用户名: 密码: 验证码:
复杂下垫面建筑自然通风热湿特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自然通风是一种经济、节能、环保的传统通风方式。在降低建筑能耗、改善室内热湿环境、提高室内空气品质等诸多方面具有比机械通风更强的优势。然而,自然通风的影响因素非常复杂,其机理还不完善,自然通风的设计计算还处于经验与半经验状态。因此,充分地认识和利用自然通风是实现建筑可持续发展战略和建设“资源节约型和环境友好型”社会的需要。
     室外干球温度的确定是自然通风设计计算的首要问题。本文对CTTC模型进行了改进。应用改进后的CTTC模型计算城市环境下自然通风的室外温度更准确。计算建筑间距、建筑相对高度及绿化率等参数对城市环境温度的影响,得出了:建筑群相对高度越大,环境温度会降低,最大降幅为1℃;绿化率在35%时,降温效果最好。同时,通过现场测试,获得了不同建筑景观布局下的室内外温度、湿度等参数的分布规律。
     以室外大气-植被(水体、地面)-室内环境作为整体研究对象,将室内、外环境多场耦合在一起,建立数学模型。研究了植被、水体等复杂下垫面对建筑自然通风的热湿影响规律。
     研究植被对建筑自然通风的影响。建立了完整的植被对自然通风作用的数学模型。运用该模型,研究了植被高度、植被与建筑物间距以及植被宽度等对建筑自然通风的影响规律,提出了可供工程运用的经验公式。随着树林与建筑的间距的增大、林宽的增加,建筑室内通风换气次数呈减缓的趋势,室内温度也呈下降趋势,最大温降可达1.4℃;当树林与建筑之间的距离与建筑高度的比值达到75%时,换气次数和室内温度趋于恒定;树林高度与建筑高度的比值为50%时,通风换气次数最低。
     研究室内地表对建筑自然通风热湿特性的影响。充分考虑地表的传热传质作用,重组了建筑自然通风的数值计算模型。通过对某现代热源厂房自然通风的模拟与实测得出:当室外无风时,厂房地面采用吸热性能好的材料构筑可使厂房内近地表2米高度范围内的空气温度降低1.3-1.5℃,厂房内的压力降低了0.2Pa以上,进风量增加。这种增风降温作用得以充分体现的最大室外风速为1.5m/s。研究水体对建筑自然通风热湿特性的影响。在描述水体蒸发时,考虑到水体与空气的热、质交换,引用气象研究文献中提出的拟合公式计算水体的平衡温度及对应情况下的蒸发量,建立了水体对建筑自然通风热湿影响的数学模型。研究来流温度、湿度、水体宽度、水体与建筑之间的距离等因素对室内相对湿度的影响规律,并对各影响因素进行了相关性分析。结果表明:水体对建筑室内的湿度影响比温度影响更明显,水体面积越大,影响越大;水体距离建筑10-15米范围对室内的相对湿度影响较显著。
Natural ventilation has advantages over mechanical ventilation in many aspects such as reducing building energy consumption and improving indoor thermal environment, air quality. However, the influencing factors of natural ventilation are complicated. Therefore, fully understand and utilize natural ventilation is necessary to achieve sustainable developments and to build a resource-saving and environment-friendly society.
     How to determine the outdoor dry-bulb temperature is crucial for designing and calculating natural ventilation. This thesis improves the CTTC model,and makes the calculation of outdoor temperature in urban natural ventilation more accurate. By analyzing the influence of calculating parameters, that is the distances between buildings, building’s relative height and greening rate on the urban environment and temperature, we draw the following conclusions: the temperature of underlying surface declines as the relative height of buildings been greater, the maximum decreasing amplitude can be 1℃. Especially, the cooling effect is best when the greening rate is 35%. At the mean time, we get the parameters’distribution rules such as the outdoor ambient temperature, humidity and others under the different architectural landscape layout through site measurement.
     This paper chooses outdoor atmosphere - vegetation or water body- the ground and the indoor environment as the objective. We create a mathematical model by coupling indoor and outdoor environments from multi-sites. Furthermore, numerical simulation method is used to study the laws about how the vegetation, water and complex underlying surface affect on the heat and moisture of buildings natural ventilation.
     It is studied that the influence of the vegetation on the natural ventilation in buildings. A complete simulation algorithm of how the vegetation effect on the heat and moisture characteristics of the natural ventilation is created. By changing the height of vegetation, the distance between the vegetations and the buildings as well as the width of vegetation, the empirical formula of the engineering use are concluded. It is shown that indoor ventilation slow down, as the distance between the forest and buildings and the width of forest areas increasing. The indoor temperature drops as well, and the maximum decreasing amplitude is 1.4℃. The frequency of indoor ventilation tends to be constant, when the ratio of the distance between the forest and buildings to the building height is 75%. The frequency of indoor ventilation reaches the lowest point, when the ratio of the forest height to the building height is 50%.
     It is studied that the influence of the indoor surfaces on the heat and moisture’properties of the natural ventilation in buildings. The thesis not only present the concept of surface effect by fully considering those factors that the surface can transfer heat and moisture but also reconstructs the building numerical model of natural ventilation, which enriches the contents of the numerical calculation of natural ventilation. By combining simulation and on-site measurement on the natural ventilation of a factory, we conclude the following results: when the outside environment is wind-free, the former one can reduce the air temperature by 1.3-1.5℃with the rage 2m of the near-surface comparing plant on the ground by using the heat-absorbing materials with a good performance with the one with the insulation materials. At the mean time, the pressure inside the plant also reduces 0.2Pa and the rate of windshield flowing into the air velocity increases. The maximum wind speed is 1.5m/s that fully reflected the surface effect.
     It is studied that the influence of the body of water on the heat and moisture’properties of the natural ventilation in buildings. We establish the mathematical model and corresponding algorithms about the affect of a body of water on the heat and moisture of the natural ventilation in buildings during the process of describing the evaporation of water, using the fitting formula proposed by meteorological research literature to calculate the balance temperature of water body and corresponding evaporation by taking into account the heat and mass exchange of water and air. This formula can help us to calculate the evaporation exactly. Besides, this paper makes research on those rules of how the indoor relative humidity is affected by different temperature, humidity of free stream, width of water body and the distance between water body and the buildings, and we analyze the correlation of influence factors. The results show that: water body has more significant affect on the building indoor humidity than the indoor temperature. The larger the area of water body is, the greater effect it has. In the range from 10 meters to 15 meters, the water body has a significant affection on the indoor humidity.
引文
[1]世界环境与发展委员会.我们共同的未来[M].北京:世界知识出版社,1989
    [2] James W. Axley, A Critical Evaluation of the Potential for Adapting European Systems for use in North America and Development of a General Design Method[R]. In: Residential passive ventilation systems (Evaluation and Design), AIVC Technical Note 54, 2001
    [3] Jiang Yi. Building Energy Consume and Saving Energy Measure[C]. In: International Conference for Enhanced Building Operations, 2006
    [4] Lomas KJ, Cook MJ, Short CA. Commissioning hybrid naturally ventilated buildings: a US case study [J]. BUILDING RESEARCH AND INFORMATION, 2009,37(4):397-412
    [5] Hellwig R T, Kersken M, Schmidt S. Equipment of classrooms with systems for maintaining temperature, for ventilation and for illumination [J]. BAUPHYSIK, 2009,31(3):157-162
    [6] Kubota T, Chyee DTH, Ahmad S. The effects of night ventilation technique on indoor thermal environment for residential buildings in hot-humid climate of Malaysis [J]. ENGERGY AND BUILDINGS, 2009, 41(8):829-839
    [7] Tablada A, De Troyer F, Blocken B. on natural ventilation and thermal comfort in compact urban environments-the Old Havana case [J]. BUILDING AND ENVIRONMENT, 2009, 44(9):1943-1958
    [8] Per Heiselberg. Principles of hybrid ventilation. IEA Energy Conservation in Buildings and Community Systems Programme Annex 35:Hybrid ventilation in New and Retrofitted Office Buildings[R], 2000
    [9] ROULET C-A, M GERMANO, F ALLARD, C GHIAUS. Potential for natural ventilation in urban context: an assessment method[C]. Proceedings: Indoor Air, 2002, 832– 835.
    [10]柳孝图.城市物理环境与可持续发展[M].南京:东南大学出版社,1999,73-80
    [11] Helmut ELandsberg.都市气候学[M].郑师中,译.台湾:世界图书出版公司,1990
    [12] Yang L N, Li YG. City ventilation of Hong Kong at no-wind conditions[J], ATMOSPHERIC ENVIRONMENT,2009, 43(19):3111-3121
    [13] Elnahls M M,Williamson TJ. An improvement of the CTTC model for predicting urban air temperatures[J]. Energy and Buildings, 1997,25 (1 ): 41-49
    [14]李先庭,李莹,陈玖玖.城市化对住宅建筑空调负荷的影响[J].暖通空调. 2002, 32(2):79-81.
    [15]史学丽.陆面过程模式研究简评[J].应用气象学报, 2001 ,12(1) :102 - 112.
    [16]张佳华,陈开喜.陆地表面复杂过程模式中耦合植物生态过程研究进展[J].气象科学, 2002, 22 (1) :119 - 126.
    [17] Dickson R E , Henderson - Sellers. A Kennedy P J . Biosphere -Atmosphere Transfer Scheme (BATs) version l eas coupled to the NCAR community climate model. NCAR/TN-387+ STR, Boul2 der (Colorado). 72. 5 ,1986.
    [18] Sellers P J , Mintz Y, Sud Y C , et al . A Simple Biosphere Model (SiB) for Use within General Circulation Models[J] . J. Atmos. Sci, 1986 , 43 :505 - 531.
    [19] Sellers P J , Dorman J L. Testing the Simple Biosphere Model (SiB) Using Point Micrometeorological and Biophysical Data[J]. J Climate Appl Meteor, 1987 ,26 : 622 - 651.
    [20] Sellers P J , et al . A Revised Land Surface Parameterization ( SiB2 ) for Atmospheric GCMs. Part II: The Generation of Global Fields of Terrestrial Biophysical Parameters from Satellite Data[J] . J Climate, 1996, 9: 706 - 737.
    [21]孙睿,刘昌明.地表水热通量研究进展[J].应用生态学报, 2003 ,14 (3) :434 - 438.
    [22]孙菽芬,金继明,吴国雄.用于GCM耦合的积雪模型的设计[J] .气象学报,1999, 57 (3) :293 - 300.
    [23]戴永久.陆面过程模式及其与GCM耦合模拟研究[博士论文].北京:中国科学院大气物理研究所, 1995.
    [24]张晶,丁一汇.一个改进的陆面过程模式及其模拟试验研究第一部分:陆面过程模式及其“独立(off - line)”模拟试验和模式性能分析[J].气象学报, 1998 ,56 (1) :1 - 19.
    [25]林朝晖.气候模式中的反馈机制及模式改进的研究[博士论文].北京:中国科学院大气物理研究所,1995.
    [26]刘树华,黄子琛,刘立超. 1土壤-植被-大气连续体中蒸散过程的数值模拟[J].地理学报, 1996,51(2) :118 - 125.
    [27]刘树华,黄子琛,刘立超.半干旱区植被覆盖度对边界层气候热力影响的数值模拟[J] .气象学报, 1996 , 54 (3): 303 - 310.
    [28]刘树华,张景光,刘昌明,等.荒漠下垫面陆面过程和大气边界层相互作用敏感性实验[J].中国沙漠, 2002, 22 (6): 636 -644.
    [29]莫兴国.土壤-植被-大气系统水分能量传输模拟和验证[J].气象学报,1998, 56(3): 323- 332.
    [30] Xue Y, Sellers P J , Kinter J L. A simplified biosphere model for global studies[J]. J Climate, 1991, 4:345 - 364.
    [31] Deardorff W. Efficient Prediction of Ground Surface Temperature and Moisture With Inclusion of a Layer of Vegetation[J]. J. Geo. Res., 1978 , 83 :1889 - 1903.
    [32] Noilhan J, Planton S. A simple Parameterization of Land Surface Process for Meteorological Models[J]. Monthly Weather Rev, 1989, 117: 536 - 549.
    [33]孙菽芬.陆面过程研究进展[J] .新疆气象,2002 ,25 (6) :1-6.
    [34] Clonco RM, Ellefsen R. High resolution urban morphology data for urban wind flow modeling [J], ATMOSPHERIC ENVIRONMENT, 1998,32(1):7-17
    [35]张景远,饶胜,迟妍妍,等.城市景观格局的大气环境效应研究进展[J].地理科学进展,2006,21(10):1025-1032
    [36]郭清和,康文星.杉木人工林的温湿效应[J].中南林学院学报,2005,25(3):12-17
    [37] Zhou Hongmei,Ding Jincai,Xu Yiming,etal. The monitoring and evaluation of relationship between heat island effect and green belt distribution in Shanghai urbanarea[J]. Acta Agricluturae Shanghai, 2002,18(2):83-88
    [38] Spronken smith RA,OkeTR. The thermal region of urban parks in two cities with different summer climates[J]. International Journal of Remote Sensing,1998,19(11):2085- 2104.
    [39] Yang Shihong. Urban Ecology and Environment(2nd)[M].Beijing:Science Press,2003.
    [40]王威,狄洪发,江亿等.不同地表状况下的温度分布比较研究[J].北方园艺,2001,4:24-26
    [41] Zhang Jingzhe, Liu Qiming. Temporal variations in there lationship between urban temperature and the structure of urban surface in Beijing[J]. Acta Geographica Sinica, 1988,43(2):159-68.
    [42] Saaroni H,Ziv B. The impact of a small lake on heat stress in a Mediter ranea nurbanpark: The case of TelAviv,Israel[J]. International Journal of Biome teorology,2003,47(3):156 -165.
    [43]刘树华等.森林下垫面陆面物理过程及局地气候效应的数值模拟试验[J].气象学报,2005,63(1):1-12
    [44]崔亚莉等.应用遥感方法研究黄河三角洲地表蒸发及其与下垫面关系[J].地学前缘,2005,63(4):159-165
    [45] CHEN Ming. PAN Zhili. Estimation of large aria evapotranspiration by thermal infrared satellite data[J], Advances in Water Science,1994,5(2):126-133
    [46]张勇、余涛、顾行发等.CBERS-20 IRMSS热红外数据地表温度反演及其在城市热岛效应定量化分析中的应用[J].遥感学报,2006,10(5):789-797
    [47]张小飞、王仰麟、吴健生.城市地域地表温度-植被覆盖定量关系分析[J].地理研究,2006,25(3):369-377
    [48]刘宇.不同土地利用类型对城市地表温度的影响[J].地理科学,2006,26(5):597-602
    [49]王艳霞、董建文等.城市绿地与城市热岛效应关系探讨[J].亚热带植物科学, 2005, 34(4): 55-59
    [50] Yeh T C.A model study of the short-term climatic and hydrologic effects of sudden snow- cover removal [J]. Mon. Wea. Rev.,1983,111:1013-1024
    [51] Yeh T C,Wetherald R T,Manabe S.The effect of soil moisture on the short-term climate and hydrology change-A numerical experiment[J].Mon. Wea. Rev.,1984,112:475-490
    [52]苏从先,胡隐樵,张永丰,等.河西地区绿洲的小气候特征和“冷岛效应”[J].大气科学,1987 ,11(4):390-396
    [53]吕世华,陈玉春.绿洲和沙漠下垫面状态对大气边界层特征影响的数值模拟[J].中国沙漠,1995,15(2):116-123
    [54] Zhang Qiang,Wei Guoan,Huang Ronghui,et al. Impact of oasis on the atmosphere hydrological cycle over desert or Gebi neat it-A study by Dunhuang experiment[J]. Progress in Natural Science,2002,12(5):108-114
    [55]马耀明,刘东升,王介民等.卫星感敦煌地区地表特征参数研究[J].高原气象, 2003, 21(6): 531-536
    [56]高艳红,吕世华.非均匀下垫面局地气候效应的数值模拟[J].高原气象, 2001, 20(4): 354-361
    [57]高艳红,吕世华.不同绿洲分布对局地气候影响的数值模拟[J].中国沙漠, 2001, 21(2): 108-114
    [58]胡隐樵,奇跃进,杨选利.河西戈壁小气候和热量平衡特征的初步分析[J].高原气象, 1990, 12 (2):113-119
    [59]胡隐樵,左洪超.绿洲环境形成机制和干旱区生态环境建设对策[J].高原气象, 2003, 22 (6):537-544
    [60]林波荣.绿化对室外热环境影响的研究[博士论文].北京:清华大学,2003
    [61]美国绿色建筑委员会(美)编.绿色建筑评估体系(第二版).北京:建筑工业出版社,2002
    [62]日本可持续建筑协会编, Comprehensive Assessment System for Building Environmental Efficiency (CASBEE), 2003, 7
    [63]蒋慧君.绿色植被对建筑物室内外空气环境影响的初步研究.[学位论文],西安建筑科技大学,1998 [64 ]茅宇豪,刘树华,李婧.不同下垫面空气动力学参数的研究[J].气象学报,2006,64(3):325-334
    [65]吕萍,董治宝,李芳.三种不同床面近地层湍流输送特征[J].干旱区研究,2006,23(1):99-103
    [66]郑晓静,岳高伟.地表温度对颗粒跃移轨迹的影响[J].应用力学学报,2005,22(2):207-211
    [67]李亮,李晓锋,林波荣,朱颖心.用带源项k ?ε两方程湍流模型模拟树冠流[J].清华大学学报(自然科学版), 2006, 46(6): 753-756
    [68] Green S R. Modeling turbulent air flow in a stand of widely-spaced trees[J]. Phoenics, 1992, 5:294-312
    [69]蒋慧君,张飞.绿色植被内空气温湿度计算的数学模型[J].太阳能学报,2003,03(1):103-105
    [70]蒋慧君,张飞.受树冠遮庇时建筑物外表面辐射换热的计算[J].太阳能学报,2003,03(2):178-182
    [71]罗哲贤.植被带宽度对局地环流及温度场影响的数值研究[J].地理学报,1994,49(1):37-45
    [72]柯咏东,桑建国.小型绿化带对城市建筑物周围风场影响的数值模拟[J].北京大学学报(自然科学版),2008,44(4):585-1195
    [73]金招芬,朱颖心等.建筑环境学.北京:中国建筑工业出版社,2001,47
    [74]隋学敏.房间热压自然通风的影响因素[硕士学位].西安:长安大学,2005
    [75] YUGUO LI. Analysis of natural ventilation– a summary of existing solutions[R]. IEA annex 35 TR12.
    [76] Li Yugou. Analysis, prediction and design of natural and hybrid ventilation[C]. 2002 Fourth International Forum,Montreal,Canada,2002.154-268
    [77] Fracastoro G V.Numerical simulation of transient effect of window opening[J]. The First International One Day Forum on Natural and Hybrid Ventilation,Hyb. VenForum’99,Sydney, Australia,1999
    [78] Kindangen J. Eeffects of roof shapes on wind-induced air motion inside buildings[J]. Building and Environment,1997,32: l-11
    [79]王怡.寒冷地区居住建筑夏季室内热环境研究[博士学位论文],西安:西安建筑科技大学,2003,6
    [80] Montazeri H,Azizian R. Experimental study on natural ventilation performance of a two-sided wind catcher[J]. PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART A JOURNAL OF POWER AND ENERGY, 2009,223(A4):387-400
    [81] Meng QL (Meng, Qinglin), Li Q (Li, Qiong)1, Zhao LH (Zhao, Lihua), Li L (Li, Li), Chen ZL (Chen, Zhuolun), Chen Y (Chen, Yi), Wang SX (Wang, Shixiao), A Case Study of the Thermal Environment in the Airport Terminal Building under Natural Ventilation[J]. JOURNAL OF ASIAN ARCHITECTURE AND BUILDING ENGINEERING. 2009, 8(1): 221-227
    [82] Gao J (Gao, Jun), Gao FS (Gao, Fu-Sheng), Zhao JN (Zhao, Jia-Ning), Liu J (Liu, Jing). Calculation of natural ventilation in large enclosures[J]. INDOOR AND BUILT ENVIRONMENT, 2007, 16(4):292-301
    [83] Ji Y (Ji, Y.), Cook MJ (Cook, M. J.), Numerical studies of displacement natural ventilation in multi-storey buildings connected to an atrium[J], BUILDING SERVICES ENGINEERING RESEARCH & TECHNOLOGY, 2007, 28( 3): 207-222
    [84] Liu PC (Liu, Pei-Chun)1, Lin HT (Lin, Hsien-Te)1, Chou JH (Chou, Jung-Hua)2, Evaluation of buoyancy-driven ventilation in atrium buildings using computational fluid dynamics and reduced-scale air model[J], BUILDING AND ENVIRONMENT,2009,44( 9): 1970-1979
    [85] Stavrakakis GM (Stavrakakis, G. M.)1, Koukou MK (Koukou, M. K.)2, Vrachopoulos MG (Vrachopoulos, M. Gr.)2, Markatos NC (Markatos, N. C.)1, Natural cross-ventilation in buildings: Building-scale experiments, numerical simulation and thermal comfort evaluation[J], ENERGY AND BUILDINGS, 2008, 40(9): 1666-1681
    [86] Jiang Y, Alexander D, Jenkins H, Arthur R, Chen QY, Natural ventilation in buildings: measurement in a wind tunnel and numerical simulation with large-eddy simulation[J], JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 2003, 91(3): 331-353
    [87] BRE. Natural ventilation in non-domestic buildings[J]. Building Research Establishment, UK: Chartered Institution of Building Services Engineers, 2005
    [88]黄晨,李美玲,邹志军等.大空间建筑室内热环境现场实测及能耗分析[J].暖通空调,2000,30(6):52-55
    [89] Hanna Swaid, Milo E Hoffman. Prediction of urban air temperature variations using the analytical CTTC model[J]. Energy and Buildings, 1990,14(4) :313-324
    [90]王菲,肖勇全.太阳辐射对不同建筑群产生温升效果的探讨[J].山东建筑工程学院学报. 2004,19(1):59-62
    [91] Limor Shashua-Bar, Milo E.Hoffman. Geometry and orientation aspects in passive cooling of canyon streets with trees[J]. Energy and Buildings, 2003, 35 (1 ): 61-68
    [92] R. Knowles. Solar access and urban form[J]. AIA Journal, 1980, (2):42-49.
    [93] Jianmin Shao. Calculation of sunshine duration and saving of land use in urban building design[J]. Energy and Buildings, 1990, 15: 407-415
    [94]陈恩水.居住区气温变化模型及应用[J].环境科学. 1998, 19(2):80-82.
    [95]王修兰.太阳散射辐射的分光测量及其能量分配[J].气象学报. 1994,52(2):241-247
    [96]刘树华,蔺洪涛,胡非,等.土壤-植被-大气系统水分散失机理的数值模拟[J].干旱气象.2004,22(3):1-10
    [97]崔桂香,史瑞丰,王志石等.城市大气微环境大涡模拟研究[J].中国科学,2008,38(6):626-636
    [98] B, P., D. P, and O. A, Modeling rotational effects in eddy-viscosity closures[J]. Int.J. Heat and Fluid Flow, 1999, 20: 563-573.
    [99]张兆顺,崔桂香,许春晓.湍流理论与模拟[M].北京:清华大学出版社,2005:207-231
    [100] Speziale C G. Analytical methods for the development of Reynolds-stress closures in turbulence[J]. Annual Review of Fluid Mechanics. 1991, 23: 107
    [101] K.ABE, T.Kondoh, A new turbulence model for predicting fluid flow and heat transfer in separating and reattaching flows-II Thermal field calculations[J]. Int. J. Heat Mass transfer, 1995, 38(8):1467-1481
    [102] H. H. CHO, R. J. Goldstein, An improved low-Reynolds-Number k-εturbulence model for recirculating flows[J]. Int. J. Heat Mass Transfer, 1994, 37(10):1495-1508
    [103]聂梅生、秦佑国、江亿等.中国生态住宅技术评估手册[M],北京:中国建筑工业出版社, 2003
    [104]绿色奥运建筑研究课题组著.绿色奥运建筑评估体系[M],北京:中国建筑工业出版社,2003
    [105]关滨蓉,马国馨.建筑设计和风环境[J].建筑学报,1995, (11):44-48
    [106] H. FOUDHIL, Y. BRUNET, J.-P. CALTAGIRONE. A Fine-Scale k?εModel for Atmospheric Flow over Heterogeneous Landscapes[J]. Environmental Fluid Mechanics . 2005, 5: 247–265
    [107] Henry Rachaele, Arnold Tunick. Energy Balance Model for Imagery and Electromagnetic Propagation[J]. J Appl Meteor. 1994, 33:964-976
    [108] Arnold Tunick. A radiation and energy budget algorithm for forest canopies[J]. Meteorol Atomos Phys.2006, 91:237-246
    [109] Haurwitz, B. Insolation inrelation to cloudiness and cloud density[J]. J. Meteror. 1945, 2(3), 154-166
    [110] S. R. Green. Modeling Turbulent Air Flow in a Stand of Widely-spaced Tree[J]. Phoenics Journal.1992.
    [111] Liu, J. E–emodelling of turbulent air flow downwind of a model forest edge[J]. Boundary Layer Meteorology, 1996, 77: 21-44.
    [112]加藤敦子,持田灯,吉野博,村上周三.植生Canopyモデルを組み込んだk-εモデルによる単独樹木周辺の風速分布の予測[C].日本建築学会大会学術講演梗概集,日本:関東, 2001年9月.929-930
    [113]木村敦子,持田灯,大岡龍三,岩田達明,吉野博,吉田伸治.樹木の流体力学的効果の再現のための植生Canopyモデルの最適化:(その1)既往のモデルとGreen型モデルの比較[C].日本建築学会大会学術講演梗概集,日本:東海, 2003年9月.721-722.
    [114]岩田達明,木村敦子,持田灯,吉野博,大岡龍三,吉田伸治.樹木の流体力学的効果の再現のための植生Canopyモデルの最適化:(その2)Green型モデルに含まれる新たなモデル係数Cpε2の最適化[C].日本建築学会大会学術講演梗概集,日本:東海, 2003年9月.723-724.
    [115] Mayhead,G.J. Some drag Coefficient for British forest trees derived from wind tunnel studies[J].Argic.Meteorol.,1973, 12:123-130
    [116] Craig Fischenich,Syndi Dudley. Determining Drag Coefficients and Area for Vegetation[R]. ERDC TN-EMRRP-SR-08. 1-14.
    [117] [荷]J.高德力安,作物气象学:模拟研究[M].北京:科学出版社,1986.
    [118] Wilson,N.R.,Shaw,R.H. A higher order closure model for canopy flow[J]. J. Appl. Meteorol. 1977, 1197-1205
    [119] Amiro,B.D. Drag coeffcients and turbulence spectra within three boreal forest canopies[J]. Boundary-LayerMeteorol, 1990, 52:227-246
    [120] Lee,X.,Shaw,R.H.,Black,T.A. Modelling the effect of Mean pressure gradient on the mean flow within forests. Agric[J]. For. Meteorol. 1994, 68: 201-212
    [121] Thom,A.S. Momentum absorption by vegetation[J]. Quart. J. Meteorol. Soc, 1971, 97: 414-428
    [122] Pingtong Zeng ,Hidenori Takahashi. A first-order closure model fo rthe wind flow within and above vegetation canopies[J]. Agricultural and Forest Meteorology, 2000, 103:301-313
    [123] Roger H.Shaw, Ulrich Schumann. Large-eddy Simulation of Turbulent Flow above and within a forest[J]. Boundary-Layer Meteorology. 1992, 61:47-64
    [124] William A. Burgess, Michael J. Ellenbecker, Robert D. Treitman. VENTILATION FOR CONTROL OF THE WORK ENVIRONMENT[M](SECOND EDITION),New Jersey: A John Wiley & Sons, 2004, 393-396
    [125] George E. DeVaull, John A. King, Ronald J. Lantzy et al. Understanding Atmospheric Dispersion of Accidental Releases[M]. New York: Center for Chemical Process Safety of The American Institute of Chemical Engineers. 1995,6-13
    [126] M. J. Clifford, P .J. Everitt, and R. Clrake, Using Computational Fluid Dynamics as a Design Tool for Naturally Ventilated Buildings [J]. Building and Environment, 1997, 32 (4): 305-312
    [127] Shao, L, Walker R. R. and Woolisscroft M, Natural ventilation via courtyards: the application ofCFD [C]. In: Energy Impact of Ventilation and Air Infiltration, 14th AIVC Conference, Denmark: Copenhagen, 21-23 September 1993: 393-404
    [128]陈星,雷鸣,汤剑平.地表植被改变气候变化影响的模拟研究[J].地球科学进展,2006, 21 (10): 1075-1082
    [129]邹声华,翁培奋,李孔清等.室内地表对热源厂房通风潜力影响研究[J].矿冶工程, 2009, 29(2):95-98
    [130]杨世铭,陶文铨.传热学[M].北京:高等教育出版社,1998
    [131] Etheridge, D. W. and Nolan, J. A. Ventilation measurements at model scale in a turbulence flow [J]. Building and Environment, 1989, 24 (3) : 53-64
    [132]邹声华,翁培奋,张登春等.热源厂房通风有效性的数值分析[J].中南大学学报, 2007, 38(1):74-78
    [133] Michael C. Mccumber, Roger A. Pielke. Simulation of the Effects of Surface Fluxes of Heat and Moisture in a Mesoscale Numerical Model: 1. Soil Layer[J]. Journal of Geophysical Research, 1981, 86(c10):9929-9938
    [134]姚润明,陈启高,李百战等.通风降温建筑室内热环境模拟及热舒适研究[J].暖通空调, 1997, 27(6):5-9
    [135]闵骞.水面蒸发模拟研究[J].江苏师范大学学报(自然科学版). 2004,28(1):90-94
    [136]白振营.一个计算湖泊(水库)有然水温的新公式[J].水文. 1999, 22 (3):29-32
    [137]濮培民.水面蒸发与散热系数研究——全国通用公式(A)[R].北京:水面蒸发与散热系数研究协作组, 1990.
    [138]陈惠泉,毛世民.水面蒸发与散热系数研究——全国通用公式(B)[R].北京:水面蒸发与散热系数研究协作组, 1991.
    [139]赵振国.水面散热的焓差公式及其应用[J].水利学报. 2004, 33(2):34-39
    [140]刘娇妹,杨志峰.北京市冬季不同景观下垫面温湿度变化特征[J].生态学报,2009,29(6):3241-3252
    [141]李书严,轩春怡,李伟等.城市中水体的微气候应用研究[J].大气科学,2008,32(3):552-560

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700