用户名: 密码: 验证码:
地层深部流体流动电位实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究流动电位产生的原理可知,当高压水流注入地下时,地层水压力进行重新分配,将会同时伴随产生流动电位。我国二次采油一般都采用注水(气)的方式,有的油田甚至一次开采时就直接采用注水开采,在油田的三次开发中也广泛采用了聚合物驱油等向油层注液开采的方式。如果能利用注液产生的流动电位来推测储层流体的即时状态,则有望提高采油效率和节约综合采油费用。
     结合论文研究目的,首先介绍了流动电位现象研究的历史,探讨了流动电位产生的基本原理以及目前在国内外进行实际应用的现状。从文献可以看出,目前对流动电位法的研究主要考虑的对象大多是各种膜的动电现象,对于地下流体在流动过程中的流动电位现象虽然早有发现,但是尚处在定性研究阶段,在监测流体流态应用方面基本没有专门的讨论。
     论文对我国油田开发不同时期的开采方法进行了研究总结。通过研究我国三代油田开发方法的主要技术及其各自的驱油原理,提出二代的注水和注气驱油,以及三代的聚合物驱油、碱水驱油、微生物驱油、热水驱油等方法实质上都是属于将各种注入液(流体)在压力作用下从油层(固体)中通过的流体流动方式采油。结合流动电位产生的基本原理提出了只要是采用了将流体注入油层驱替石油的方式,都可能产生流动电位,也就都有可能使用流动电位法来进行流体流态的监测。
     研究我国油藏的基本特点后可知,油藏储层可以划分为裂缝控制、断层控制、非渗透性层控制、层理构造控制、渗透率韵律性控制、孔隙结构控制的六种非均质储层类型。研究当前我国推测油藏状态的主要方法后可知,目前各油田由于储层的非均质性、岩性的复杂性以及注入水的变化和水淹状况差别较大,给我国常用的测井技术带来严重困扰。但是这些大量分布的非均质储油层,注液时很容易产生流动电位,给流动电位法的应用提供了物理条件。论文讨论了油藏开发过程中的流动电位现象产生的基础理论。注水采油时,在断层裂隙、非均质性储层以及高压注水等因素的控制下,注入流体在不同层段间推进不均衡,油藏内部原来静态的压力系统变成了动态压力系统,这些现象均可以产生流动电位。讨论了影响地层中流体流动电位的三个主要因素:储层地质结构、压力异常、地层水矿化度。提出对流动电位法的定量研究是今后流动电位法实际应用前必须经过的环节。
     论文对流动电位定量研究实验测试系统相关的影响因素进行了讨论。为较好的拟合实验条件和实际地层条件,本文简要研究了我国实际油田的主体岩性、地层水矿化度、注入液矿化度等状况,确定了室内实验的岩心采用我国油藏的主体岩性砂岩,饱和岩心溶液和注入液矿化度采用蒸馏水和20-32500mg/L的盐水溶液及稀油,结合将来流动电位法应用的实际背景条件和室内实验的目的以及相关影响因素,设计了与油藏开发条件匹配的室内岩石流动电位基础实验测试系统,推出了实验系统平台,介绍了实验测试设备的组成部分。
     利用实验平台对选定的岩心进行了多种工况的流动电位室内测试实验。
     论文首先进行了变注入压条件下的流动电位测试实验。简要介绍了实验的基本步骤,详细给出了岩心前处理的过程。由于所有的实验均在日本进行,对Berea砂岩(来自美国某油田)进行实验的工况是分别采用稀油和浓度为20、200、2000、20000mg/L的盐水溶液饱和岩心,第一步采用和饱和岩样浓度一样的盐水注入岩心进行测试实验,第二步采用蒸馏水注入岩心实验。注入压设定为0、200、400、600、800、1000kpa阶段上升,围压采用实际地层压力20MPa。对实验结果进行了计算分析,算出了不同矿化度条件下Berea砂岩的流动电位系数。
     论文对日本某油气田的Tako砂岩也进行了流动电位测试实验,实验工况是分别采用蒸馏水、稀油和矿化度为200、2000mg/L的盐水溶液饱和岩心,每个阶段实验采用和饱和岩样浓度一样的盐水注入岩心。注入压设定为0、300、550、800、1050kpa进行压力分段上升实验,围压采用实际地层压力20MPa。对Tako砂岩的实验结果也进行了计算分析,算出了不同矿化度条件下Tako砂岩的流动电位系数。
     论文对Berea砂岩和Tako砂岩的实验结果进行了计算对比,并对两种岩心进行了切片显微镜对比。
     从变注入压条件下的室内流动电位测试实验的结果可以看出:
     ①随注入压的阶段增大,流动电位呈阶段性增大,两者具有良好的相关性。
     ②当注入压力变为0的时候,流动电位也同时变为0。
     ③随着注入岩心溶液的电阻率降低(矿化度增大),流动电位变化幅度也降低。
     ④使用同饱和岩心一样矿化度的注入溶液与使用蒸馏水注入相比,流动电位差别不大。
     ⑤用油饱和岩心的实验中,各个阶段流动电位的平均值和压力变化的相关性也很明显。
     ⑥用油饱和岩心的实验中,用蒸馏水注入比用油注入有更大的流动电位产生。
     通过对比研究认为,在中砂岩和粗砂岩中,流体注入时产生的流动电位现象都较明显。限于论文中所有的实验都在日本进行,未能采用我国实际油田砂岩岩心进行实验。今后如果可以对我国不同油藏区域,不同孔隙率的砂岩进行大量的实验统计,对于某一固定油藏区域,即可以利用采集到的流动电位数据和室内实验计算的流动电位系数关系,较快的推算出某一特定区域的压力分布情况,可以有效指导地面采注工作。
     论文还进行了定注入压条件下的流动电位测试实验。岩心采用美国的Berea砂岩,饱和岩心的溶液使用稀油和1000mg/L(近似淡水)、6000mg/L(中等矿化水)、32500mg/L(高矿化度)三种矿化度的NaCl溶液,岩心注入液全部采用蒸馏水,每次测试实验使用的注入压是不同的定值,分别进行数小时的蒸馏水注入实验。观测在定注入压条件下,从注入流体开始到岩心内部孔隙水被全部置换的过程中,电阻率和流动电位变化的情况。
     通过对复杂工况组合条件下大量的实验结果进行解析处理,计算出了注水停止前后的流动电位,并算出了流动电位耦合系数Cc。分析定注入压实验结果,可知:
     ①在蒸馏水注入置换岩心孔隙水的过程中,电阻率增大,在一定的注入压力条件下,流动电位逐渐变大。
     ②当岩心中的孔隙水被注入的蒸馏水全部置换完毕,电阻率停止变化时,仍然有一定的流动电位发生,注入压变为零时,流动电位迅速降低到0。
     综合室内实验结果,论文对流体流动电位发生的机理进行了推测:
     ①向岩心注入溶液开始时(实验开始的几分钟),向岩心内渗透很小的流量时,岩心的电阻率几乎不变,却渐渐产生了和注入压力有一定比例关系的流动电位。当注入压变为一个定值时,对应发生的流动电位也是一个定值。
     ②继续注入溶液,随着流量的增大,岩心内的孔隙水慢慢被注入溶液(蒸馏水)置换,电阻率也随着逐渐增大。受溶液电阻率增大的影响,流动电位也慢慢变大。
     ③当岩心内部的孔隙水被注入溶液置换完毕后,电阻率的变化也随即停止,同时产生了和注入压有一定比例关系的流动电位。当注入压力成为一个定值时,流动电位也变为一个定值。
     为探讨野外作业中流动电位法使用的可行性,在日本某野外区域进行了小规模地层条件下流动电位注水实验,探讨野外作业中流动电位法使用的可行性。野外地下注水流动电位测试实验注水孔深度为21.6m,注入水压为0.23MPa,注入流量为1441/分,共注水16分钟,注入水为淡水,实验采集到了1.5mV的流动电位。
     从野外流动电位测试实验结果可以看出:
     ①注水开始时,注水孔周围产生明显的流动电位,随着离注水孔距离的加大,流动电位变小;
     ②在注水开始时流动电位最大,随着时间的延长流动电位逐渐衰减;
     ③注水结束后,仍然可以看到流动电位,这是由于地表的注水虽然已经结束,但是水流在水头的压力下,仍然在进行地下水平衡状态的调整,仍然在流动。
     室内外流动电位测试实验,研究了注入压力与注入溶液矿化度和流动电位产生的相互关系。计算出了相关岩石不同矿化度下的流动电位系数,为野外实际石油开发的高精度化、高效率化的实现奠定了一定的量化评价基础。
     研究大量室内实验的结果和小规模野外注水实验的结果,可以认为地层中流体流动电位的变化是地下流体进行压力分配的直接表现,在地面采集地下流体流动电位变化的数据,结合实验分析和数据的解析处理可以了解流动电位变化的规律。科学利用地下流体由于压力变化产生流动电位这一现象,就可以对地下流体的流动状态进行有效的监测。流动电位法为我国的油藏测井技术提供了一种新的思路,在监测地下流体流态方面应用前景广泛。
According to literature view, water pressure inside stratum tends to reallocate with appearance of streaming potential when inject high pressure water. High-pressure water injection is widely used in secondary oil recovery, sometimes even in first oil exploitation, while high pressure polymer injection is used in third oil recovery. So if the real-time status of reservoir fluid can be monitored and calculated by the streaming potential of injection fluid, it could improve the exploitation efficiency and save exploitation cost.
     This thesis, firstly, introduces the research history of streaming potential, and then discusses the basic principle and application situation of streaming potential in the world. According to literature view, current researches are focus on electro-kinetic phenomena of different fluid envelope, while the streaming process of potential is still on qualitative status without technical application study on streaming potential monitor.
     This thesis summary the used approaches and responding principle on oil exploration at different times over three epochs, and then found that water and gas injection approach used in second generation and polymer, alkali water, microorganism, hot water and so on, injection approach used in third generation apply the same principle that the pressure caused by fluid injection accelerate the rate of fluid flow. Combing the basic principle mentioned above and literature view, thesis points out that any fluid injection to oil layer will lead to streaming potential, which means potential monitors could be used to track the streaming behavior.
     Oil reservoirs were divided into six groups in China, crack-controlled, fault-controlled, impervious-controlled, bedding structures controlled, Permeability rhythmic controlled, pore structure controlled. However, due to no uniformity, complexity, injection variation and water out behavior, there are lots of technical problems with oil explorations in China. Injection in reservoir heterogeneity tends to generate streaming potential, which is suit for application of streaming potential monitor approach. Inhomogeneous of fluid streaming in different layers and transition from static pressure to kinetic pressure usually lead to streaming potential, during oil exploration by water injection. Three primary factors are discussed in this thesis, which are geologic framework of oil reservoir, unusual pressures, reservoir water salinity separately. What's more, quantitative research on streaming potential monitor lays groundwork for future application.
     Factors relative to testing system of streaming potential monitor were discussed firstly. In order to match the testing condition to real oil layer status, this thesis lists the major litho characters, reservoir water salinity, injected fluid salinity to make sure sandstone as testing sample, distilled water and 20-32500mg/L as SPG. What's more, streaming potential testing system for oil exploration was designed in term with application background, testing aim and corresponding factors, which includes of testing bed and testing equipment.
     Firstly, Streaming potential testing was carried out with different injection pressure. This thesis introduces the testing procedure and then gives the detailed process of core sample handling. Berea sandstone, as testing sample, is from certain oil field of USA, and testing conditions were saturated salt with 20,200,2000,20000mg/L concentration. While, injection pressure was 0, 200,400,600,800, 1000kpa separately with constant ambient pressure 20MPa. Streaming potential coefficient of Berea sandstone with different mineralization will be available based on testing result analysis.
     Then, Tako sandstone from a oil field in Japan was testing in this research with testing condition oil, distilled water,200,2000mg/L saturated salt concentration,0,300,550,800, 1050Kpa increasing injection pressure and 20MPa ambient pressure. The final streaming potential coefficient was developed according to analysis on testing result. Next, this thesis compares the testing result between Berea sandstone and Tako sandstone.
     The results of in-door streaming potential testing with different injection pressure show the following characters:
     1. The increasing trend of streaming potential shows a closed relativity to increasing injection pressure.
     2. When injection pressure declines to 0, the streaming potential goes down to 0.
     3. The variation rate declines with electrical resistivity decreasing of core sample.
     4. Streaming potential shows litter change between the fluid injection and distilled water for same saturated core sample.
     5. The average value of streaming potential shows obvious relativity to pressure variation in the core sample with saturated oil.
     6. Distilled water injection generates lager streaming potential than oil in the core sample with saturated oil.
     In term with comparative analysis between medium-sandstone and grit sandstone, it believe that they present similar distinct streaming potential during fluid injection. However, all of these tastings were carried out in Japan and none one core sample is from China, so the next researches could be carried out in China with sandstone samples from different oil fields in order to collect relative statistical data, which help engineer and designer calculate the pressure distribution by streaming potential monitor.
     What's more, constant injection pressure testing is also carried out with thin oil,1000,6000, 32500mg/L as core-saturation fluid, distilled water as injection fluid. What's more, the injection pressure was different during several hours' injection process. This testing recorded all of the variation data both of electric resistivity and streaming potential from intact status to thorough going replacement of pore water inside core sample.
     The streaming potential value and coupling coefficient after stopping injection can be calculated by means of analytic data process on abundant of testing result with different test condition. The following shows the analysis result:
     1. The electrical resistivity increases during the pore water replacement process and the streaming potential shows the same trend under one injection pressure.
     2. After the pore water have been completely replaced by distilled water, the variation of electrical resistivity stopped immediately. However, the streaming potential still kept changing.
     Based on in-door testing results, thesis evaluates the generation mechanism of streaming potential as following:
     1. Electrical resistivity shows little change due to lesser permeability during the testing beginning. However, with the increasing injection pressure, the streaming potential rises obviously. When the sample is getting to be saturated, the injection pressure is up to maximum and streaming potential tends to be a constant.
     2. With the increasing injection volume, pore water inside sample was replaced step by step, which leads to variation of electrical resistivity. What's more, streaming potential is also increasing due to electrical resistivity.
     3. After the pore water inside sample has been completely replaced by injection fluid, the electrical resistivity of sample stops changing while generates a streaming potential relative to injection pressures.
     With the objective to validate application of streaming potential methods, out-door water injection testing was carried out in certain suburb in Japan. The depth of testing hole is 21.6m, with 0.23MPa injection pressure. Freshwater injection process lasted 16 minutes with 1441/min throughput. In this testing, streaming potential showed 1.5mv.
     Followings are conclusions of out-door testing:
     1. At the beginning of water injection, the injection area shows obvious streaming potential, and then the streaming potential declines with the increasing injection distance.
     2. Streaming potential is up to peak at the beginning water injection and then declines.
     3. Streaming potential is still existed after water injection process. It is believed the reason is that the balance procedure of underground water hasn't stopped due to the pressure head after water injection.
     The relationship between injection pressure, salinity of injection fluid and streaming potential was analyzed in both of in-door and out-door testing. The streaming potential coefficients with different salinity can be calculated, which lays the ground work for high precision and efficiency of oil exploration.
     It is proved that the variation of streaming potential of fluid inside stratum directly results from the variation of fluid pressure distribution according to masses of in-door testing results and some of out-door testing results. This relationship can be developed by data collection, data analysis and evaluation. Furthermore, the relationship between pressure and streaming potential assists us to monitor the moving condition of underground fluid. The streaming potential monitor method presents a new idea for oil exploitation technique with bright future prospects.
引文
1.窦之林.王贇译.油气藏工程原理.北京:科学出版社.2009.
    2.庞巨丰.李长星.施振飞.庞鲁蒙.测井原理及仪器.北京:科学出版社.2008.
    3.赵培华.油田开发水淹层测井技术.北京:石油工业出版社.2003.
    4.金琉荪.隋新光等.陆相油藏开发论.北京:石油工业出版社.2006.
    5.廖久明.邱奎.温守东.石油化学.北京:中国石化出版社.2009.
    6.原海涵.流动电位的理论公式.西安石油学院学报.1993.8(3):17-23
    7.王建.营爱玲.王晓琳.表界面现象及双电层模型.连云港化工高等专科学校学报.2000.13(1):13-15
    8. Ahmad.M.U.A laboratory study of streaming potentials. Geophys Prospect.1964.12.49-64
    9. Somasundaran.P and R.D.Kulkarni. A new streaming potential apparatus and study of temperature effects using it. J.Colloid Inter-face Sci.1973.45.591-600
    10. Bogoslovsky.v and Ogilvy.A.Application of Geophysical Methods for Studying the Technical Status of Earth Dams. Geophysical Prospecting.1970.18.758-773
    11. Corwin.R. and Hoover. D. The Self-Potential Method in Geothermal Exploration. Geophysics.1979.44.226-245
    12. Scholz. C:H. L.R.Sykes. and Y.P.Aggarwal. Earthquake prediction:A physical basis. Science. 1973.181.803-810
    13. Bogoslovsky.V.A and A.A. Ogilvy. Natural potential anomalies as a quantitative index of the rate of seepage form water reservoirs. Geophys. Prospect.1970.18.261-268
    14. Bogoslovsky.V.A and A.A. Ogilvy. The study of streaming potentials on fissured media models. Geophys. Prospect.1972.20.109-117
    15. Chandler. R. Transient streaming potential measurements on fluid saturated porous structures:An experimental verification of Biots slow wave in the quasi-static limit. J.Acoust.Soc.Am.1981.70.116-121.
    16. Massenet.F.and V.N.Pham. Mapping and surveillance of active fissure zones on a volcano by the self-potential method. Etna. Sicily. J.Volcanol.Geotherm. Res.1985.24.315-338
    17. Massenet.F and V.N.Pham. Experimental and theoretical basis of self-potential phenomena in volcanic areas with reference to results obtained on Mount Etna(Sicily). Earth Planet. Sci. Lett.1985.73.415-429
    18. Corwin.R.F. and D.B.Hoover. The self-potential method in geothermal exploration. Geophysics.1979.44.226-245
    19. Morgan.F. Williams. E.and Madden. T. Streaming Potential Properties of Westerly Granite with Applications. Journ.Geophys.Res.1989.94.12449-12461.
    20. Benoit Lorne. Jean-Philippe Avouac. Properties of the electrical double layer from crushed rock samples. Journal of geophysical research.1999.104.17857-17877
    21. Jouniaux.L. Bernard.M. Pozzi. J.and Zamora. M. Electrokinetic in Rocks.Laboratory Measurements in Sandstone and Volcanic Samples. Phys.Chem. Earth (A).2000.25.4. 329-332
    22. Marquis.G. Darnet. M.and Sailhac.P. Monitoring the Electric Potential. During the 2000 Hydraulic Stimulation:Results and Perspectives. Document Soultz. IPG Strasbourg. 2002.UMR7516.
    23. Vichabian.Y. and Morgan. F. Self Potentials in Cave Detection.The Leading Edge.2002. September.866-871.
    24. Zohdy.A.A.R. L.A.Anderson. and L.J.P.Muffler. Resistivity self-potential and induced-polarization surveys of a vapor-dominated geothermal system. Geophysics. 1973.38.1130-1144.
    25. Pruess. K. TOUGH2-A General Purpose Numerical Simulator for Multiphase Fluid and Heat Flow. Lawrence Berkeley Laboratory Report.1991.LBL29400.
    26. Revil.A. and P.W.J.Glover. Theory of ionic-surface electrical conduction in porous media. phys.rev.B.Condens. Matter.1997.55.1757-1773
    27. Sprunt. E.S. T.B.Mercer. and N.F.Djabbarah. Streaming potential from multiphase flow. Geophysics.1994.59.707-711
    28. Kawakami. N. etTakasugi. S.SP Monitoring During the Hydraulic Fracturing Using the TG-2 Well. Extended Abstracts of Papers.EAGE-56th Meeting and Technical Exhibition. Florence.Italy.1994.1004.
    29. Hashimoto. T. and Y.Tanaka. A large self-potential anomaly on Unzen volcano.shimabara peninsula. Kyushu island. Japan. Geophys. Res. Lett.1995.22.191-194
    30. Ishido.T.and H.Mizutani. Experimental and theoretical basis of electrokinetic phenomena in rock-water systems and its applications to geophysics. J.Geophys.Res.1981.86.1763-1775
    31.姜汉桥.姚军.姜瑞忠.油藏工程原理与方法.山东东营:石油大学出版社.2003.
    32.张亚萍.荷电膜的动电现象研究.中国科学技术大学博士学位论文.2006.
    33. Reuss.Memoires de la Societe ImPeriale de Naturalistes de Moscou.1809.2.327.
    34. S.Sdukhin.BV.Derjaguin. Surface and Colloid Science. London:Wiley-Interscience Publication.1974.7.
    35. J.Lyklema.Fundamentals of Interface and Colloid Science.:Solid-Fluid Interface. London: Academic Press.1995.11
    36. Davis.J.A James.R.O., and Leckie, J. O.:Surface ionization and complexation at the oxide /water interface, J. Colloid Interface Sci.,1978.63,480-499.
    37. Fitterman.D.V.Electrokinetic and magnetic anomalies associated with dilatants regions in a layered earth. J.Ggophy.Res.1978.83.5923-5928.
    38.蔺爱国.刘培勇.刘刚等.膜分离技术在油田含油污水处理中的应用进展.工业水处理.2006.26(1):5-8.
    39.蔺爱国.张国忠.刘刚.改性聚四氟乙烯膜在油田含油污水处理中的动电现象.石油学报.2007.23(6):66-69
    40.叶楠.王志.赵之平等.膜形态.膜污染和浓差极化对流动电位的影响.化工学报.2002.53:447-451
    41.叶楠.膜流动电位测试技术及其应用研究.天津大学.硕士学位论文.2002.
    42.王建.王晓琳.流动电位法研究聚烯烃微孔膜在电解质溶液中的动电现象.高校化学工程学报.2003.17.(4):372-376.
    43.王建.王晓琳.聚丙烯腈超滤膜流动电位的测定.淮海工学院学报.2002.11(1):38-41.
    44.王建.王晓琳.膜动电现象的研究进展.水处理技术.2002.28(6):311-315
    45.王建.周洪英.王明艳等.流动电位法对降温结晶过程的研究.人工晶体学报.2005.34(3):557-561
    46.莫剑雄.刘淑敏.膜流动电势的有关理论及测验方法.水处理技术.1991.17(3):153-161
    47.汪勇.范云双.杜启云.荷正电膜的研究.天津工业大学学报.2000.20(1):79-82
    48.王薇.李国东.杜启云.流动电位法表征纳滤膜的表面动电特性.材料导报.2008.22(8):131-135
    49.朱孟府.苏建勇.张建飞.微孔滤膜流动电位测量的影响因素研究.水处理技术.1994.2:90.
    50. Tongwen Xu. Rongqiang Fu. and Lifeng Yan. A new insight into the adsorption of bovine serum albumin onto porous polyethylene membrane by zeta potential measurements. FTIR analyses. and AFM observations. Journal of Colloid and Interface Science 2003.262. 342-350
    51.李昭成.杨桂花.纸和造纸.流动电位法Zeta电位仪的测量原理及使用性能.2002.4:29-30
    52.房孝涛.王怡俊.孙久军.基于流动电位法纸浆Zeta电位检测方法的研究.西南造纸.2006.35(3):41-42
    53.钟声.骨流动电位研究.天津:天津大学.2008.
    54.罗海宁.姚海林.詹碧燕.程昌炳.土柱在压应力作用下端面间电位差发生的研究.岩石力学与工程学报.2000.19(2):246-249
    55.汪锰.安全福.吴礼光.莫剑雄.膜Zeta电位测试技术研究进展.分析化学.评述与进展.2007.35(4):605-610
    56.汪锰.吴礼光.莫剑雄.郑幸存.高从增.平流式流动电位测试系统的研制.分析化学.仪器装置与实验技术.2006.34(10):1507-1510
    57.房文静.关继腾.王殿生.用毛管电动—水动力学模型研究储层的流动电位.测井技术.2000.24(2):92-95
    58.汪益.陈振标.驱替过程中的岩石电阻率实验研究.内蒙古石油化工.2007.9:87-88
    59.黄导武.刘建新.海上油气田油气水层自然电位特征及机理浅析.测井技术.2006.30(2):165-194
    60.杨春梅.李洪奇.陆大卫.张方礼.油田开发过程中的动电现象研究.地球物理学进展.2005.12.(20)4:1140-1144
    61.姜恩承.王敬农.孙宝佃.曾花秀.电化学测井理论研究及其应用的新进展.测井技术.1999.23(4):258-263.
    62.韩学辉.匡立春.何亿成.岩石电学性质实验研究方向展望.地球物理学进展.2005.20 (2):348-356
    63. K.Kim and A.Fane. Evaluation of electroosmosis and streaming potential for measurement of electric charges of polymeric membrane.J. Membrane Sci.116.1996.149
    64. H.K. Shon. S. Vigneswaran. In S. Kim. J. Cho. H.H. Ngo. Effect of pretreatment on the fouling of membranes:application in biologically treated sewage effluent. J. Membrane Sci.234.2004.111-120
    65. V.V. Berezkin. V.I. Volkov. O.A. Kiseleva.N.V. Mitrofanova. V.D. Sobolev. Electrosurface properties of poly(ethylene terephtalate) track membranes. Advances in Colloid and Interface Science 104.2003.325-331
    66. Ryosuke Takagi. Midori Hori. Keiko Gotoh. Mieko Tagawa. Masayuki Nakagaki. Donnan potential and-potential of cellulose acetate membrane in aqueous sodium chloride solutions. J. Membrane Sci.170.2000.19-25
    67. Johan Schaep. Carlo Vandecasteele. Evaluating the charge of nanofiltration membranes. J. Membrane Sci.188.2001.129-136
    68. M. Pontie. C.K. Diawara. M. Rumeau. Streaming effect of single electrolyte mass transfer in nanofiltration:potential application for the selective defluorination of brackish drinking waters. Desalination 151.2002.267-274
    69. Isabel C. Escobar. Donald B. White. Effects of water chemistries and properties of membrane on the performance and fouling-a model development study. Journal of Membrane Science 238.2004.33-46
    70. J. Lukas and K. Richau.Surface Characterization of polyelectrolyte complex membranes based on sodium cellulose sulfate and various cationic components. J. Membrane Sci. 131.1997.39
    71. J M M. Peeters. Characterization of nanofiltration membranes by streaming potential measurements.Colloids and Surface A:Physicochemical and Engineering Aspects.1999. 150.1-3:247-259.
    72. S.Condom.S.Chemlal.W.Chu.M.Persin.A.Larbot.Correlation between selectivity and surface charge in cobalt spinel ultrafiltration membrane. Separation and Purification Technology 25.2001.545-548
    73. M.J. Ariza. A.Canas. J. Malfeito. J.Benavente. Effect of pH on electrokinetic and electrochemical parameters of both sub-layers of composite polyamide/polysulfone membranes. Desalination 148.2002.377-382
    74. J.Benavente. G.Jonsson. Effect of adsorbed protein on the hydraulic permeability. membrane and streaming potential values measured across a microporous membrane. Colloids and Surfaces A:Physicochemical and Engineering Aspects 138.1998.255-264
    75. A.Martyn. F.Martynez. J. Malfeito. L. Palacio. P. Pradanos. A. Hernandez. Zeta potential of membranes as a function of pH Optimization of isoelectric point evaluation.J. Membrane Sci.213.2003.225-230
    76. M. J. Ariza. J. Benavente. E. Rodriguez-Castellon. and L. Palacio. Effect of Hydration of Polyamide Membranes on the Surface electrokinetic Parameters:Surface Characterization by X-Ray Photoelectronic Spectroscopy and Atomic Force Microscopy. Journal of Colloid and Interface Science 247.2002.149-158.
    77. Y. Soffer. A. Adin. J. Gilron. Threshold flux in fouling of UF membranes by colloidal iron. Desalination 161.2004.207-221
    78. Myung-Suk Chun. Hong 11 Cho. In Kyu Song. Electrokinetic behavior of membrane zeta potential during the filtration of colloidal suspensions. Desalination 148.2002.363-367
    79. Hideo Matsumura. Koji Kawasaki. Noriko Okumura. Masaki Kambara. Willem Norde. Characterization of the surface of protein-adsorbed dental materials by wetting and streaming potential measurements. Colloids and Surfaces B:Biointerfaces 32.2003.97-103
    80. Lorne B. Perrier F. and Avouac J. P. Streaming potential measurements 1.Properties of the electrical double layer from crushed samples. Journal of Geophysical Research.1999.104. No.B8.17857-17877.
    81. Jeffrey R. Moore. Steven D. Glaser. and H. Frank Morrison. Large-scale physical modeling of water injection into geothermal reservoirs and correlation to self potential measurements, proceeding, twenty-eighth workshop on geothermal reservoir engineering Stanford university, Stanford, California.2003
    82. Wurmstich,B., and Morgan,. Modeling of Streaming Potential Responses Caused by oil Well Pumping.Geophysics,1994.59.46-56
    83.#12
    86.#12
    91.#12
    94.小勝武.田崎義行.室内実驗にょる茂原型ガス算出挙動の検証.石油技術協会誌.2001.66.(2):215-224.
    97.高倉伸一.新潟ぉょび秋田油藏地域の新第三系岩石の比抵抗.物理探查.1995.48.:161-175
    99. Fujinawa. Y. T.Kumagai. and K.Takahashi. A study of anomalous underground electric field variations associated with a volcanic eruption. Geophys.Res.Lett.1992.19.9-12
    100. Yshida.S. M.Uyeshima. and M.Nakatani. Electric potential changes associated with slip failure of granite:preseismic and coseismic signals. J. Geophys. Res.1997.102.14883-14897.
    101.胡文瑞.论老油田实施二次开发工程的必要性与可行性.石油勘探与开发.2008.35(1):1-5
    102.俞启泰.关于剩余油研究的探讨.石油勘探与开发.1997.24(2):46-50
    103.陈琳凤.Ebughu油田的二次开发.国外油田工程.2003.19(4):13-14.
    104.高贵生.Usari油BQI重油油田的二次开发.国外石油动态.2007.(8):14-17.
    105.吴景春.改善特低渗透油田注水开发效果技术及机理研究.大庆石油学院博士学位论文.2006.
    106.王志武等.大庆油田稳油控水系统工程.北京:石油工业出版社.2000.
    107.袁庆峰.认识油田开发规律.科学合理开发油田.大庆油田地质与开发.2004.(5)
    108.仵彦卿.曹广祝.丁卫华.砂岩渗透参数随渗透水压力变化的CT实验.岩土工程学报.2005.27(7):780-785
    109.周浩.大型非均质水驱油物理模拟系统研究.北京化工大学硕士学位论文.2008.
    110.高明.低渗透油层提高采收率实验研究.大庆石油学院硕士学位论文.2006.
    111.师永民.中国北方典型陆相油田注水开发中后期流动单元研究.中国地质大学(北京)博士学位论文.2005.
    112.王瑞飞.低渗砂岩储层微观特征及物性演化研究.西北大学博士学位论文.2007.
    113.杨鹏.黄立信.俞理.低渗透油田微生物运移能力研究.油气地质与采收率.2006.(2):85-87.109
    114.杨风丽.侯中昊等译.油层伤害—原理、模拟评价和防治.北京:石油工业出版社.2003.
    115.仵彦卿.岩土水力学.北京:科学出版社.2009.
    116.崔中兴.基于CT实时观测的水岩力学耦合机理研究.西安理工大学博士学位论文.2005.
    117.张建华.刘振华.仵杰.电法测井原理与应用.西安:西北大学出版社.2002.
    118.陆大卫等.油田开发测试技术新进展.北京:石油工业出版社.2002.
    119.刘宝和.油田动态监测技术进展.北京:石油工业出版社.2001.
    120.刘文忠.施行觉.徐果明.饱油、饱水岩石电阻率的测试和研究.地球物理学报.1995.38:316-322
    121.程相志.范宜仁.周灿灿.淡水储层中低阻油气层识别技术.地学前缘.中国地质大学(北京).2008.1.15(1):146-153
    122.甘利灯.姚逢昌.杜文辉等.水驱油田四维地震技术.石油勘探与开发.2007.34(4):437-444.
    123.周凤鸣.程相志.周灿灿.泥质砂岩薄膜电位与含油性的关系及其在测井中的应用.测井技术.2005.29(4):302-305
    124.邓少贵.范宜仁.含油气泥质砂岩薄膜电位理论及其在测井中的应用.石油大学学报.2004.28(5):35-38.
    125.戴诗华.何亿成.王界益.全直径岩心分析装置及Archie公式在非均质储层的应用.国外测井技术.2005.20(5):35-39
    126.李厚义.张志安.宋长伟.李刚.油层水电阻率的研究及应用效果.测井技术.1998.22(4):299-302
    127.王楠.王志.赵之平等.膜形态、膜污染和浓差极化对流动电位的影响.化工学报.2002.53:447
    128.黄隆基.润湿性对岩石电阻率影响的模型估算.地球物理学报.1995.38(3):405-410
    129.赵军.刘兴礼.李进福.岩电参数在不同温度、压力及矿化度时的实验关系研究.测井技术.2004.28(4):269-272
    130.王天波等.复杂注水开发油田水淹层测井解释技术研究.北京:石油工业出版社.2003.
    131.陈序三等.复电阻率测井方法和应用研究.测井技术.2001.25.(5)
    132.陆大卫等.剩余油饱和度测井评价新技术.北京:石油工业出版社.2003.
    133.庞巨丰.核测井物理基础.北京:石油工业出版社.2005.
    134. Baker.Atlas.1671EB/MB Circumferential Borehole Imaging Log Maintenance Manual. 2002.
    135.赵军.刘兴礼.李进福.夏宏泉.陈福煊.刘之的.岩电参数在不同温度、压力及矿化度时的实验关系研究.测井技术.2004.(28)4:269-272
    136.李建勇.田春志.刘洪等.大庆电场地震实验资料的面波特征.地球物理学进展.2001.16(4):29-34.
    137.严洪瑞.刘洪.李幼铭等.震电勘探方法在大庆油田的现场实验.地球物理学报.1999.42(2):257-267.
    138.刘洪.严洪瑞.等.电场地震资料的特征.北京:科学出版社.1998:145-153.
    139.王玲.何继善.描述激电效应的非线性扩散方程.地球物理学报.1999.42(6):849-857.
    140.刘洪.震电效应研究在资源勘探中的应用前景.地球物理学进展.2002.17(2):211-
    141.刘洪.利用天然电磁场高分辨探测地下油气水的可能性.地球物理学报.1994.37(6):828-835.
    142.刘洪.李幼铭.关于震电勘探油气水的几点看法.石油物探.1994.33(2):94-101.
    143.张立敏.岩性探测技术研讨会会讯.地球物理学报.1987.30(1):17.
    144.徐群洲.伍菁华.张露菲.地层条件下流体驱排时岩石波速和电阻率的实验研究.石油物探.2000.39(1):124-126
    145.李俊刚.改变岩石润湿性提高原油采收率机理研究.大庆石油学院硕士学位论文.2006.
    146.高卫宏.周凤鸣.等.冀东油田低阻油层成因分析.渤海湾地区低电阻油气层测井技术与解释方法.北京:石油工业出版社.2000.
    147.俞启泰.一种广义水驱特征曲线.石油勘探与开发.1998.25(5):48-50
    148.李厚义.地层束缚水电阻率及其测井解释模型研究.中国海上油气(地质).1999.13(2).
    149.邓少贵.范宜仁.含油气泥质砂岩薄膜电位实验研究.测井技术.2002.26(1):26-29
    150.杨春梅.李洪奇.陆大卫.张方礼.高原.邵英超.2005.不同驱替方式下岩石电阻率与饱和度的关系.吉林大学学报(地球科学版).35(5):667-671.
    151. Hunter R J. Zeta potential in colloid science-principles and applications.Academic press. London.1981
    152.王小林.不稳定注水提高采收率技术研究.中国石油大学(华东)硕士学位论文.2006.
    153.俞启泰.我国注水油田常规注水潜力宏观评估.断块油气田开发工程.2000.7(4):27-34
    154. Morgan F D.Madden T R.Streaming potential properties of Westerly granite with application. Geophys Res.1989.12449-12461
    155.杨默函.张祖波等.储层条件下砂岩岩心驱替实验方法研究.北京大学学报(自然科学版).2006.42(6):729-734
    156.马全华.孙卫.吴诗平.何娟.层状砂岩油田提高水驱油效率的对策分析.西北大学学报(自然科学版).1999.29(5):413-416
    157.邓少贵.范宜仁等.多温度多矿化度岩石电阻率实验研究.石油地球物理勘探.2000.35(6):763-767.
    158.刘洪.利用动电效应进行地下油气水勘探的方法.石油物探信息.1993.1.
    159.李厚义.对油层水电阻率的思考.测井技术.1996.20(4):303-307
    160.千葉県商工劳动部.千叶县地盘沈下对策委员会.天然ガス適正采取技术确立调查报告书.1987.
    161.橋本幸治.海江田秀志.田中俊昭.水永秀樹.牛岛恵辅.流電電位法探查デへタ処理.物理探查学会第95回學術講演会論文集.1996:202-205.
    163.#12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700