用户名: 密码: 验证码:
海—塔盆地开发区块断裂系统及对油水关系控制作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海塔盆地垂向上以大磨拐河组为界,可分为上、下两套断层体系,下部断层系规模大,上部断层系规模小。下部断层系与上部断层系剖面上构成典型“似花状”组合模式。海-塔盆地断裂三期强烈变形,Ⅰ期为铜钵庙组-南屯组沉积时期,形为典型的伸展变形期;Ⅱ期为伊敏组沉积晚期,为典型的张扭变形期;Ⅲ期为伊敏组沉积末期和青元岗组沉积末期,为挤压反转变形期。依据断裂变形的叠加关系,海塔盆地发育四套断裂系统:早期伸展断裂系统、中期张扭断裂系统、早期伸展中期张扭断裂系统和早期伸展中期张扭晚期反转断裂系统。依据断裂变形期与成藏关键时刻耦合关系,认为早期伸展断裂为典型的遮挡断裂;早期伸展中期张扭断裂尽管在成藏关键时刻活动,但由于在南屯组和大一段区域性泥质岩盖层内分段扩展,剪切型泥岩涂抹发育,具有较强的顶封能力,不是油源断层,依然是遮挡断层;早期伸展中期张扭晚期反转断裂在伊敏组沉积末期反转变形,活动性质改变导致早期形成的剪切型泥岩涂抹破裂,成为油气垂向运移的通道,但活动期晚于成藏关键时刻,因此是典型的调整断层。海塔盆地断圈划分为二型六类:即断圈和混合圈闭两种类型。依据砂地比展布规律认为,乌东南一段油藏北部和塔南铜钵庙组发育典型的断圈,油藏类型为断层遮挡油藏;乌东南一段油藏中部和南部为断圈和岩性的复合圈闭,油藏类型为构造-岩性油藏;贝中为断层复杂化的背斜圈闭,油藏类型为岩性-构造油藏。断层侧向封闭性影响断圈的含油性,基于典型封闭断层解剖,建立了断层面SGR与所能封闭的最大烃柱高度之间的定量关系,利用这种定量关系对乌东和塔南典型断圈所能封闭的最大烃柱高度和油水界面进行定量预测,预测的烃柱高度均小于圈闭的最大幅度,均为部分有效的圈闭。断裂对油水关系的控制表现在三个方面:一是早期伸展中期张扭晚期反转断裂调整作用,形成“互补型”分布模式,主力目的层普遍含水。二是断层侧向封闭性影响断圈的含油性,断层所能封闭的最大烃柱高度决定的油水界面与控圈断层之间为油区,油水界面与最大圈闭线之间为水区。三是断失作用常造成断层附近主力油层断失,普遍含水或为干层。乌东油藏受这三个因素影响,北部为构造油藏,有清晰的油水界面,近断层地区断失造成主力目的层断失,普遍含水。贝中发育3条调整断层,形成希2和希4两个南二段、希64-64一个大磨拐河组次生油藏区,南一段在这三条断层控制的区域含油性很差。塔南凹陷中西部主要发育断层遮挡型油藏,油水分布关系主要受断层侧向封闭能力的影响,每一断块均具有相对清晰的油水界面。
Haita basin is divided vertically into upper and lower sets of fault systems, the limiting strata is Damoguaihe group. The lower sets of fault have a large-scale. The upper sets of fault have a small-scale. The faults of Haita basin gone through Three strongly deformed, the period of phaseⅠwas Tongbomiao-Nantun deposition time, the period was typical extensional deformation. the period of phaseⅡwas Late Yimin group deposition time, the period was typical transtension deformation. the period of phaseⅢwas Late Yimin and Late Qingyuangang group deposition time, the period was typical Reverse deformation.In the light of overlying relationship of ruptural deformation ,the basin of Haita develop four suit of rift system:extensive rift system in early stage,tenso shear rift system in middle period,extensive rift system in early stage and tenso shear rift system in middle period, extensive rift system in early stage tenso shear rift system in middle period and inverted rift system in late time. In the light of the coupling relationship of the stage of ruptural deformation and the crucial moment of developing oil reservoir,we think that the extensive rift system is canonic screened rift;Although extensive rift system in early stage and tenso shear rift system in middle period acts in the crucial moment of developing oil reservoir. Because they expand sectionly in territorial argillaceous rock capping formation in Nantun group and D I group,the shear-type of clay daubing develop, It has sronger seal capacility in the peak. It is not the fault of oil source,but it is canonic screened fault as before; extensive rift system in early stage tenso shear rift system in middle period and inverted rift system in late time inverted in late depositional stage of Yimin group. The active nature change the fault of the shear-type of clay daubing in early stage,which makes it become a aisle of vertical migration of oil and gas.but the active stage was later than the crucial moment of developing oil reservoir, So it is typical regulate fault. Fault traps are divided to dichotypic and six types in Haita basin. On the basis of sand layer ratio distributing regular pattern, there are typical fault traps in the north of Nan 1 section reservoir which is fault shielding reservoir of Wudong and tongbomiao section of Tanan. the middle part and south of Nan 1 section reservoir which is structure -lithology reservoir are fault traps and lithological complexing traps. There are fault complexing anticlinal traps, which are lithology- structure reservoir. Fault lateral seal affect oiliness of fault traps. On the basis of dissection of typical sealed fault, establishing quantitative relation between face of fault SGR and highest hydrocarbon column. The maximal hydrocarbon height sealed by typical reservoirs in Wudong and Tanan area and OWC can be evaluated using this quantitative relation. All evaluated hydrocarbon height is smaller than the largest amplitude detector of reservoir indicating that all the reservoir is effective. The representation which faults controls the relation of oil and water is mainly in three aspects: First one is the fault modulation effect of extension in eraly stage, transtension in metaphase and inversion in advanced stage, which caused the oil being regulated from major target formations(FM Nan 1or Tongbomiao group) to FM Nan2 or Damoguaihe group forming "complementary" distribution pattern. So the major target formations general contain water. Second one is the oil-bearing property effected by lateral fault seal.It's the oil region between OWC determined by maximal height sealed by faults and reservoir-dominating faults, and It's the water region between OWC and maximal trap line. Third is that the faulted effect generally caused major target formations missing, and the layer mainlty contain water or is dry layer. Wudong reservoirs are effected by the three factors, the north is tectonic reservoirs owning clear OWC. Three adjusting faults developed in Beizhong forming subreservoirs (Xi2, Xi4 and Xi64-64). In this area, oil-bearing property is bad in FM Nan1. Faulted effect commonly exists forming several local water region near faults. Fault barrier reservoir mainly developed in middle-West of Tanan, and oil-water distribution relation is mainly effected by lateral fault seal capacity. Every fault block owns relatively clear OWC.
引文
[1]漆家福,夏义平,杨桥.油区构造解析[M].石油工业出版社,2004,25-59.
    [2] Wernicke B,Burchfiel B C. Modes of Extensional Tectonics[J]. Journal of Structural Geology,16:845-851.
    [3] Bally A W,Bernoulli D,Davis G A,et al.Listric Normal faults[A]. Oceanologica
    [4] Gibbs A D. Structural Styles in Basin Formation[A]. In:Tankard A J,Balkwill H R,Extensional Tectonics and Stratigraphy of the North Atlantic margins[C]. 1989,AAPG Memoir,46:81-93.
    [5] Gibbs A D. Linked Fault Families in Bbasin Formation[J]. Journal of Structural Geology,12:759-803.
    [6]漆家福,杨桥,童亨茂.构造因素对半地堑盆地层序充填的影响[J].地球科学,1997,22(6):603-608.
    [7] Glennie,Boegner. Sole pit inversion tectonics[A].In: L V Illing, G D Hobson,Petroleum geology of the continental shelf of Europe[C]:London, Institute of Petroleum,1981,110-120.
    [8] Cooper M A,G D Williams. Inversion Tectonics[C].Geological Society Special Publication,1989,44:375.
    [9] Williams G D,Powell C M,Cooper M A. Geometry and kinematics of inversion tectonics[A].In: Cooper M A, Williams G D eds.,Inversion Tectonics[C]. Geological Society Special Publication,1989,44:3-15.
    [10] McClay K R. Analogue Models of Inversion Tectonics[A].In: M A Cooper, Williams G D eds,Inversion tectonics[C]. Geological Society Special Publication,1989,44:41-59.
    [11] Mitra.Geometry and Kinematic Evolution of Enversion Structures[J]. AAPG,1989,77(7):1159-1191.
    [12] Withjack M O , Jamison W R. Deformation Produced by Oblique Rifting. Tectonophysics[J],1986,126:99-124.
    [13] Virginie Tron, Jean-Pierre Brun. Experiments on Oblique Rifting in Brittle Ductile Systems[J]. Tectonophysics,1991,188:71-84.
    [14] Olivier Dauteuil,Jean Pierre Brun. Oblique Rifting in A Slow-Spreading Ridge[J].Nature,1993,361:145-149.
    [15] O Dauteuil,J P Brun. Deformation Partitioning in A Slow Spreading Ridge Undergoing Oblique Extension: Mohns Ridge,Norwegian Sea[J].Tectonics,1996,15(4):870-884.
    [16]周建勋,漆家福.曲折边界斜向裂陷伸展的砂箱实验模拟[J].地球科学—中国地质大学学报,1999a,24(6):630-634.
    [17]周建勋,漆家福.伸展边界方向对伸展盆地正断层走向的影响—来自平面砂箱实验的启示[J].地质科学,1999b,34(4):491-497.
    [18] Clifton A E, Schlische R W, Withjack M O,et al. Influence of Rift Obliquity on Fault-Population Systematics: Results of Experimental Clay Models[J]. Journal of Structural Geology,2000,22:1491-1509.
    [19] Yossi Mart,Olivier Dauteuil.Analogue Experiments of Propagation of Oblique Rifts[J].Tectonophysics,2000,316:121-132.
    [20]周建勋,漆家福.伸展边界方向对伸展盆地正断层走向的影响-来自平面砂箱实验的启示[J].地质科学,1999,34(4):491-497.
    [21] Withjack M O,Jon Olson,Eric Peterson. Experimental Models of Extensional Forced Folds[J].AAPG,1990,74(7):1038-1054.
    [22] ChildsC,Easton S J,Vendeville B C,et al. Kinematic Analysis of Faults in A Physical Model of Growth Faulting Above a Viscous Salt Analogue[J]. Tectonophysics, 1993,228:313-329.
    [23] Child C,Watterson J,Walsh J J. Fault Overlap Zones within Developing Normal Fault Systems[J].Journal of Geological Society of London,1995,152:535-549.
    [24] Richard P. Experiments on faulting in a two-layer cover sequence overlying a reactivated basement fault with oblique-slip[J]. Journal of Structural Geology,1991,13(4):459-469.
    [25] Higgins R I,Harris L B. The Effect of Cover Composition on Extensional Faulting Above Re-activated Basement Faults:Results from Analogue Modeling[J].Journal of Structural Geology,1997,19(1):89-98.
    [26] McClay K R. Thrust Faults in Inverted Extensional Basin[A]. In:McClay K R.eds. Thrust Tectonics[C].London: Chapman and Hall,1992,91-104.
    [27] Joe Cartwright,David James,Al Bolton. The Genesis of Polygonal Fault Sistems: a review[A]. From:Van Rensbergen P,Hillis R R,Maltman A J,Subsurface sediment mob-ilezation[C].Geological society,London:Special Publications,2003,216:323-243.
    [28] Cartwright J A, Dewhurst D N. Layer-bound Compaction Faults in Fine Grained Sediments[J]. Geol. Soc. Am.Bull.,1998,110(10):1242-1257.
    [29] Lonergan L,Cartwright J,Jolly R. The Geometry of Polygonal Gault Systems in Tertiary Mudrocks of the North Sea[J]. Journal of Structural Geology,1998,20(5):529-548.
    [30] Stuevold L M,Faerseth R B,Arnesen N,et al. Polygonal Faults in the Ormen Lange field,offshore mid Norway[A].In:Van Rensbergen P.,Hiller R. R.,Maltman A. J.,et al..(eds)Subsurface sediment moblilization. Geological Society[C],London,Special Publication,2003,216:263-281.
    [31] Dewhurst D,Cartwright J A,Lonergan L. The Development of Polygonal Fault Systems by the Syneresis of Fine-grained Sediments[J].Marine and Petroleum Geology,1999a,16:793-810.
    [32] Verschuren M. An Integrated 3D Approach to Clay Tectonic Deformation[J]. Ph.D thesis,1992,Universiteit Ghent.
    [33] Watterson J, walsh J,nicol A,et al.. Geometry and Origin of a polygonal Fault System[J].Journal of the Geological Society,2000,157:151-162.
    [34] Higgs W G,McClay K R. Analogue Sandbox Modeling of Miocene Extensional Faulting in the Outer Moray Firth[A].From:Williams G.D.,Dobb A(eds) Tectonics and Seismic Sequence Stratigraphy[C].Geological Society Special Publication,1993,71:141-162.
    [35] Clausen J A , Gabrielsen R H , Reksnes P A , et al. Development of Intraformational(Oligocene-Miocene)Faults in the Northern North Sea: Influence of Remote stresses and Doming of Fennoscandia[J].Journal of Structural Geology,1999,21:1457-1475.
    [36] Barnett J A M,Mortimer J,Rippon J H,et al. Displacement Geometry in the Volume Containing a Single Normal Fault[J].AAPG,1987,71:925-937.
    [37] Brinker C J,Scherer G W. Sol-gel Science:the Physics and Chemistry of Gel processing[J]. Academic press,San Diego,1990,908.
    [38] Hennriet J P,De Batist M,Vaerenbergh W,et al. Seismic Facies and Clay Tectonic Features in the Southern North Sea[J]. Bulletin of the Belgian Geological Society. 1989,97:457-472.
    [39] Hennriet J P ,De Batist M,Merschuren M. Early Fracturing of Palaeogene Clays,Southernmost North Sea: Relevance to Mechanisms of Primary Hydrocarbon Migration[A]. In:Spencer,A M(ed.)Generation, Accumulation and Production of Europe’s Hydrocarbons[C]. Special Publication of the European Association of Petoleum Geologists, 1991,1.217-227.
    [40] Cartwright J A. Episodic Basin-wide Fluid Expulsion from Geopressured Shale Sequence in the North Sea Basin[J]. Geology,1994a,22:447-450.
    [41] Cartwright J A. Episodic Basin-wide Hydrofracturing of Overpressured Early Cenozoic Mudrock Sequences in the North Sea Basin[J]. Marine and Petroleum Geology,1994b,11(5):587-607.
    [42] Cartwright J A,L Lonergan. Volumetric Contraction During the Compaction of Mudrocks: a Mechanism for the Development of Regional-scale Polygonal Fault Systems[J]. Basin Research,1996,8:183-193.
    [43] N R Goulty. Mechanics of Layer-bound Polygonal Faulting in Fine-grainedSediments[J]. The Geological Society,2001,159:239-246
    [44] Watterson J.1986.Fault Dimensions,Displacements and growth[J]. Pure and Applied Geophysics,124:365-373.
    [45] Walsh J J,Watterson J. 1988.Analysis of the Relationship Between Displacements and Dimensions of Faults[J]. Journal of Structural Geology,10:239-247.
    [46] Cowiepa,Scholz C H.Displacements length Scaling Relationship for Faults:Data Synthesis and Discussion. Journal of Structural Geology,1992a 14:1149-1156.
    [47] Cowiepa,Scholz C H.Physical Explanation for the Displacements-length Relationship for Faults Using a Post-yield Fracture Mechanics Model[J].Journal of Structural Geology,1992b,14:1133-1148.
    [48] Xu Shunshan,Nieto-samanniego,Li Dongxu. Relationship Between Fault Length and Maximum Displacement and Influenced Factors[J].Earth Science Frontier,2004,11(4):567-573.
    [49] Young-Seog Kima,David J Sandersonb.The Relationship Between Displacement and Length of Faults:A Review[J].Earth-Science Reviews,2005,68:317-334.
    [50] Antonellini, M,Aydin A. Effect of Faulting on Fluid Flow in Porous Sandstones:Petrophysical Properties[J].AAPG Bull,1994,78:355–377.
    [51] Antonellini M, Avdin A. Effect of Faulting on Fluid Flow in Porous Sandstones:Geometry and Spatial Distribution.American Association of Petroleum Geologists Bulletin,1995,79:642-671.
    [52] Caine J S,Evans J P, Forster C B. Fault Zone Architecture and Permeability Structure. Geology,1995,24:1025-1028.
    [53] Gisbon R G.1998.Physical Character and Fluid-flow Properties of Sandstone Derived Fault Zones[A],in: Coward M P,Daltaban T S, Johnson H.(Eds.), Structural Geology in Reservoir Characterization[C], Geol. Soc. Lond. Spec. Publ. 127:83-97.
    [54] Kip Cerveny, Russell Davies, et al. Reducing Uncertainty With Fault-seal Analysis. Oilfield Review,2004,38-51.
    [55] Shipton,Cowie. Damage Zone and Slip-surface Evolution overμm to km Scales in High-porosity Navajo Sandstone[J],Utah. Journal of Structural Geology,2001,23:1825-1844.
    [56] Shipton, Cowie. A Conceptual Model for the Origin of Fault Damage Zone Structures in High-porosity Sandstone[J]. Journal of Structural Geology, 2003,25:333-344.
    [57] Fulljames J R,Zijerveld J J,Franssen RCMW.. Fault Seal Processes: Systematic Analysis of Fault Seals Over Geological and Production Time Scales[A]. In: Moller-Pedersen P K, Koestler A G(eds) Hydrocarbon Seals-importance for Exploration and Production[C]. Norwegian Petroleum Society. NPF Spec. Publ, 1997,7:51-59.
    [58] Bense V F, Van den Berg E H, Van Balen R T. Deformation Mechanisms and Hydraulic Properties of Fault Zones in Unconsolidated Sediments; the Roer Valley Rift System[J]. The Netherlands. Hydrogeology Journal, 2001,11: 319-332.
    [59] Heynekamp M R, Goodwin L B, Mozley P S, et al. Controls on Fault-zone Architecture in Poorly Lithified Sediments,Rio Grande Rift,New Mexico:implications for fault zone permeability and fluid flow[A]. In:Haneberg W C ,Mozley P S,Casey Moore J,Goodwin LB (eds) Faults and Subsurface Fluid Flow in the Shallow Crust[C]. Am Geophys Union AGU Geophys Monogr 1999,113:27–51.
    [60] Rawling G C, Goodwin L B, Wilson J L. Internal Architecture,Permeability Structure,and Hydrologic Significance of Contrasting Fault Zone Types[J]. Geology, 2001,27:43–46.
    [61] Weber,K J, Daukoru E. Petroleum Geology of Niger Delta: Ninth World Petroleum Congress Transactions[J].1975,2:209-221.
    [62] Smith D A. Sealing and Nonsealing Faults in Louisiana Gulf Coast Salt Basin[J]. AAPG Bullitin, 1980,64:145-172.
    [63] Pittman E D. Effect of Fault-related Granulation on Porosity and Permeability of Quartz Sandstones, Simpson Group (Ordovician),Oklahoma: AAPG Bullitin, 1981, 65:2381-2387.
    [64] Seeburger D A. Studies of Natural Fractures ,Fault Zones Permeability and a Pore Space Permeability Model[D]: Ph.D. thesis, Stanford University, Stanford,California,1981,243.
    [65] Seeburger D A, Aydin A, Warner J L. Structure of Fault Zones in Sandstones and its Effect on Permeability (abs): AAPG Bullitin, 1991,75:669.
    [66] Marc Holland,Janos L. Urai,Wouter van der Zee,et al. Fault gouge Evolution in highly Overconsolidated Claystones[J]. Journal of Structural Geology, 2006,28:323–332.
    [67]付晓飞,方德庆,吕延防,等.2005.从断裂带内部结构出发评价断层垂向封闭性的方法[J].地球科学,30(3):328-336.
    [68]付晓飞,宋岩,吕延防,等.塔里木盆地库车凹陷膏岩质盖层特征及与天然气保存[J].石油实验地质,2006,28(1):25-29.
    [69] Lindsay, N G. Outcrop studies of shale smears on fault surfaces[J].In:Murphy, F C, Walsh J J, Watterson J.(Eds.)[C], Special Publication of the International Association of Sedimentologists,1993,15:113.
    [70] Lehner F K, Pilaar W F. On a Mechanism of Clay Smear Emplacement in SynSedimentary Normal Faults[A]. In: Moller-Pedersen P, Koestler A G(eds) Hydrocarbon Seals: Importance for Exploration and Production[C].Elsevier, Amsterdam, NPF Spec Publ.,1997,7:39–50.
    [71] Fisher Q J,Knipe R J.The Permeability of Faults Within Siliciclastic PetroleumReservoirs of the North Sea and Norwegian Continential Shelf. Marine and Petroleum Geology,2001,18:1063-1081.
    [72] Bouvier J D, Kaars-Sijpesteijn C H, Kluesner D F,et al. Three-dimensional Seismic Interpretation and Fault Sealing Investigations, Nun River Field, Nigeria[J]. AAPG Bull. 1989,73:1397-1414.
    [73] Jev B I, Kaars-Sijpersteijn C H, Peters M P A M,et al.Akaso Field,Nigeria:use of Intergrated 3-D Seismic,Fault Slicing,Clay Smearing,and RFT pressure data on fault trapping and dynamic leakage[J].AAPG Bulletin,1993,77:1389-1404.
    [74] Constantin J,Peyaud J B,Verg_ely P,et al. Evolution of the Structural Fault Permeability in Argillaceous Rocks in A Polyphased Tectonic Context[J].Physics and Chemistry of the Earth,2004,29:25–41.
    [75]张义杰.2003.准噶尔盆地断裂控油的流体地球化学证据[J].新疆石油地质,24(2):100-106.
    [76]沈传波,李祥权,杜学斌.2003.流体包裹体在油田断裂研究中的某些应用[J].大庆石油地质与开发,22(4):4-6.
    [77]杨巍然,怅文推.1996.断裂性质与流体包裹体组合特征[J].地球科学,21 (3):285-290.
    [78]卢双舫,付广,王朋岩,等.天然气富集主控因素的定量研究[M].石油工业出版社,北京:2002,4-13.
    [79]华保钦.1995.构造应力场、地震泵与油气运移[J].沉积学报,13(2):77-85.
    [80]付广,吕延防,于丹.我国不同类型盆地高效大中型气田形成的主控因素[J].地球科学-中国地质大学学报,2007,32(1):82-88.
    [81] Sibson R H. Seismic Pumping Fydrothermal Fluid Transport Mechanism[J],Jour.Geol.Sci, 1975,131C6): 653-660.
    [82] Hooper E C D. Fluid Migration Along Growth Faults in Compacting Sediments[J]. Jour. Petrol. Geol,1991,4(2):161-180.
    [83]华保钦.构造应力场、地震泵与油气运移.沉积学报,1995,13(2):77-85.
    [84] ]Roberts S J,Nunn J A. Episodic Fluid Expulsion from Geopressured Sediments. Marine and Petroleum Geology,1995,195-204.
    [85] Roberts S, Nunn J, Cathles L,et al. Expulsion of Abnormally Pressured Fluids Along Faults[J]. Journal of Geophysical Research,1996,101(28):231-252.
    [86]闫福礼,贾东,卢华复.东营凹陷油气运移的地震泵作用[J].石油与天然气地质,1998,20(4),295-298.
    [87]邱楠生,金之钧.油气成藏的脉动式探讨[J].地学前缘,2000,7(4):561-567.
    [88]李明诚.对油气运聚研究中一些概念的再思考[J].石油勘探与开发,2002,29(2):13-16.
    [89] Losh S,Walter L,Meulbroek P,et al. Reservoir Fluids and Their Migration Into the South Eugene Island Block 330 reservoirs, Offshore Louisiana[J]. AAPG Bull.,2002,86(8):1463-1488.
    [90]郝芳,邹华耀,杨旭升,等.油气幕式成藏及其驱动机制和识别标志[J].地质科学,2003,38(3):413-424.
    [91]郝芳,邹华耀,方勇,等.断-压双控流体流动与油气幕式快速成藏[J].石油学报,2004,25(6):38-47.
    [92]解习农,王增明.盆地流体动力学及其研究进展[J].沉积学报,2003,21(1):19-23.
    [93]李明诚.石油与天然气运移研究综述[J].石油勘探与开发,2000,27(4):3-9.
    [94]李明诚.油气运移基础理论与油气勘探[J].地球科学,2004,29(4):379-383.
    [95] Hunt J M. 1990.Generation and Migration of Petroleum from Abnormal Pressured Fluid Compartment[J].AAPG Bull.,74(1):1-2.
    [96] Cartwright J A. Episodic Basin wide Fluid Expulsion from Geopressured Shale Sequence in the North Sea Basin[J].Geology, 1994,22(4):447-450.
    [97]罗晓容.油气初次运移的动力学背景与条件[J].石油学报,2001,22(6):24-29.
    [98]邓运华.断裂—砂体形成油气运移的“中转站”模式[J].中国石油勘探,2005,6:14-17.
    [99]赵孟军,王招明,张水昌,等.库车前陆盆地天然气成藏过程及聚集特征[J].地质学报,2005,79(3):413-422.
    [100] Hindle A D. Petroleum migration pathways and charge concentration:a three Dimensional Model[J]. AAPG Bulletin, 1997,81:1451-1481.
    [101]罗群,庞雄奇,姜振学.一种有效追踪油气运移轨迹的新方法—断面优势运移通道的提出及其应用[J].地质论评,2005,51(2):156-162.
    [102]周波,罗晓容,Didier LOG GIA,等.单个裂隙中油运移实验及特征分析[J].地质学报,2006,80(3):454-458.
    [103]宋岩,夏新宇,王震亮,等.天然气运移和聚集动力的耦合作用[J].科学通报,2001,46(22):1906-1910.
    [104]柳广弟,李剑,李景明,等.天然气成藏过程有效性的控制因素与评价方法[J].天然气地球科学, 2005,16(1):1-6.
    [105]付广,孙永河,吕延防.输导通道类型对天然气聚集效率的影响[J].地质论评,.2006,52(2):236-243.
    [106] Gox S. Faulting Progresses at High Fluid Pressures: An Example of Fault Valve Behavior from the Wattle Gully Fault,Victoria,Australia[J]. Journal of Geophysical Research 1995,100:12841-12859.
    [107] Steven L,Lorraine L.,Martin S.,et al. Vertical and Lateral Fluid Flow related to a Large Growth Fault. South Lugene Island Block 330 field , Offshore Louisiana[J].AAPG,1999,83:244-276.
    [108]姜振学,庞雄奇,曾溅辉,等.油气优势运移通道的类型及其物理模拟实验研究[J].地学前缘,2005,12(4):507-516.
    [109]吴胜和,曾溅辉,林双运,等.层间干扰与油气差异充注[J].石油实验地质,2003,25(3):285-289.
    [110]邱楠生,万晓龙,金之钧,等.渗透率级差对透镜状砂体成藏的控制模式[J].地球科学-中国地质大学学报,2003,30(3):48-52.
    [111]孙宝珊.铲(犁)式断裂控油模式概析[J].地质力学学报,1996,2(4):68-72.
    [112]姜素华,曾溅辉,李涛,等.断层面形态对中浅层石油运移影响的模拟实验研究[J].中国海洋大学学报,2005,35(2):245-248 .
    [113]邓运华.张—扭断裂与油气运移分析—以渤海油区为例.中国石油勘探,2004,2:33-37.
    [114]陈发景,田世澄.压实与油气运移[M].武汉:中国地质大学出版社,1989,156-160.
    [115] Knipe, R J. Juxtaposition and Seal Diagrams to Help Analyse Fault Seals in Hydrocarbon Reservoirs[J]. AAPG Bulletin 1997,81(2):187-195.
    [116] Knipe R J, Micromechanisms of Deformation and Fluid Behaviour During Faulting. The Mechanical Involvement of Fluids in Faulting[R]. USGS .Open-File Report 94- 228Report 1993,94-228,301-310.
    [117] Knipe R J,Jones G J,Fisher Q J. Faulting and Fault Sealing in Hydrocarbon Reservoirs:an Introduction[A]. In: Faulting and Fault Sealing in Hydrocarbon Reservoirs[C]. Geological Society, London. Special Publication, 1998,147 .
    [118] Smith D A. Theoretical Consideration of Sealing and Nonsealing Faults[J].AAPG,1966,50:363-374.
    [119] Allan U S. Model for Hydrocarbon Migration and Entrapment Within Fault-ed Structures. AAPG Bulletin,1989,73:803-811.
    [120] Ted Doughty P. Clay Smear Seals and Fault Sealing Potential of an Exhumed Growth Fault,Rio Grande Rift,New Mexico[J]. AAPG Bullitin,2003,3:427-444.
    [121] Aydin A,Johnson A,Development of Faults as Zones of Deformation Bands and as Slip Surfaces in Sandstone[J]. Pure and Applied Geophiscs. 1978,116:931-942
    [122] Clausen J A, Gabrielsen R H. Parameters that Control the Development of Clay Smear at Low Stress States:an Experiment Study Using Ring-shear Apparatus[J]. Journal of Structure Geology. 2002,24:1569-1586.
    [123]吕延防,张发强,吴春霞,等.断层涂抹层分布规律的物理模拟实验研究[J].石油勘探与开发,2001,28(1):30-32.
    [124] Sperrevik S, Faerseth R B, Gabrielsen R H. Experiments on Clay Smear Formation along Faults[J],Petroleum Geoscience, 2000,6:113-123.
    [125] Van der Zee W, Urai J L. Clay Injection into Normal Faults:First Results from Finite Element Modelling: European Geophysical Society XXIII General Assembly. Annales Geophysicae. 1998,16:268 .
    [126] Van der Zee W, Urai J L, Wibberley C,et al. The Evolution of Fault Zones in Layered Sequences: American Geophysical Union Abstracts FallMeeting.,1999,80:740.
    [127] Childs C,Walsh J J,Watterson J. Complexity in Fault Zone Structure and Implications for Fault Seal Prediction. In:Moller-Pedersen P, Koestler A G (Eds), Hydrocarbon Seals: Importance for Exploration and Production, Norwegian Petroleum Society. 1998,7:61-72.
    [128] Burhannudinnur M, Morley C K. Anatomy of Growth Fault Zones in poorly Lithified Sandstones and Shales: Implications for Reservoir Studies and Seismic Interpretations: Part 1,Outcrop Study[J]. Petroleum Geoscience. 1997,3:211-224.
    [129] Gibson R G. Fault-zone Seals in Siliciclastic Strata of the Columbus Basin, Offshore Trinidad[J]. AAPG Bulletin. 1994,78:1372-1385.
    [130] Yielding G,Freeman B,Needham D T.Quantitative Fault Seal Prediction[J].AAPG Bulletin,1998,81(6):897-917.
    [131] Knipe R J.Faulting processes,Seal Evolution,and Reservoir Discontinuities:An Integrated Analysis of the ULA Field,Central Graben,North Sea [A]:Abstracts of the Petroleum Group Meeting on Collaborative Research Program in Petroleum Geosciences between UK Higher Education Institutes and the Petroleum Industry,The Geological Society of London Newsletter,1992a.
    [132] Knipe R J.Faulting Processes and Fault seal[A],in:Larsen R M eds,Structural and Tectonic Modeling and its Application to Petroleum Geology[C]:Stavanger,NPF (Norwegian Petroleum Society),1992b:325-342.
    [133] Knipe R J . Fault Behavior in Hydrocarbon Reservoirs : Progress with Prediction[Z].来华讲学材料,2006a.
    [134] Knipe R J . Fault Behavior in Hydrocarbon Reservoirs : Progress with Prediction[Z].来华培训班材料,2006b.
    [135] Leveille,Knipe R J,et al.Compartmentalization of Rotliegendes Gas Reservoirs by Sealing Faults,Jupiter Fields area,Southern North Sea[C].Petroleum Geology of the Southern North Sea:Future Potential.Geological Society Publication,1997,123:87-104.
    [136]刘泽容,信荃麟,邓俊国,等.断块群油气藏形成机制和构造模式[M].北京:石油工业出版社,1998,16-23.
    [137]周新桂,孙宝珊,谭成轩,等.现今地应力与断层封闭效应[J].石油勘探与开发,2000,27(5):126-131.
    [138]童亨茂.断层开启与封闭的定量分析[J].石油与天然气地质,1998,19(3):215-220.
    [139]付广,于丹.苏仁诺尔断裂垂向封闭时空分布及其与油气聚集的关系[J].石油学报,2005,26(6):40-45.
    [140]万天丰,王明明,殷秀兰,等.渤海湾地区不同方向断裂带的封闭性[J].现代地质,2004,18(8):157-163.
    [141]付晓飞,吕延防,付广,等.库车坳陷北带逆掩断层在天然气运聚成藏中的作用[J].中国海上油气,2004,16(3):161-165.
    [142]付晓飞,吕延防,孙永河.库车坳陷北带天然气聚集成藏的关键因素[J].石油勘探与开发,2004,31(3):22-25.
    [143]付晓飞,杨勉,吕延防.库车坳陷典型构造天然气运移过程物理模拟[J].石油学报,2004,25(5):38-43.
    [144]付立新,王东林,肖玉永.伸展断层作用对油气二次运移的影响[J].石油大学学报(自然科学版).2000,24(4):71-74.
    [145]孙宝珊.铲(犁)式断裂控油模式概析[J].地质力学学报,1996,2(4):68-72.
    [146]贾东,卢华复,魏东涛,等.断弯褶皱和断展褶皱中的油气运移聚集行为[J].南京大学学报(自然科学),2002,38(6):747-755.
    [147]付晓飞,王朋岩,申家年,等.简单斜坡油气富集规律[J].地质论评,2006,52(4):522-531.
    [148]向才富,夏斌,解习农,等.松辽盆地西部斜坡带油气运移主输导通道[J].石油与天然气地质,2004,25(2):205-215.
    [149]万传彪,张莹.海拉尔盒地早白垩世沟鞭藻类和疑源类的发现及其意义[J].大庆石油地质与开发,1990,9(3):1-14.
    [150]刘振文,黄清华,叶得泉.海拉尔盆地介形类化石组合及其生物地层特征[J].微体古生物学报,2004,21(3):309-321.
    [151]张成,魏魁生.乌尔逊凹陷南部层序地层特征及成藏条件[J].石油学报,2005,26(2):47-52.
    [152]冯志强,任延广,张晓东.海拉尔盆地油气分布规律及下步勘探方向[J].中国石油勘探,2004,9(4):19-22.
    [153]李春柏,万传彪,乔秀云.海拉尔盆地海参1井伊敏组孢粉组合的地层意义[J].地层学杂志,2007,31(1):23-34.
    [154]雷燕平,林畅松,刘景彦.海拉尔盆地贝尔凹陷下白垩统层序地层与沉积体系分析[J].石油地质与工程,2007,21(5):11-15.
    [155]纪友亮,曹瑞成,蒙启安.塔木察格盆地塔南凹陷下白垩统层序结构特征及控制因素分析[J].地质学报,2009,83(6):827-835.
    [156]胡朝元.生油区控制油气田分布-中国东部陆相盆地进行区域勘探的有效理论[J].石油学报,1982,3(2).
    [157]胡见义.中国陆相石油地质理论基础[M].北京:石油工业出版社,1991.
    [158] Magoon L B, Dow W G. The prteoleum system. AAPG Memeroir 60, 1994,3-24
    [159]贾承造,魏国齐.中国中西部两期前陆盆地的形成及其控气作用[J].石油学报,2003,24(2):13-17.
    [160]赵文智.石油地质学综合研究导论[M] .北京:石油工业出版社,1999.
    [161]吴河勇,梁晓东,向才富等.松辽盆地向斜油藏特征及成藏机理探讨[J].中国科学(D辑),2007,37(2):185-191.
    [162]马新华,王涛.深盆气藏的压力特征及成因机理[J].石油学报,2002(23)5:23-27.
    [163]陈均亮,吴河勇,朱德丰.海拉尔盆地构造演化及油气勘探前景[J].地质科学, 2007,42(1):147-159.
    [164]张臣,吴泰然.内蒙古苏左旗南部早古生代蛇绿混杂岩特征及其构造意义[J].地质科学,1999 ,34(3):381-389.
    [165]李江海,钱祥麟.鄂尔多斯陆块周边孔兹岩系地层对比及其克拉通化意义[J].现代地质,1999,13(2):209-210.
    [166]任收麦,黄宝春.晚古生代以来古亚洲洋构造域主要块体运动学特征初探[J].地球物理学进展,2002,17(1):113-120.
    [167]李双林,欧阳自远.兴蒙造山带及邻区的构造格局与构造演化[J].海洋地质与第四纪地质,1998,18(3):45-54.
    [168]张兴洲.中国东北及邻区蓝片岩带的构造意义[J].长春地质学院地质研究所文集,1992.
    [169]徐公愉.东北亚地区古亚洲洋的构造演化特点[J].吉林地质,1993,12(3):1-7.
    [170]马醒华,杨振宇.中国三大地块的碰撞拼合与古欧亚大陆的重建[J].地球物理学报,1993,36(4):476-488.
    [171]郑亚东,宋官祥.河北崇礼县东坪含金石英脉构造分析[J].地质找矿论丛,1990,5(2):20-28.
    [172]叶德燎.松辽盆地东南隆起区下白垩统层序地层格架及油气成藏规律[J].地质科学,2008,40(2):227-236.
    [173]吴根耀,冯志强,杨建国.中国东北漠河盆地的构造背景和地质演化[J].石油与天然气地质,2006,27(4):528-526.
    [174]吴根耀.燕山运动和中国大陆晚中生代的活化[J].地质科学,2002,37(4):453-461.
    [175]王力,王可勇,葛文春.松辽盆地深层火山岩储层中的CH4包裹体:产状特征及其地质意义[J].岩石学报,2008,24(9):2171-2178.
    [176]高名修.晚新生代地壳构造运动研究[J].地质力学学报,2008,14(4):295-319.
    [177]胡望水,吕炳全,张文军.松辽盆地构造演化及成盆动力学探讨[J].地质科学,2005,40(1):16-31.
    [178] Virginie Tron, Jean-Pierre Brun. Experiments on Oblique Rifting in Brittle DuctileSystems[J]. Tectonophysics,1991,188:71-84.
    [179] Sperrevik S, Faerseth R B, Gabrielsen R H. Experiments on Clay Smear Formation along Faults[J],Petroleum Geoscience, 2000,6:113-123.
    [180] Van der Zee W, Urai J L, Wibberley C,et al. The Evolution of Fault Zones in Layered Sequences: American Geophysical Union Abstracts FallMeeting.,1999,80:740.
    [181]王燮培,费琪,张家骅.石油勘探构造分析[M].中国地质大学出版社,1990,25-80.
    [182]漆家福,夏义平,杨桥.油区构造解析[M].石油工业出版社,2004,25-59.
    [183]迟元林,云金表,蒙启安.松辽盆地深部结构及成盆动力学与油气聚集[M].北京:石油工业出版社,2002,10-80.
    [184] Withjack M O , Jamison W R. Deformation Produced by Oblique Rifting. Tectonophysics[J],1986,126:99-124.
    [185] Childs C,J Watterson and J J Walsh. Fault overlap zones within developing normal fault systems: Journal of the Geological Society,1995,152:535–549.
    [186] Olivier Dauteuil,Jean Pierre Brun. Oblique Rifting in A Slow-Spreading Ridge[J].Nature,1993,361:145-149.
    [187] Dauteuil J P Brun. Deformation Partitioning in A Slow Spreading Ridge Undergoing Oblique Extension: Mohns Ridge,Norwegian Sea[J].Tectonics,1996,15(4):870-884.
    [188]周建勋,漆家福.曲折边界斜向裂陷伸展的砂箱实验模拟[J].地球科学—中国地质大学学报,1999a,24(6):630-634.
    [189]周建勋,漆家福.伸展边界方向对伸展盆地正断层走向的影响—来自平面砂箱实验的启示[J].地质科学,1999b,34(4):491-497.
    [190] Clifton A E, Schlische R W, Withjack M O,et al. Influence of Rift Obliquity on Fault-Population Systematics: Results of Experimental Clay Models[J]. Journal of Structural Geology,2000,22:1491-1509.
    [191] Yossi Mart,Olivier Dauteuil.Analogue Experiments of Propagation of Oblique Rifts[J].Tectonophysics,2000,316:121-132.
    [192] Watterson J. Fault Dimensions,Displacements and growth[J]. Pure and Applied Geophysics,1986,124:365-373.
    [193] Walsh J J and J Watterson . Analysis of the relationship between displacements and dimensions of faults: JournalofStructuralGeology,1988,10:239–247.
    [194] Cowiepa,Scholz C H.Displacements length Scaling Relationship for Faults:Data Synthesis and Discussion. Journal of Structural Geology,1992,14:1149-1156.
    [195] Xu Shunshan,Nieto-samanniego,Li Dongxu. Relationship Between Fault Length and Maximum Displacement and Influenced Factors[J].Earth Science Frontier,2004,11(4):567-573.
    [196]沈华,李春柏,陈发景,尹微,张宁.伸展断陷盆地的演化特征——以海拉尔盆地贝尔凹陷为例[J] .现代地质,2005,19(2):287-294.
    [197] T. P. Harding and J. D. Lowell . Structural styles, their plate-tectonic habitats, and hydrocarbon traps in petroleum provinces. AAPG Bulletin, 1979, 63: 1016 - 1058.
    [198] Frank Bilotti and John H. Shaw.Deep-water Niger Delta fold and thrust belt modeled as a critical-taper wedge: The influence of elevated basal fluid pressure on structural styles.AAPG Bulletin, 2005, 89: 1475 - 1491.
    [199]李丕龙,张善文,寿利.陆相断陷盆地油气地质与勘探(卷一)———陆相断陷盆地构造演化与构造样式[M].北京:石油工业出版社, 2003:148-158.
    [200]戴俊生.油区构造分析[M] .北京:石油大学出版社,2002 .
    [201]付晓飞,方德庆,吕延防.从断裂带内部结构出发评价断层垂向封闭性的方法[J ].地球科学,2005,30(3):328-336.
    [202]云金表,罗笃清.乌尔逊断陷构造样式及其对圈闭类型的控制[J].大庆石油学院学报,1994,18(3):14.
    [203]杨凯歌,岳东明,何志国.川西地区陆相非构造圈闭类型划分及评价研究[J].2006,29(4):14-22.
    [204]邱旭明.苏北盆地真武吴堡断裂带的构造样式及圈闭类型[J].2005,27(3):278-295。
    [205]曹烈,沈忠民,安凤山.川西坳陷须家河组古圈闭类型及识别技术[J].2006,27(4):45-49.
    [206]吕延防,李国会,王跃文等。断层封闭性的定量研究方法[J].石油学报,1996,17(3):39-45.
    [207]付广,张靖,李庆章.断层侧向封闭模式及研究方法[J].中国海上油气(地质),1998,12(1):42-46.
    [208]吕延防,马福建.断层封闭性影响因素及类型划分[J].吉林大学学报(地球科学版),2003,33(2):163-166.
    [209]付广,曹成润,陈章明.泥岩涂抹系数及其在断层侧向封闭性研究中的应用[J].1996,23(6):38-41.
    [210] Knipe R J.Faulting processes,Seal Evolution,and Reservoir Discontinuities:An Integrated Analysis of the ULA Field,Central Graben,North Sea [A]:Abstracts of the Petroleum Group Meeting on Collaborative Research Program in Petroleum Geosciences between UK Higher Education Institutes and the Petroleum Industry,The Geological Society of London Newsletter,1992a.
    [211] Knipe R J, Micromechanisms of Deformation and Fluid Behaviour During Faulting. The Mechanical Involvement of Fluids in Faulting[R]. USGS .Open-File Report 94- 228Report 1993,94-228,301-310.
    [212] Knipe R J,Jones G J,Fisher Q J. Faulting and Fault Sealing in HydrocarbonReservoirs:an Introduction[A]. In: Faulting and Fault Sealing in Hydrocarbon Reservoirs[C]. Geological Society, London. Special Publication, 1998,147.
    [213] Weber,K J, Daukoru E. Petroleum Geology of Niger Delta: Ninth World Petroleum Congress Transactions[J].1975,2:209-221.
    [214] Lehner F K, Pilaar W F. On a Mechanism of Clay Smear Emplacement in SynSedimentary Normal Faults[A]. In: Moller-Pedersen P, Koestler A G(eds) Hydrocarbon Seals: Importance for Exploration and Production[C].Elsevier, Amsterdam, NPF Spec Publ.,1997,7:39–50.
    [215]李明诚.油气运移基础理论与油气勘探[J].地球科学,2004,29(4):379-383.
    [216]柳行军,刘志宏,冯永玖等.海拉尔盆地乌尔逊凹陷构造特征及变形序列[J].吉林大学学报(地球科学版),2006, 36(2):215~220.
    [217]付广,孟庆芬等。断裂对乌尔逊凹陷油气成藏与分布的控制作用。2005,12(1)油气地质与采收率.
    [218]李军生,林春明.反转背斜构造自生自储油藏成藏模式[J].石油学报,2006,27(2):34~37
    [219]吴亚东,沈华,张云绵.海拉尔盆地贝尔凹陷反转构造研究[J].石油地质,2006,5:26~30.
    [220]褚庆忠,王长江.含油气盆地反转构造与油气关系研究综述[J].天然气勘探与开发,2003,26(2):69~76.
    [221]刘志宏,万传彪,任延广等.海拉尔盆地乌尔逊-贝尔凹陷的地质特征与油气成藏规律[J].吉林大学学报(地球科学版),2006, 36(4):527~534.
    [222]罗群,姜振学,庞雄奇.断裂控藏机理与模式[M].北京:石油工业出版社,2007:41~43
    [223]侯启军,冯子辉,霍秋立.海拉尔盆地乌尔逊凹陷石油运移模式与成藏期[J].地球科学, 2004,29(4):397~403.
    [224]崔军平,任战利.海拉尔盆地乌尔逊凹陷油气成藏期次分析[J].西北大学学报, 2007,37(3):465~469.
    [225]付晓飞,潘国强,贺向阳.大庆长垣南部黑帝庙浅层生物气的断层侧向封闭性[J]石油学报.2009,30(5):678-684.
    [226]吕延防,马福建.断层封闭性影响因素及类型划分[J].吉林大学学报(地球科学版), 2003,(02):163-166.
    [227]赵文智,等.中国含油气系统基本特征与评价方法[M].北京:科学出版社, 2003
    [228]张晓东,刘光鼎.海拉尔盆地的构造特征及其演化[J].石油实验地质,1994,16 (2):119-127.
    [229]王青海,陈守田.海拉尔盆地油气勘探开发前景[J].中国石油勘探,2002 7(3):16-19.
    [230]冯志强,任延广,张晓东.海拉尔盆地油气分布规律及下步勘探方向[J].中国石油勘探,2004,9(4):19-22.
    [231]李清仁,陈守田,张财.海拉尔盆地的古河道砂体识别方法[J].石油地球物理勘探,2006,41(4):402-404.
    [232]田成,李艳军,曾卫东.海拉尔盆地贝尔凹陷储层成岩与储渗结构特征[J].地质科技情报,2004,23(4):83-87.
    [233]闫伟林,葛百成,鲁红.海拉尔盆地贝尔凹陷布达特群储层次生孔隙度确定方法[J].大庆石油地质与开发,2005,24(1):100-102.
    [234]李占,周件林,文华.海拉尔盆地贝西斜坡北部地区储层特征及影响因素分析[J].岩石矿物学杂志,2008,27(1):45-51.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700