerization. Langmuir 2003, 19, 6342-6345
    80. Qin S, Qin D, Ford WT, Resasco DE, Herrera JE. Polymer Brushes on Single-Walled Carbon Nanotubes by Atom Transfer Radical Polymerization of n-Butyl Methacrylate. J. Am.Chem. Soc. 2004, 126, 170-176
    81. Kong H, Gao C, Yan D. Controlled Functionalization of Multiwalled Carbon Nanotubes by in Situ Atom Transfer Radical Polymerization. J. Am. Chem. Soc. 2004, 126, 412-413
    82. Cahill L S, Yao Z, Adronov A, Penner J, Moonoosawmy KR, Kruse P, Goward GR. Polymer-Functionalized Carbon Nanotubes Investigated by Solid-State Nuclear Magnetic Resonance and Scanning Tunneling Microscopy. J. Phys. Chem. B 2004, 108, 11412-11418
    83. Yao Z, Braidy N, Botton GA, Adronov A. Polymerization from the Surface of Single-Walled Carbon Nanotubes ? Preparation and Characterization of Nanocomposites. J. Am. Chem.Soc. 2003, 125, 16015-16024
    84. Baskaran D, Mays JW, Bratcher MS. Polymer-grafted multiwalled carbon nanotubes through surface-initiated polymerization. Angew. Chem. Int. Ed. 2004, 43, 2138-2142
    85. Cui J, Wang W, You Y, Liu C, Wang P. Functionalization of multiwalled carbon nanotubes by reversible addition fragmentation chain-transfer polymerization. Polymer 2004, 45, 8717-8721
    86. Qin S, Qin D, Ford WT, Resasco DE, Herrera JE. Functionalization of Single-Walled CarbonNanotubes with Polystyrene via Grafting to and Grafting from Methods. Macromolecules 2004, 37, 752-757
    87. Kong H, Gao C, Yan D. Constructing amphiphilic polymer brushes on the convex surfaces of multi-walled carbon nanotubes by in situ atom transfer radical polymerization. J. Mater. Chem. 2004, 14, 1401-1405
    88. Gao XP, Lan Y, Zhu HY, Liu JW, Ge YP, Wu F, Song DY. Electrochemical performance of anatase nanotubes converted from protonated titanate hydrate nanotubes. Electrochem. Solid-State Lett. 2005, 8, A26-29
    89. Cheng G, Boker A, Zhang M, Krausch G, Muller AHE. Amphiphilic Cylindrical Core?Shell Brushes via a“Grafting From”Process Using ATRP. Macromolecules 2001 34, 6883-6888
    90. Sasaki T, Watanabe W, Michiue. Preparation and acid-base properties of a protonated titanate with the lepidocrocite-like layer structure. Chem. Mater. 1995, 7, 1001-1007
    91.李伟,王仲来,王汉卿等.纳米管钛酸多孔层石英毛细管色谱柱的制备及热处理对色谱保留性能影响研究.分析化学2004, 32., 299-304
    92. Andersson S, Wadsley A.D. The structures of Na2Ti6O13 and Rb2Ti6O13 and the alkali metal titanates. Acta Cryst. 1962, 15, 3, 194-201
    1. Svec P, Horak Z, Rosik L, Styrene-based plastics and their modification. New York: Ellis Horwood. 1990. 19– 30
    2. Iijima S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56-58
    3. Dai L, Mau AWH. Controlled Synthesis and Modification of Carbon Nanotubes and C60: Carbon Nanostructures for Advanced Polymeric Composite Materials. Adv. Mater. 2001, 13, 899-913
    4. Wang X, Liu Y, Zhu D. Two- and three-dimensional alignment and patterning of carbon nanotubes. Adv. Mater. 2002, 14, 165-167
    5. Banerjee S, Kahn MGC, Wong SS. Rational chemical strategies for carbon nanotube functionalization. Chem. Eur. J. 2003, 9, 1899-1908
    6. Niyogi S, Hamon MA, Hu H, Zhao B, Bhowmik P, Sen R, Itkis ME, Haddon RC. Chemistry of Single-Walled Carbon Nanotubes. Acc. Chem. Res. 2002, 35, 1105-1113
    7. Dalton AB, Collins S, Razal J, Munoz E, Ebron VH, Kim BG, Coleman JN, Ferraris JP, BaughmRH. Continuous carbon nanotube composite fibers: properties, potential applications, and problems. J. Mater. Chem. 2004, 14, 1-3
    8. Liu J, Rinzler AG, Dai H, Hafner JH, Bradley RK, Boul PJ, Lu A, Terry I, Konstantin S, Huffman CB, Rodriguez-Macias F, Shon YS, Lee TR, Colbert DT, Smalley RE. Fullerene pipes. Science 1998, 280, 1253-1255
    9. Chen J, Hamon MA, Hu H, Chen Y, Rao AM, Eklund PC, Haddon RC. Solution properties of single-walled carbon nanotubes. Science 1998, 282, 95-98
    10. Kovtyukhova NI, Mallouk TE, Pan L, Dickey EC. Individual single-walled nanotubes and hydrogels made by oxidative exfoliation of carbon nanotube ropes. J. Am. Chem. Soc. 2003, 125, 9761-9769
    11. Riggs JE, Guo Z, Carroll DL, Sun YP. Strong Luminescence of Solublized Carbon Naotubes. J. Am. Chem. Soc. 2000, 122, 5879-5880
    12. Huang W, Taylor S, Fu K, Lin Y, Zhang D, Hanks TW, Rao AM, Sun YP. Attaching proteins to carbon nanotubes via diimide-activated amidation. Nano Lett. 2002, 2, 311-314
    13. Fu K, Huang W, Lin Y, Riddle LA, Carrol DL, Sun YP. Defunctionalization of functionalized carbon nanotubes. Nano Lett. 2001, 1, 439-441
    14. Sun YP, Fu K, Lin Y, Huang W. Functionalized carbon nanotubes: properties and applications. Acc. Chem. Res. 2002, 35, 1096-1104
    15. Shaffer MSP, Windle AH. Fabrication and characterization of carbon of carbon nanotube/poly(vinyl alcohol) composites. Adv. Mater. 1999, 11, 937-941
    16. Chen RJ, Zhang Y, Wang D, Dai H. Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J. Am. Chem. Soc. 2001, 123, 3838-3839
    17. Shim M, Javey A, Kam NWS, Dai H. Polymer functionalization for air-stable n-type carbon nanotube field-effect transistors. J. Am. Chem. Soc. 2001, 123, 11512-11513
    18. Sano M, Ayumino-Okamura J, Shinkai S. Self-organization of PEO-graft-single-walled carbon nanotubes in solution and langmuir-blodgett films. Langmuir 2001, 17, 3125-3128
    19. Pantarotto D, Partidos CD, Graff R, Hoebeke J, Briand JP, Prato M, Bianco A. Synthesis, structural characterization, and immunological properties of carbon nanotubes functionalized with peptides. J. Am. Chem. Soc. 2003, 125, 6160-6161
    20. Saini RK, Chiang IW, Peng H, Smalley RE, Billups WE, Hauge Robert H, Margrave JL. covalent sidewall functionalization of single wall carbon nanotubes. J. Am. Chem. Soc. 2003, 125, 3617-3621
    21. Frehill F, Vos JG, Benrezzak S, Koos AA, Konya Z, Ruther MG, Blau WJ, Fonseca A, Nagy JB, Biro LP, Minett AI, in het Panhuis M. Interconnecting carbon nanotubes with an inorganic metal complex. J. Am. Chem. Soc. 2002, 124, 13694-13695
    22. Banerjee S, Wong SS. Functionalization of carbon nanotubes with a metal-containing molecular complex. J. Am. Chem. Soc. 2002, 124, 8940-8948
    23. Ravindran S, Chaudhary S, Colburn B, Ozkan M, Ozkan CS. Covalent coupling of quantum dots to multiwalled carbon nanotubes for electronic device applications. Nano Lett. 2003, 3, 447-453
    24. Gao M, Huang S, Dai L, Wallace G, Gao R, Wang Z. Aligned coaxial nanowires of carbonnanotubes sheathed with conducting polymers. Angew. Chem. Int. Ed. 2000, 39, 3664-3667
    25. Kang Y, Taton TA. Micelle-encapsulated carbon nanotubes: a route to nanotube. J. Am. Chem. Soc. 2003, 125, 5650-5651
    26. Kim OK, Je J, Baldwin JW, Kooi S, Pehrsson PE, Buckley LJ. Solubilization of single-wall carbon nanotubes by wupramolecular encapsulation of helical amylose. J. Am. Chem. Soc. 2003, 125, 4426-4427
    27. Zhao W, Song C, Pehrsson PE. Water-soluble and optically pH-sensitive single-walled carbon nanotubes from surface modification. J. Am. Chem. Soc. 2002, 124, 12418-12419
    28. Wang JS, Matyjaszewski K. Controlled/"living" radical polymerization. atom transfer radical polymerization in the presence of transition-metal complexes. J. Am. Chem. Soc. 1995, 117, 5614-5615
    29. Coessens V, Pintauer T, Matyjaszewski K. Functional polymers by atom transfer radical polymerization., Prog. Polym. Sci. 2001, 26, 337-377
    30. Qiu J, Charleux B, Matyjaszewski K. Controlled/living radical polymerization in aqueous media: homogeneous and heterogeneous systems. Prog. Polym. Sci. 2001, 26, 2083-2134
    31. Matyjaszewski K, Xia J. Atom transfer radical polymerization. Chem. Rev. 2001, 101, 2921-2990
    32. Cheng G, B?ker A, Zhang M, Krausch G, Müller AHE. Amphiphilic cylindrical core-shell brushes via a "grafting from" process using ATRP. Macromolecules 2001, 34, 6883-6888
    33. Liu T, Jia S, Kowalewski T, Matyjaszewski K, Casado-Portilla R, Belmont J. Grafting poly(n-butyl acrylate) from a functionalized carbon black surface by atom transfer radical polymerization. Langmuir 2003, 19, 6342-6345
    34. Mandal TK, Fleming MS, Wait DR. Preparation of polymer coated gold nanoparticles by surface-confined living radical polymerization at ambient temperature. Nano Lett. 2002, 2, 3-7
    35. Wang Y, Teng X, Wang JS, Yang H. Solvent-free atom transfer radical polymerization in the synthesis of Fe2O3@polystyrene core-shell nanoparticles. Nano Lett. 2003, 3, 789-793
    36. Carrot G, Diamanti S, Manuszak M, Charleux B, Vairon JP. Atom transfer radical polymerization of n-butyl acrylate from silica nanoparticles. J. Polym. Sci., Part A, Polym. Chem. 2001, 39, 4294-4301
    37. Yao ZL, Braidy N, Botton GA, Adronov AT. Polymerization from the surface of single-walled carbon nanotubes - Preparation and characterization of nanocomposites. J. Am. Chem. Soc. 2003, 125, 16015-16024
    1. Tang ZY, Zhang ZL, Wang Y, Glotzer SC, Kotov NA. Self-assembly of CdTe nanocrystals into free-floating sheets. Science 2006, 314, 274-278
    2. Feng L, Li S, Li Y, Li H, Zhang L, Zhai J, Song Y, Zhu D. Super-hydrophobic surfaces: From natural to artificial. Adv Mater 2002, 14, 1857-60
    3. Shi X, Hudson JL, Spicer PP, Tour JM, Krishnamoorti R, Mikos AG. Injectable nanocomposites of single-walled carbon nanotubes and biodegradable polymers for bone tissue engineering. Biomacromolecules 2006, 7, 2237-42
    4. Willner I. Tech.Sight. Bioelectronics. Biomaterials for sensors, fuel cells, and circuitry. Science 2002, 298, 2407–2408
    5. Xiao Y, Patolsky F, Katz E, Hainfeld JF, Willner I. Plugging into enzymes: Nanowiring of redox enzymes by a gold nanoparticle. Science 2003, 299, 1877–1881
    6. Baughman RH, Zakhidov AA, de Heer WA. Carbon nanotubes - The route toward applications. Science 2002, 297, 787-792
    7. Li H, Chen Y, Xie Y. Photo-crosslinking polymerization to prepare polyanhydride/needle-like hydroxyapatite biodegradable nanocomposite for orthopedic application. Mater. Lett 2003, 57, 2848-2854
    8. Lijima S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56-58
    9. Kamaras K, Itkis ME, Hu H, Zhao B, Haddon RC. Covalent bond formation to a carbon nanotube meta. Science 2003, 301, 1501-1501
    10. Hartschuh A, Pedrosa HN, Novotny L, Krauss TD. Simultaneous fluorescence and Raman scattering from single carbon nanotubes. Science 2003, 301, 1354-1356
    11. Hinds BJ, Chopra N, Rantell T, Andrews R, Gavalas V, Bachas LG. Aligned multiwalled carbon nanotube membranes. Science 2004, 303, 62-65.
    12. Chen J, Hamon MA, Hu H, Chen Y, Rao AM, Eklund PC, Haddon RC. Solution properties of single-walled carbon nanotubes. Science 1998, 282, 95-98
    13. Dai L, Mau AWH. Controlled Synthesis and Modification of Carbon Nanotubes and C60: Carbon Nanostructures for Advanced Polymeric Composite Materials. Adv. Mater. 2001, 13, 899-913
    14. Dalton AB, Collins S, Munoz E, Razal JM, Ebron VH, Ferraris JP, Coleman JN, Kim BG, Baughman RH. Super-tough carbon-nanotube fibres - These extraordinary composite fibres can be woven into electronic textiles. Nature 2003, 423, 703-703
    15. Duan XF, Niu CM, Sahi V, Chen J, Parce JW, Empedocles S, Goldman JL. High-performance thin-film transistors using semiconductor nanowires and nanoribbons. Nature 2003, 425, 274-278
    16. Gao YH, Bando Y. Carbon nanothermometer containing gallium - Gallium's macroscopic properties are retained on a miniature scale in this nanodevice. Nature 2002, 415, 599-599
    17. Song W, Kinloch IA, Windle AH. Nematic liquid crystallinity of multiwall carbon nanotubes. Science 2003, 302, 1363-1363
    18. Richard C, Balavoine F, Schultz P, Ebbesen TW, Mioskowski C. Supramolecular self-assembly of lipid derivatives on carbon nanotubes. Science 2003, 300, 775-778
    19. Artyukhin AB, Bakajin O, Stroeve P, Noy A. Layer-by-Layer Electrostatic Self-Assembly of Polyelectrolyte Nanoshells on Individual Carbon Nanotube Templates, Langmuir 2004, 20, 1442-1448
    20. Liu H, Li S, Zhai J, Li H, Zheng Q, Jiang L, Zhu D. Self-Assembly of Large-Scale Micropatternson Aligned Carbon Nanotube Films. Angew. Chem., Int. Ed. 2004, 43, 1146-1149
    21. Sun T, Wang G, Feng L, Liu B, Ma Y, Jiang L, Zhu D. Reversible Switching between Superhydrophilicity and Superhydrophobicity. Angew. Chem. Int. Ed. 2004, 43, 357-360
    22. Kong H, Gao C, Yan D. Functionalization of multiwalled carbon nanotubes by atom transfer radical polymerization and defunctionalization of the products. Macromolecules 2004, 37, 4022-4030
    23. Kong H, Gao C, Yan D. Constructing amphiphilic polymer brushes on the convex surfaces of multi-walled carbon nanotubes by in situ atom transfer radical polymerization. J. Mater. Chem. 2004, 14, 1401-1405
    24. Yao ZL, Braidy N, Botton GA, Adronov AT. Polymerization from the surface of single-walled carbon nanotubes - Preparation and characterization of nanocomposites. J. Am. Chem. Soc. 2003, 125, 16015-16024
    25. Qin SH, Qin DQ, Ford WT, Resasco DE, Herrera JE. Polymer brushes on single-walled carbon nanotubes by atom transfer radical polymerization of n-butyl methacrylate. J. Am. Chem. Soc. 2004, 126, 170-176
    26. Qin SH, Qin DQ, Ford WT, Resasco DE, Herrera JE. Functionalization of single-walled carbon nanotubes with polystyrene via grafting to and grafting from methods. Macromolecules 2004, 37, 752-757
    27. Baskaran D, Mays JW, Bratcher MS. Polymer-grafted multiwalled carbon nanotubes through surface-initiated polymerization. Angew. Chem. Int. Ed. 2004, 43, 2138-2142
    28. Sun YP, Fu K, Lin Y, Huang W. Functionalized Carbon Nanotubes: Properties and Applications. Acc. Chem. Res. 2002, 35, 1096-1104
    29. Niyogi S, Hamon MA, Hu H, Zhao B, Bhowmik P, Sen R, Itkis ME, Haddon RC. Chemistry of Single-Walled Carbon Nanotubes. Acc. Chem. Res. 2002, 35, 1105-1113
    30. Lin S, Chen K, Liang R. Thermal micro ATR/FT-IR spectroscopic system for quantitative study of the molecular structure of poly(N-isopropylacrylamide) in water. Polymer 1999, 40, 2619-2624
    31. Freitag R, Garret-Flaudy F. Salt Effects on the Thermoprecipitation of Poly-(N- isopropylacrylamide) Oligomers from Aqueous Solution. Langmuir 2002, 18, 3434-3440
    32. Xiao D, Wirth MJ. Kinetics of Surface-Initiated Atom Transfer Radical Polymerization of Acrylamide on Silica. Macromolecules 2002, 35, 2919-2925
    33. Rueckes T, Kim K, Joselevich E, Tseng GY, Cheung CL, Lieber CM. Carbon nanotube-based nonvolatile random access memory for molecular computing. Science 2000, 289, 94-97
    34. Inganas O, Lundstrum I. Materials science - Carbon nanotube muscles. Science 1999, 284, 1281-1282
    35. Barone PW, Strano MS. Reversible control of carbon nanotube aggregation for a glucose affinity sensor. Angew. Chem. Int. Ed. 2006, 45, 8138-8141
    36. Xu YY, Bolisetty S, Drechsler M, Fang B, Yuan JY, Ballauff M, Muller AHE. pH and salt responsive poly(N,N-dimethylaminoethyl methacrylate) cylindrical brushes and their quaternized derivatives. Polymer 2008, 49, 3957-3964
    37. Niemeyer CM. Nanoparticles, proteins, and nucleic acids: Biotechnology meets materials science. Angew. Chem. Int. Ed. 2001, 40, 4129-4158
    38. Niemeyer CM. Functional hybrid devices of proteins and inorganic nanoparticles. Angew. Chem. Int. Ed. 2003, 42, 5796-5800
    39. Parak WJ, Gerion D, Pellegrino T, Zanchet D, Micheel C, Williams SC, Boudreau R, Le Gros MA, Larabell CA, Alivisatos AP. Biological applications of colloidal nanocrystals. Nanotechnology 2003, 14, R15-R27
    40. Dai L, He P, Li S. Functionalized surfaces based on polymers and carbon nanotubes for some biomedical and optoelectronic applications. Nanotechnology 2003, 14, 1081-1097
    41. Pantarotto D, Briand J P, Prato M, Bianco A. Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem. Commun. 2004, 10, 16-17
    42. Wong SS, Joselevich E, Woolley AT, Cheung CL, Lieber CM. Covalently functionalized nanotubes as nanometresized probes in chemistry and biology. Nature 1998, 394, 52-55
    43. Hafner JH, Cheung CL, Woolley AT, Lieber CM. Structural and functional imaging with carbon nanotube AFM probes. Prog. Biophys. Mol. Biol. 2001, 77, 73-110
    44. Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K. Titania nanotubes prepared by chemical processing. Adv. Mater. 1999, 11, 1307-1311
    45. Seo DS, Lee JK, Kim H. Preparation of nanotube-shaped TiO2 powder. J. Cryst. Growth 2001, 229, 428-432
    46. Chen Q, Zhou WZ, Du GH, Peng LM. Controlled synthesis of carbon-encapsulated Co nanoparticles by CVD. Adv. Mater. 2002, 14, 1208-1211
    47. Zhang S, Peng LM, Chen Q, Du GH, Dawson G, Zhou WZ. Formation mechanism of H2Ti3O7 nanotubes. Phys. Rev. Lett. 2003, 91, 2561031-2561034
    48. Zhang Q H, Gao L, Zheng S, Sun J. Preparation of long TiO2 nanotubes from ultrafine rutile nanocrystals. Chem. Lett. 2002, 2, 226-227
    49. Byrne MT, McCarthy JE, Bent M, Blake R, Gun’ko YK, Horvath E, Konya Z, Kukovecz A, Kiricsi I, Coleman JN. Chemical functionalisation of titania nanotubes and their utilisation for the fabrication of reinforced polystyrene composites. J. Mater. Chem. 2007, 17, 2351-2358
    50. Shi ZQ, Gao XP, Song DY, Zhou YF, Yan DY. Preparation of poly(ε-caprolactone) grafted titanate nanotubes. Polymer 2007, 48, 7516-7222
    51. Schild H G. Poly (N-isopropylacrylamide): Experiment, theory and application. Prog. Polym. Sci. 1992, 17, 163-249
    52. Sun T, Wang G, Feng L, Liu B, Ma Y, Jiang L, Zhu D. Reversible Switching between Superhydrophilicity and Superhydrophobicity. Angew.Chem.Int. Ed.2004, 43, 357-360
    53. Zha L, Zhang Y, Yang W, Fu S. Monodisperse temperature-sensitive microcontainers. Adv. Mater. 2002, 14, 1090-1092
    54. Deng Y, Yang W, Wang C, Fu S. A novel approach for preparation of thermoresponsive polymer magnetic microspheres with core-ahell atructure. Adv. Mater. 2003, 15, 1729-1732
    55. Kim HM, Paik SY, Ra KS, Koo KB, Yun JW, Choi JW. Enhanced production of exopolysaccharides by fed-batch culture of Ganoderma resinaceum DG-6556. Journal ofMicrobiology 2006, 44, 233-242
    56. Matthias Karg, Isabel Pastoriza-Santos, Luis M. Liz-Marzán, Thomas Hellweg. A versatile approach for the preparation of thermosensitive PNIPAM core-ahell microgels with nanoparticle cores. ChemPhyChem. 2006, 7, 2298-2301
    57. Hu T, You YZ, Pan CY, Wu CJ. The coil-to-globule-to-brush transition of linear thermally sensitive poly(N-isopropylacrylamide) chains grafted on a spherical microgel. Phys. Chem. B 2002, 106, 6659-6662
    58. Sun T, Liu H, Song W, Wang X., Jiang L, Li L, Zhu D. Responsive aligned carbon nanotubes. Angew.Chem.Int. Ed. 2004, 43, 4663-4666
    59. Kong H, Li W, Gao C, Yan D, Jin Y, Walton DRM, Kroto H W. Poly(N-isopropylacrylamide)-coated carbon nanotubes: temperature-sensitive molecular nanohybrids in water. Macromolecules 2004, 37, 6683-6686
    60. Wu C, Zhou SQ. First observation of the molten globule state of a single homopolymer chain. Phys. Rev. Lett. 1996, 77, 3053-3055
    61. Wu C, Wang XH. Globule-to-coil transition of a single homopolymer chain in solution. Phys. Rev. Lett. 1998, 79, 4092-4094
    62. Ding Y, Ye X, Zhang G. Macromolecules 2005, 38, 904
    63. Dautsenberg H, Gao Y, Hahn M. Formation, structure, and temperature behavior of Polyelectrolyte complexes between ionically modified thermosensitive polymers. Langmuir 2000, 16, 9070-9081
    64. Lin S, Chen K, Liang R. Thermal micro ATR/FT-IR spectroscopic system for quantitative study of the molecular structure of poly(N-isopropylacrylamide) in water. Polymer 1999, 40, 2619-2624
    1. Dai L, Mau AWH. Controlled synthesis and modification of carbon nanotubes and C60: carbon nanostructures for advanced polymeric composite materials. Adv. Mater. 2001, 13 , 899-913
    2. Banerjee S, Kahn MGC, Wong SS. Rational chemical strategies for carbon nanotube functionalization. Chem. Eur. J. 2003, 9, 1899-1908
    3. Sun YP, Fu K, Lin Y, Huang W. Functionalized carbon nanotubes: properties and applications. Acc. Chem. Res. 2002, 35, 1096-1104
    4. Niyogi S, Hamon MA, Hu H, Zhao B, Bhowmik P, Sen R, Itkis ME, Haddon RC. Chemistry of single-walled carbon nanotubes. Acc. Chem. Res. 2002, 35, 1105-1113
    5. Kang Y, Taton TA. Micelle-encapsulated carbon nanotubes: a route to nanotube composites. J. Am. Chem. Soc. 2003, 125, 5650-5651
    6. Carrillo A, Swartz JA, Gamba JM, Kane RS. Noncovalent functionalization of graphite and carbon nanotubes with polymer multilayers and gold nanoparticles. Nano Lett. 2003, 3, 1437-1440
    7. Feng L, Li H, Li F, Shi Z, Gu Z. Functionalization of carbon nanotubes with amphiphilic molecules and their Langmuir-Blodgett films. Carbon 2003, 41, 2385-2391
    8. Asai M, Fujita N, Sano M, Shinkai S.Silica gel fabrication of [60]fullerene aggregates and carbon nanotubes utilizing the amphiphilic nature of poly(N-vinylpyrrolidone) as a 'glue'. J. Mater. Chem. 2003, 13, 2145-2149
    9. Freitag R, Garret-Flaudy F. Salt effects on the thermoprecipitation of poly-(N- isopropylacrylamide) oligomers from aqueous solution. Langmuir 2002, 18, 3434-3440
    10. Xiao D, Wirth MJ. Kinetics of surface-initiated atom transfer radical polymerization of acrylamide on silica. Macromolecules 2002, 35, 2919-2925
    11. Jones DM, Smith JR, Huck WTS, Alexander C. Variable adhesion of micropatterned thermoresponsive polymer brushes: AFM investigations of poly (N-isopropylacrylamide) brushes prepared by surface-initiated polymerizations. Adv. Mater. 2002, 14, 1130-1134
    12. Kim DJ, Heo J, Kim KS, Choi IS. Formation of thermoresponsive poly (N- isopropylacrylamide)/dextran particles by atom transfer radical polymerization. Macromol. Rapid Commun. 2003, 24, 517-521
    13. Zhu M, Wang L, Exarhos GJ, Li A DQ. Thermosensitive gold nanoparticles. J. Am. Chem. Soc. 2004, 126, 2656-2657
    14. Oupicky D, Reschel T, Konak C, Oupicka L. Temperature-controlled behavior of self-assembly gene delivery vectors based on complexes of DNA with poly(L-lysine)-graft-poly(N-isopropylacrylamide). Macromolecules 2003, 36, 6863-6872
    15. Garnweitner G, Smarsly B, Assink R, Ruland W, Bond E, Brinker CJ. Self-assembly of an environmentally responsive polymer/silica nanocomposite. J. Am. Chem. Soc. 2003, 125, 5626-5627
    16. Viswanathan G, Chakrapan N, Yang H, Wei B, Chung H, Cho K, Ryu CY, Ajayan PM. Single-step in situ synthesis of polymer-grafted single-wall nanotube composites. J. Am. Chem. Soc. 2003, 125, 9258-9259
    17. Wu W, Zhang S, Li Y, Li J, Liu L, Qin Y, Guo ZX, Dai L, Ye C, Zhu D. PVK-modified single-walled carbon nanotubes with effective photoinduced electron transfer. Macromolecules 2003, 36, 6286-6288
    18. Shaffer MSP, Koziol K. Polystyrene grafted multi-walled carbon nanotubes. Chem. Commun. 2002, 2074-2075
    19. Kong H, Gao C, Yan D. Controlled functionalization of multiwalled carbon nanotubes by in situ atom transfer radical polymerization. J. Am. Chem. Soc. 2004, 126, 412-413
    20. Yao ZL, Braidy N, Botton GA, Adronov AT. Polymerization from the surface of single-walled carbon nanotubes - Preparation and characterization of nanocomposites. J. Am. Chem. Soc. 2003, 125, 16015-16024
    21. Qin SH, Qin DQ, Ford WT, Resasco DE, Herrera JE. Polymer brushes on single-walled carbonnanotubes by atom transfer radical polymerization of n-butyl methacrylate. J. Am. Chem. Soc. 2004, 126, 170-176
    22. Wang JS, Matyjaszewski K. Controlled/"living" radical polymerization. atom transfer radical polymerization in the presence of transition-metal complexes. J. Am. Chem. Soc. 1995, 117, 5614-5615
    23. Richard C, Balavoine F, Schultz P, Ebbesen TW, Mioskowski C. Supramolecular self-assembly of lipid derivatives on carbon nanotubes. Science 2003, 300, 775-778
    24. Artyukhin AB, Bakajin O, Stroeve P, Noy A. Layer-by-layer electrostatic self-assembly of polyelectrolyte nanoshells on individual carbon nanotube templates. Langmuir 2004, 20, 1442-1448
    25. Sun T, Wang G, Feng L, Liu B, Ma Y, Jiang L, Zhu D. Reversible Switching between Superhydrophilicity and Superhydrophobicity. Angew. Chem. Int. Ed. 2004, 43, 357-360
    26. Baskaran D, Mays JW, Bratcher MS. Polymer-grafted multiwalled carbon nanotubes through surface-initiated polymerization. Angew. Chem. Int. Ed. 2004, 43, 2138-2142
    27. Niyogi S, Hamon MA, Hu H, Zhao B, Bhowmik P, Sen R, Itkis ME, Haddon RC. Chemistry of single-walled carbon nanotubes. Acc. Chem. Res.2002, 35, 1105-1113
    28. Lin Y, Taylor S, Li H, Fernando KAS, Qu L, Wang W, Gu L, Zhou B, Sun YP. Advances toward bioapplications of carbon nanotubes. J. Mater. Chem. 2004, 14, 527-541
    29. Harada KK. Formation of polyion complex miceles in an aqueous milieu from a pair of oppo sitely-charged block copolymers with poly (ethylene glyco1) segments. Macromolecules 1995, 28, 5294-5298
    30. Wolfert MA, Schact EH, Toncheva V. Characterization of vectors for gene therapy formed by self assembly of DNA with synthetic block eopolymers. Hum. Gene. Ther. 1996, 7, 2123-2128
    31. Kabanov AV, Vinogradov SV, Suzdaltseva YZ. Water-soluble block polycations as carriers for oligonuclcotide delivery. Bioconjugate Chem. 1995, 6, 639-643
    32. Kataoka K, Togawa H, Harada A. Spontaneous formation of polyion complex micelles with narrow distribution from antisense oligonucleotide and cationic block copolymer in Physiological saline. Macromolecules 1996, 39, 8556-8557
    33. Kim JS, Kim BI, Maruyama A. A new non-viral DNA delivery vector: terplex system. J. Controlled Release 1998, 53, 175-182
    34. Zaumer W, Brunner S, Buschle M. Differential behavior of lipid based and polycation based gene transfer systems in transfecting primary human fibroblasts: a potential role of polylysine in nuclear transport. Biochim Biophys Acta 1999, 1428, 57-61
    35. Salzmann CG, Ward MAH, Jacobs RMJ, Tobias G, Green MLH. Interaction of tyrosine-, tryptophan-, and lysine-containing polypeptides with single-wall carbon nanotubes and its relevance for the rational design of dispersing agents. Journal of Physical Chemistry C 2007, 111, 18520-18524
    36. Zhang Y, Li J, Shen Y, Wang M, Li J. Poly-L-lysine functionalization of single-walled carbon nanotubes. Journal of Physical Chemistry B 204, 108, 15343-15346
    37. Singh R, Pantarotto D, McCarthy D, Chaloin O, Hoebeke J, Partidos CD, Briand JP, KostarelosK. Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: Toward the construction of nanotube-based gene delivery vectors. Journal of the American Chemical Society 2005, 127, 4388-4396
    38. Jiang C, Yang T, Jiao K, Gao H. A DNA electrochemical sensor with poly-l-lysine/single-walled carbon nanotubes films and its application for the highly sensitive EIS detection of PAT gene fragment and PCR amplification of NOS gene. Electrochimica Acta 2008, 53, 2917-292
    1.李永军,刘春艳,有序纳米结构薄膜材料,化学工业出版社,2006
    2. Yao BD, Wang N. Carbon nanotube arrays prepared by MWCVD. J. Phys. Chem. B 2001, 105, 11395-11398
    3. Pena DJ, Mbindyo JKN, Carado AJ, Mallouk TE, Keating CD, Razavi B, Mayer TS. Template growth of photoconductive metal-CdSe-metal nanowires. J. Phys. Chem. B 2002, 106, 7458-7462
    4. Thurn-Albrecht T, Schotter J, Kastle GA, Emley N, Shibauchi T, Krusin-Elbaum L, Guarini K, Black CT, Tuominen MT, Russell TP. Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates. Science 2000 290, 2126-2129
    5. Pan Z, Lai HL, Au FCK, Duan X, Zhou W, Shi W, Wang N, Lee C, Wong NB, Lee ST, Xie S. Oriented silicon carbide nanowires: Synthesis and field emission properties. Adv. Mater. 2000, 12, 1186-1190
    6. Zach MP, Ng KH, Penner RM. Molybdenum nanowires by electrodeposition. Science 2000, 290, 2120-2123
    7. Chan EWL, Yu L. Chemoselective immobilization of gold nanoparticles onto self-assembled monolayers. Lagmuir 2002, 18, 311-313
    8. Marx E, Ginger DS, Walzer K, Stokbro K, Greenham NC. Self-Assembled Monolayers of CdSe Nanocrystals on Doped GaAs Substrates. Nano Lett. 2002, 2, 911-914
    9. Colvin VL, Goldstein AN, Alivisatos AP. Semiconductor nanocrystals covalently bound to metal surfaces with self-assembled monolayers. J. Am. Chem. Soc. 1992, 114, 5221-5230
    10. Stein A. Sphere templating methods for periodic porous solids. Microporous and Mesoporous Materials 2001, 44-45, 227-239
    11. Mirkin CA. DNA-based methodology for preparing nanocluster circuits, arrays, and diagnostic materials. MRS Bulletin 2000, 25, 43-54
    12. Kim F, Kwan S, Akana J, Yang PD. Langmuir-Blodgett nanorod assembly [13]. J. Am. Chem. Soc. 2001, 123, 4360-4341
    13. Duan XF, Huang Y, Cui Y, Lieber CM. Indium phosphide nanowires as building blocks fornanoscale electronic and optoelectronic devices. Nature 2001, 409, 66-69
    14. Sinha A, Ganguly R, Puri IK. Immunomagnetic seperation in microchannels from MEMS to BioNEMS. ASME International Mechanical Engineering Congress, Orlandi, FL, 2005 Paper No. IMECE2005-81569
    15. Niu HL, Chen QW, Zhu HF, Lin YS, Zhang X. Magnetic field-induced growth and self-assembly of cobalt nanocrystallites. J. Mater. Chem. 2003, 13, 1803-1805
    16. Wu MZ, Xiong Y, Jia YS, Niu HL, Qi HP, Ye J, Chen QW. Magnetic field-assisted hydrothermal growth of chain-like nanostructure of magnetite. Chem. Phys. Lett. 2005, 401, 374-379
    17. Singamaneni S, Bliznyuk V. Fabrication of Ni nanoparticles and their size-selective self-assembly into chains under external magnetic field. Appl. Phys. Lett. 2005, 87, 1-3
    18. Whitesides GM, Grzybowski B. Self-assembly at all scales. Science 2002, 295, 2418-2421
    19. Murray CB, Kagan CR, Bawendi MG. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Sci. 2000, 30, 545-610
    20. Collier CP, Vossmeyer T, Heath JR. Nanocrystal superlattices. Annu. Rev. Phys. Chem. 1998, 49, 371-404
    21. Collier CP, Saykally RJ, Shiang JJ, Henrichs SE, Heath JR. Reversible tuning of silver quantum dot monolayers through the metal- insulator transition. Science 1997, 277, 1978-1981
    22. Fink J, Kiely CJ, Bethel D, Schiffrin DJ. Self-organization of nanosized gold particles. Chem. Mater. 1998, 10, 922-926
    23. Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 1996, 382, 607-609
    24. Blodgett KB, Langmuir I. Built-up films of barium stearate and their optical properties. Phys. Rev. 1937, 57, 964-982
    25. Hassenkasp T, Norgaard K, Iverson L, Kiely CJ, Brust M, Bjomholm T. Fabrication of 2D gold nanowires by self-assembly of gold nanoparticles on water surfaces in the presence of surfactants. Adv. Mater. 2002, 14, 1126-1130
    26. Reutet T, Vidoni O, Torma V, Schmid G, Nan L, Gleiche M, Chi L, Fuchs H. Two-dimensional networks via quasi one-dimensional arrangements of gold clusters. Nano Lett. 2002, 2, 709-711
    27. Westbroek P, Marin F. A marriage of bone and nacre. Nature 1998, 392, 861-862
    28. Curry JD. Mechanical properties of mother of pearl in tension. Proc. R. Soc. Lond 1977, 196B,
    443-463
    29. Heuer AH, Fink DJ, Laria VJ. Innovative materials processing strategies. Science 1992, 255, 1098-1105
    30. Li XD, Chang WC, Chao YJ, Wang RZ, Chang M. Nanoscale Structural and Mechanical Characterization of a Natural Nanocomposite Material: The Shell of Red Abalone. Nano Lett. 2004, 4, 613-617
    31.戴永定,《生物矿物学》,石油工业出版社,北京,1994
    32. Tang Z, Zhang Z, Wang Y, Glotzer SC, Kotov NA. Self-assembly of CdTe nanocrystals into free-floating sheets. Science 2006, 314, 274-278
    33. Hurst SJ, Hill HD, Mirkin CA. "Three-dimensional hybridization" with polyvalent DNA-goldnanoparticle conjugates. J. Am. Chem. Soc. 2008, 130, 12192-12200
    34. Moulton SE, Maugey M, Poulin P, Wallace GG. Liquid crystal behavior of single-walled carbon nanotubes dispersed in biological hyaluronic acid solutions. J. Am. Chem. Soc 2007, 129, 9452-9457
    35. Star A, Steuerman DW, Heath JR, Stoddart JF. Starched carbon nanotubes. Angew. Chem. Intern. Ed. 2002, 41, 2508-2512
    36. Kim OK, Je J, Baldwin JW, Kooi S, Pehrsson PE, Buckley LJ. Solubilization of single-wall carbon nanotubes by supramolecular encapsulation of helical amylose. J. Am. Chem. Soc. 2003, 125, 4426-4427
    37. Zorbas V, Ortiz-Acevedo A, Dalton AB, Yoshida MM, Dieckmann GR, Draper RK, Baughman RH, Musselman IH. Preparation and characterization of individual peptide-wrapped single-walled carbon nanotubes. J. Am. Chem. Soc. 2004, 126, 7222-7227
    38. Fu C, Meng L, Lu Q, Fei Z, Dyson PJ. A facile strategy for preparation of fluorescent SWNT complexes with high quantum yields based on ion exchange. Advanced Functional Materials 2008, 18, 857-864
    39. Greenfield N, Fasman GD. Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry 1969, 8, 4108-4116
    1. Cui Y, Lieber CM. Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 2001, 291, 851–853
    2. Huang Y, Duan X, Wei Q, Lieber CM. Directed assembly of one-dimensional nanostructures into functional networks. Science 2001, 291, 630–633
    3. Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B. One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 2003, 15, 353–389
    4. Melosh NA, Boukai A, Diana F, Gerardot B, Badolato A, Petroff PM. Ultrahigh-density nanowire lattices and circuits. Science 2003, 300, 112–115
    5. Busbee BD, Obare SO, Murphy CJ. An improved synthesis of high-aspect-ratio gold nanorods. Adv. Mater. 2003, 15, 414–416
    6. Murphy CJ, Jana NR. Controlling the aspect ratio of inorganic nanorods and nanowires. Adv. Mater. 2002, 14, 80–82
    7. Niemeyer CM. Nanoparticles, proteins, and nucleic acids: Biotechnology meets materials science. Angew. Chem. Int. Ed 2001, 40, 4129–4158
    8. Flynn CE, Lee S-W, Peelle BR, Belcher AM. Viruses as vehicles for growth, organization and assembly of materials. Acta Materialia 2003, 51, 5867–5880
    9. Seeman NC, Belcher AM. Emulating biology: Building nanostructures from the bottom up. Proc Natl Acad Sci USA 2002, 99, 6451–6455
    10. Seeman NC. At the Crossroads of Chemistry, Biology, and Materials: Structural DNA Nanotechnology. Chemistry and Biology 2003, 10, 1151–1159
    11. Caswell KK, Wilson JN, Bunz UHF, Murphy CJ. Preferential end-to-end assembly of gold nanorods by biotin?streptavidin connectors. J Am Chem Soc 2003, 125, 13914–13915
    12. Dujardin E, Mann S. Bio-inspired materials chemistry. Adv. Eng. Mater. 2002, 4, 461–474
    13. Shenton W, Douglas T, Young M, Stubbs G, Mann S. Inorganic-organic nanotube composites from template mineralization of tobacco mosaic virus. Adv. Mater.1999, 11, 253-256
    14. Nam KT, Kim DW, Yoo PJ, Chiang CY, Meethong N, Hammond PT. Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 2006, 312, 885–888
    15. Mao C, Solis DJ, Reiss BD, Kottmann ST, Sweeney RY, Hayhurst A. Virus-Based Toolkit for the Directed Synthesis of Magnetic and Semiconducting Nanowires. Science 2004, 303, 213–217
    16. Lee LA, Wang Q. Adaptations of nanoscale viruses and other protein cages for medical applications. Nanomedicine 2006, 2, 137–149
    17.徐耀先,周晓峰.分子病毒学.湖北科学技术出版社.武汉. 2000, vol. 1
    18. Stanley WM. Isolation of a crystalline protein possessing the properties of tobacco mosaic virus. Science 1935, 81, 644-645
    19. Kausche GA, Ruska H. The structure of the“crystalline aggregates”of the tobacco mosaic virus protein. Biochemische Zeitschrift 1939, 303, 221-230
    20. Harris JI, Knight CA. Action of carboxypeptidase on tobacco mosaic virus. Nature 1952, 170, 613-614
    21. Fraenkel-Conrat H, Williams RC. Reconstitution of active tobacco mosaic virus [TMV] from its inactive protein and nucleic acid components. Proceeding of the National Academy of sciences of the United States of Americal 1955, 41, 690-698
    22. Fraenkel-Conra H. The role of the nucleic acid in the reconstitution of active tobacco mosaic virus. Journal of the American Chemical Society 1956, 78, 882-883
    23. Tsugita A, Gish DT, Young J, Fraenkel-Conrat H, Knight CA, Stanley WM. The complete amino acid sequence of the protein of tobacco mosaic virus. Proceedings of National Academy of Sciences of the United States of America 1960, 46, 1463-1469
    24. Abel PP, Nelson RS, De B, Hoffmann N, Rogers SG, Fraley RT, Beachy RN. Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 1986, 232, 738-743
    25. Linsay SM. In Scanning Tunneling MicroscopeandSpectroscopy. Donnell DA. Ed. VHC, New York 1992, 335
    26. Zenhausern F, Adrian M, Emch R, Taborelli M, Jobin M, Descouts P. Scanning force microscopyand cryo-electron microscopy of tobacco mosaic virus as a test specimen. Ultramicroscopy 1992, 42, 1168-1172
    27. Thundat T, Zheng XY, Sharp SL, Allison DP, Warmash RJ, Joy DC, Ferrrell TL. Calibration of atomic force microscope tips using biomolecules. Scanning Microscopy 1992, 6, 903-910
    28. Zenhausern F, Adrian M, Ten Heggeler-Bordier B, Ardizzoni F, Descouts P. Enhanced imaging of biomolecules with electron beam deposited tips for scanning force microscopy. J. Appl. Phys. 1993, 73, 7232-7237
    29. Wadu-Mesthrige K, Pati B, McClain WM, Liu GY. Disaggregation of tobacco mosaic virus by bovine serum albumin. Langmuir 1996, 12, 3511–3515
    30. Keizer HM, Sijbesma RP. Hierarchical self-assembly of columar aggregates. Chem. Soc. Rev. 2005, 34, 226-234
    31. Bruckman MA, Niu ZW, Li SQ, Lee A, Varazo K, Nelson TL, Lavigne JJ, Wang Q. Development of Nanobiocomposite fibers by controlled assembly of rod-like tobacco mosaic virus. Nanotechnology 2007, 3, 31-39
    32. Bhyravbhatla B, Watowich SJ, Caspar DLD. Refined atomic model of the four-layer aggregate of the tobacco mosaic virus coat protein at 2.4-? resolution. Biophys. J. 1998, 74, 604-65
    33. Pattanayek R, Stubbs G. Structure of the U2 strain of tobacco mosaic virus refined at 3.5 Apolymerization. Langmuir 2007, 23, 6719-6724
    44. Bruckman MA, Niu ZW, Li SQ, Lee A, Varazo K, Nelson TL, Lavigne JJ, Wang Q. Development of Nanobiocomposite fibers by controlled assembly of rod-like tobacco mosaic virus. Nanotechnology 2007, 3, 31-39
    45. Klug A. The tobacco mosaic virus particle: Structure and assembly. Philosophical Transactions of the Royal Society B: Biological Sciences 1999, 354, 531–535
    46. Stubbs G. Fibre diffraction studies of filamentous viruses. Reports on Progress in Physics 2001, 64, 1389–1425
    47. Wadu-Mesthrige K, Pati B, McClain WM, Liu GY. Disaggregation of tobacco mosaic virus by bovine serum albumin. Langmuir 1996, 12, 3511–3515

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700