用户名: 密码: 验证码:
卞闵杨地区阜宁组储层裂缝定量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文在岩心裂缝描述、压裂计算、岩心声速试验的基础上,综合运用数学、力学、地质学等多种方法原理建立了地应力与构造裂缝参数之间的定量关系,并对江苏油田卞东、闵桥、杨家坝地区阜宁组储层地应力分布、构造裂缝参数进行了研究。通过对卞闵杨地区42口取心井岩心裂缝描述发现,卞闵杨地区阜宁组主要发育有近东西向及北东东、北西西向高角度缝、垂直缝。宏观裂缝真实开度主要分布在0.2-0.6mm之间,裂缝线密度较小,井间裂缝发育程度变化较大。构造裂缝多为全充填缝,方解石充填,部分为沥青质以及泥质充填。张性缝、剪性缝及张剪性缝都有发育。分析古构造演化史认阜宁组晚期为主要造缝期。
     开展储层构造裂缝定量研究的关键及难点在于能否建立合理的地应力与裂缝参数之间的定量关系。从裂缝形成的微观原理出发,选用库伦-莫尔准则及格里菲斯准则作为岩石剪性及张性破裂判据,以岩石力学、断裂力学中应变能、表面能理论为基础,借助于表征单元体及裂缝平板渗流模型分别研究了三向挤压应力状态及有张应力存在情况下地应力与构造裂缝参数之间的定量关系。
     利用地层倾角测井资料及取心层位构造图对岩心进行定向,然后利用声速法、水力压裂资料计算了现今水平地应力并确定了应力方向。开展古今应力场数值模拟,获得了卞闵杨地区的地应力分布,将应力场模拟结果与压裂井计算数据对比发现,地应力模拟具有较高精度。研究表明:卞闵杨地区构造高部位为现今地应力低值区,地应力与地层埋深呈线性比列关系;断层对于地应力具有明显的控制作用,古应力场中断层带附近应力相对集中,现今应力场断层带附近地应力分布与之相反;卞东、闵桥、杨家坝地区地应力方向一致,最小主应力都为近南北向。
     将地应力场模拟结果导入裂缝参数计算模型,对卞闵杨地区阜宁组储层裂缝参数进行了预测,并利用岩心裂缝统计数据对裂缝预测成果进行了验证。研究发现,卞东地区中部b4-3、b7-2井附近,闵桥南部m35断块及杨家坝地区南部断层上升盘y11-5、y22-1井附近为裂缝发育密集区,裂缝孔渗性能最好。卞闵杨地区裂缝发育具有以下特征:古应力场中断层附近的拉张应力高值区为裂缝发育密集区;构造高部位现今裂缝开度较大,孔渗性能较好;裂缝发育优势方向决定了卞闵杨地区现今裂缝东西向、铅直向渗透率明显高于南北向渗透率。
On the basis of core fracture description, hydraulic cracking calculation and sound speed experiment, the relationship between crustal stress and parameters of tectonic fracture was confirmed using mathematics, mechanics and geology method. This dissertation analyzed the distribution of crustal stress and tectonic fracture of Funing Group in Biandong, Minqiao and Yangjiaba region.
     42 wells core fracture statistics shows that Funing Group of BMY mainly developed high angle fractures and vertical fractures with trend of nearly WE and NEE, NWW. Macrofractures mainly distributed in 0.2-0.6mm. The fracture linear density is small and changed greatly interwell. Most of the tectonic fractures were wholly filled with calcite and the rest of them were filled with asphalt and slime. Tectonic fractures appear in several forms such as tension fracture, shear fracture and tension-shear fracture. The structural evolution analysis shows the Late Funing Period is the important fracture period.
     The quantitative relationship between crustal stress and parameters of tectonic fracture is the key to the reservoir fracture prediction. On the basis of strain energy, surface energy in rock and fracturing mechanics theory, the relationship was confirmed using the represent element volume and flat seepage model. The Coulomb-Mohr principle was applied to the examination of shear fracture, while Griffith principle was taken as the examination of tension fracture.
     Diplog and structure map were used to core orientation. Penetrating fluid method and sound speed experiment were used to confirm the value and orientation of the current crustal stress. The stress distribution of BMY area was confirmed by ancient and current stress field numerical simulation. The comparison between simulation and hydraulic cracking data shows that crustal stress numerical simulation is accurate. The high position of BMY area is the current crustal stress low-value area. The relationship between crustal stress and formation depth is linear. Faults for the control of stress have a significant role. Stress concentration occurred near the fault zone in the paleo stress field while the current stress distribution reverse. Biandong, Minqiao and Yangjiaba have the unified direction of stress. The minimum principal stress is nearly north-south.
     The crustal stress simulation data were imported to fracture parameters model, and the predicted parameters were verified by the core fracture statistical data. The result shows that, the central area of Biandong, m35 block of south Minqiao and the south fault upcast of Yangjiaba were the intensive fracture areas in which the fracture porosity and permeability are highest. Tectonic fractures of BMY area have the following characteristics: The high value areas of tensile stress in the paleo-stress field are the fracture-intensive areas; Fractures in high part have greater aperture and better poroperm characteristics; The dominant fracture strike decides the current east-west and vertical component of permeability are significantly higher than the north-south component.
引文
[1] Pollard D.D. Aydin A. Progress in Understanding Jointing over the Past Century [J]. Bull. Geol. Soc. Am. 100, 1988:1811-1204
    [2] Lorenz J.C. Teufel LW. Warpinski NR. Regional Fractures I: A Mechanism for the Formation of Regional Fractures at Depth in Flat-Lying Reservoirs [J]. Am. Assoc. Petrol. Geol. Bull., 1991,75(11):1714-1737
    [3] Nelson R.A. Geological Analysis of Naturally Fractured Reservoirs [J]. Houston, Gulf Publishing Company, 1985
    [4] Aguilera R. Determination of Subsurface Distance Between Vertical Parallel Natural Fractures Based on Core Data [J]. Am. Assoc. Petrol. Geol. Bull., 1988,72(7):845-851
    [5] Aguilera R. Natural Fractured Reservoir [M]. Penewell Publishing Company,Tulsa, Oklahoma, 1995:181-183
    [6] Lorenz J C. Finley S J. Regional Fractures II: Fracturing of Mesaverde Reservoirs in the Ficeance Basin [J]. Colorado, Am. Assoc. Petrol. Geol. Bull., 1991, 75(11): 1738-1757
    [7] Narr W. Suppe J. Joint Spacing in Sedimentary Rocks [J]. J. Struct. Geol., 1991, 13(9):1037-1048
    [8] Narr W. Lerch I A. Method for Eastimating Subsurface Fracture Density in Core [J]. Am. Assoc. Petrol. Geol. Bull., 1984,68(5):637-648
    [9]钱祥麟.构造裂缝定量预测技术研究,以丘陵油田为例.“八五”中国石油天然气总公司重点科技攻关项目——中国油气储层研究成果报告,1994年
    [10]童亨茂.储层裂缝描述与预测研究进展[J].新疆石油学院学报,2004,16(2):9-13
    [11]崔健,张军,王延民.储层裂缝预测方法研究.重庆科技学院学报(自然科学版)[J].2008,10(1):5-8
    [12]李云海,杨斌.低渗透薄砂岩储层裂缝描述技术及应用[J].江汉石油职工大学学报,2004,17(6):13-15
    [13]周进松,童小兰,冯永宏.柴窝堡背斜储层构造裂缝发育特征及控制因素[J].石油学报,2006,27(3):53-56
    [14]Murray G.H. Quantitative fracture Study–Spanish pool, Mckenzie Co., North Dakota, AAPG Bulletin, 1968(52):57-65
    [15]孙尚如.预测储层裂缝的两种曲率方法应用比较[J].地质科技情报,2003,22(4):71-74
    [16]孟召平,彭苏萍等.油气储层有限变形转动场及其裂缝发育区预测——以塔里木盆地大庆区块下古生界碳酸盐岩为例[J].煤田地质与勘探,2001,29(5):7-10
    [17]戴俊生,徐建春等.有限变形法在火山岩裂缝预测中的应用[J].石油大学学报,2003,27(1):1-10
    [18]Price. N.J, Fault and Joint Development in Brittle and Semi-brittle Rock[M], Oxford,England: Pergamon Press,1966
    [19]王仁,丁中一,殷有泉.固体力学基础[M].北京:地质出版社,1979
    [20]曾锦光,罗元华,陈太源.应用构造面主曲率研究油气藏裂缝问题[J].力学学报,1982,2(2):202-206
    [21]丁中一,钱祥麟,霍红,等.构造裂缝定量预测的一种新方法——二元法[J].石油与天然气地质,1998,19(1):1-17,14
    [22]文世鹏,李德同.储层构造裂缝数值模拟技术[J].石油大学报,1996,20(5):17-24
    [23]宋惠珍.脆性岩储层裂缝定量预测的尝试[J].地质力学学报,1999,5(1):76-84
    [24]周新桂,孙宝珊,李耀辉.辽河张强凹陷科尔康油田储层裂隙预测研究[J].地质力学学报,1998,4(3):70-75
    [25]李理,戴俊生,谢传礼.埕岛地区中、古生界裂缝与油气的关系[J].石油与天然气地质,2000,21(3):264-266
    [26]武红岭,王小凤,马寅生,等.油田构造应力场驱动油气运移的理论和方法研究[J].石油学报,1999.20(5):7-12
    [27]谭成轩,王连捷.三维构造应力场数值模拟在含油气盆地构造裂缝分析中应用初探[J].地球学报,1999,20(4):392-394
    [28]李行船,谢桂学,孟祥和.古构造应力场反演在储层裂缝预测中的应用——以埕北30潜山油藏为例[J].山东科技大学学报,2001,20(1):74-77
    [29]黄新武,龚姚进,刘纯高.柴达木盆地油泉子油田储层构造裂缝定量预测[J].钻采工艺,2002,25(5):91-94
    [30]陈波,赵海涛.利用随机建模技术预测裂缝分布方向——以王徐庄油田为例[J].江汉石油学院学报,2004,26(4):42-44
    [31]曾联波,周天伟.塔里木盆地库车坳陷储层裂缝分布规律[J].天然气工业,2004,24(9):23-25
    [32]唐湘蓉,李晶.构造应力场有限元数值模拟在裂缝预测中的应用[J].2005,12(2):25-28
    [33]汪必峰.储集层构造裂缝描述与定量预测.中国石油大学博士学位论文,2007:1-9
    [34]苏浙皖闽油气区石油地质志编写组编.苏浙皖闽油气区—中国石油地质志(卷八).北京:石油工业出版社,1992:135-146
    [35]侯明金,朱光,JacquesMercier,等.郯庐断裂带(安徽段)及邻区的动力学分析与区域构造演化[J].地质科学,2007,42(2):362-381
    [36]解秋红.卞闵杨地区构造样式研究.中国石油大学硕士学位论文,2008:9-18
    [37]王时林,秦启荣,苏培东.储层裂缝识别与预测[J]断块油气田,2009,16(5):31-33
    [38]孙焕泉,王加滢.地下构造裂缝分布规律及其预测[J]大庆石油学院学报2000,24(3):83-85
    [39]童亨茂.储层裂缝描述与预测研究进展[J].新疆石油学院学报,16(2),2004:9-13
    [40]童亨茂,钱祥麟.储层裂缝研究分析方法[J].石油大学学报,18(6),1994:14-20
    [41]刘建军,裴桂红.我国渗流力学发展现状及展望[J].武汉工业学院学报,2002,(3):101-105
    [42]闫相祯,戴俊生.石港-桥河口、花庄-瓦庄区块裂缝预测综合研究(下册),2008:65-66
    [43]戴俊生,李理.油区构造分析[M].东营:石油大学出版社,2002:43-44
    [44]袁士义,冉启全,胡永乐.考虑裂缝变形的低渗透双重介质油藏数值模拟研究[J].自然科学进展,2005,15(1):77-83
    [45]冉启全,顾小芸.油藏渗流与应力耦合分析[J].岩石工程学报,1998,20(2):69-73
    [46]黄辅琼,欧阳健,肖承文.储层岩心裂缝与试件裂缝定量描述方法研究[J].测井技术, 1997,21(5):356-360
    [47]范学平,李秀生,张士诚.低渗透变形介质油气藏渗流流固耦合研究[J].新疆石油地质,2000,22(1):76-79
    [48]刘建军,刘先贵.降压开采对低渗透储层渗透性能的影响[J].重庆大学学报,2000,31(1)37-41
    [49]黎水泉,徐秉业.裂缝性油藏流固耦合渗流[J].计算力学学报,2001,18(2):133-137
    [50]E.M.斯麦霍夫.裂缝性油气储集层勘探的基本原理与方法[M].北京:石油工业出版社,1985
    [51]宋惠珍,贾承造,欧阳健等.裂缝性储集层研究理论与方法-塔里木盆地碳酸盐岩储集层裂缝预测[M].北京:石油工业出版社,2001:12-40,255-265
    [52]曾联波,漆家福,王永秀等.低渗透储层构造裂缝的成因类型及其形成条件[J].石油学报, 2007,28(4):52-56
    [53]于红枫,王英民,周文.川西坳陷松华镇_白马庙地区须二段储层裂缝特征及控制因素[J].石油大学学报(自然科学版), 2006,30(3):17-21
    [54]黄继新,彭仕宓,王小军,等.成像测井资料在裂缝和地应力研究中的应用[J].石油学报,2006,27(6):65-69
    [55]刘丽丽,赵中平,李亮,等.变尺度分形技术在裂缝预测和储层评价中的应用[J].石油与天然气地质,2008,29(1):31-37
    [56]张虹,沈忠民.超致密裂缝性储层地震预测方法研究-以川西新场气田须二气藏勘探为例[J].成都理工大学学报(自然科学版),2008,35(2):149-157
    [57]Laurent Maerten, Frantz Maerten. Chronologic modeling of faulted and fractured reservoirs using geomechanically based restoration: Technique and industry applications[J].AAPG Bulletin, 2006,90(8):1202 -1226
    [58]张帆,贺振华.预测裂隙发育带的构造应力场数值模拟技术[J].石油地球物理勘探, 2000,35(2):154-163
    [59]陈波,田崇鲁.储层构造裂缝数值模拟技术的应用实例[J].石油学报,1998,19(4):50-54
    [60]谯述蓉,赵爽.山前复杂构造须家河组致密储层裂缝发育带综合预测[J].矿物岩石,2008,28(2):81-87.
    [61]周新桂等.沿河湾探区低渗透储层构造裂缝特征及分布规律定量预测[J].石油学报,2009,30(2):57-62
    [62]沈国华.有限元数值模拟方法在构造裂缝预测中的应用[J].油气地质与采收率, 2008,15(4):24-26
    [63]曾联波,漆家福,王成刚,等.构造应力对裂缝形成与流体流动的影响[J].地学前缘, 2008,15(3): 292-298
    [64]刘卫丽,王秀娟,程洪亮,等.三维裂缝预测与渗透率建模研究[J].世界地质,2008,27(3):270-274
    [65]康永尚,郭黔杰,朱九成等.裂缝介质中石油运移模拟实验研究[J].石油学报,2003,24(4):44-47
    [66]M. Chen, M. Bai. Modeling stress-dependent permeability for anisotropic fractured porous rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 1998,351(8):1113-1119
    [67]王维襄.固体力学[M].武汉:武汉地质学院, 1984:181-184
    [68]胡传炘.断裂力学及其工程应用[M].北京:北京工业出版社,1989:67-74
    [69]赵建生.断裂力学及其断裂物理[M].武汉:华中科技大学出版社,2003:151-162
    [70]高庆主.工程断裂力学[M].重庆:重庆大学出版社,1986:89-91
    [71]张学汝,陈和平,张吉昌等.变质岩储集层构造裂缝研究技术[M].北京:石油工业出版社,1999:20-21
    [72]蔡美峰.地应力测量原理和技术[M].北京:科学出版社,2000:3-12
    [73]王平.含油盆地构造力学原理[M].北京:石油工业出版社,2001:44-48
    [74]俞茂宏.双剪强度理论及其应用[M].北京:科学出版社,1998:195-197
    [75]戴俊生,汪必峰,马占荣.脆性低渗透砂岩破裂准则研究[J].新疆石油地质,2007,28(4):393-395
    [76]戴俊生.构造地质学及大地构造[M].北京:石油工业出版社,2007:77-81
    [77]宋惠珍,曾海容,孙君秀等.储层构造裂缝预测方法及其应用[J].地震地质,1999:21(3):205-213
    [78]白茅,刘天泉.孔隙裂隙弹性理论及应用导论[M].北京:石油工业出版社,1999:113-116
    [79]Hicks T W, Pine R J, Willis Richards J, et al. A hydro-thermo-mechanical numerical model for HDR geothermal reservoir evaluation[J]. Int. J. Rock Mech. Min. Sci. and Geomech. Abstr., 1996,33(5):499-511
    [80]闫相祯,戴俊生.石港-桥河口、花庄-瓦庄区块裂缝预测综合研究(上册),2008:85-86

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700