用户名: 密码: 验证码:
川东北地区三叠系飞仙关组白云岩的形成机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
川东北地区三叠系飞仙关组天然气储量规模之大,深埋藏条件下储层质量之好,在国内外海相碳酸盐岩地层中十分罕见。川东北地区飞仙关组天然气的勘探离不开对白云岩的勘探,只要找到这些代表优质储集岩的优势岩相—白云岩,那么天然气的勘探就有希望获得大的突破。目前,川东北地区三叠系飞仙关组碳酸盐岩白云化作用并最终形成优质储层的成岩机制成为了人们近年来最为热点的研究领域之一。本文在详细的岩心观察与描述、野外剖面实测、样品采集基础上,对川东北地区三叠系飞仙关组白云岩开展了较为系统的岩石学、地球化学、白云化流体温度与来源、白云化系统与白云化机制等方面研究。
     川东北地区飞仙关组主要的白云岩(石)类型可以归并为3个大类:原始结构保存的白云岩(包括微晶白云岩、粒屑白云岩)、原始结构不保存或保存较差的结晶白云岩和作为胶结物出现的孔洞白云石。在纵向分布上,较为有利于储层发育的结晶白云岩、粒屑白云岩主要分布在川东北地区飞仙关组1段和2段;在区域分布上,飞仙关组1段和2段的白云岩是非层控的、具有明显的区域分带性,而飞仙关组4段的白云岩具有显著的层控性,不同地区都有分布。
     川东北地区飞仙关组不同地层段灰岩样品以方解石矿物为主,多数样品所具有的Mn含量只分布在500ppm以下、Sr含量则在500ppm以上。总体上看,川东北地区三叠系飞仙关组海相碳酸盐的锶和碳同位素演化曲线与全球同期海水的锶和碳同位素组成和演化趋势具有较好的一致性,显示全球事件对海水锶和碳同位素组成的控制作用,而氧同位素已经与大气淡水(或其它成岩流体)发生了交换,很难反映其原有的氧同位素组成。飞仙关组白云岩的锶同位素组成都不同程度地高于其相应的同期海水的锶同位素组成,但白云化流体仍与同期或近同期海水有着强烈的亲缘关系;飞仙关组1段和2段白云岩主要继承了海源流体中的碳,而飞仙关组4段中一些具有很高碳同位素组成的白云岩则与细菌硫酸盐还原作用(BSR)有关;飞仙关组1段和2段白云岩的氧同位素组成基本接近,显示它们的白云化流体氧同位素组成和白云化温度均基本接近,而飞仙关组4段白云岩则与经强烈蒸发作用后具有更高的氧同位素组成的高盐度泻湖水有关。
     川东北地区飞仙关组少数可以进行流体包裹体测温的较大白云石晶体(主要是细晶、中晶白云石)的白云化流体可能出现在100℃—130℃的温度区间内,与多数方解石沉淀的温度相一致,属于高温白云石(高温白云化流体);而流体包裹体不发育或体积小的其它较大白云石晶体(包括了粉晶、细晶、中晶以及它们混合组成的不等晶)的白云化流体可能出现在小于100℃的温度区间内,属于低温白云石(低温白云化流体)。多数川东北地区飞仙关组白云岩(石)的计算温度分布在40℃—140℃(氧同位素内部计温法)或者60℃—100℃(氧同位素外部计温法)范围内,尤其集中在<100℃的范围内。这些计算温度的高温区间显然与流体包裹体测温数据相吻合,显示氧同位素计温法的计算结果具有一定的可靠性,同时这些计算结果也在某种程度上进一步支持这些白云石沉淀流体(白云化流体)很可能主要出现在40℃—100℃的低温区间内。
     川东北地区飞仙关组白云岩的白云化流体的Ca/Mg比更可能分布在<1.17的范围内(40℃—100℃的温度区间),包括三叠纪海水或与三叠纪海水有关的海源流体均可以满足这一要求。飞仙关组结晶白云岩和原始结构保存的粒屑白云岩均具有较低的Mn、Fe含量特征,而飞仙关组微晶白云岩则具有相对高的Mn、Fe含量;飞仙关组白云岩的Sr含量均大致分布在200ppm以下。飞仙关组结晶白云岩的碳来源与原地(近源)或远源碳酸盐溶解迁移有关;粒屑白云岩的碳来源与近同期海水中碳有关;微晶白云岩的碳来源较复杂,大部分可能受到了大气淡水中轻碳的混合影响,小部分则来源于与细菌硫酸盐还原作用(BSR)有关的富重碳(13C)的准同生期孔隙水。结晶白云岩和孔洞白云石更可能与深埋的相对高温白云化流体来源有关,原始结构保存的粒屑白云岩、微晶白云岩则更可能与近地表的相对低温白云化流体来源有关,部分微晶白云岩可能受到了后期白云石重结晶作用过程中氧同位素再平衡的影响。不同类型白云岩(石)的87Sr/86Sr比值显著大于川东北地区飞仙关组同期海水的87Sr/ 86Sr比值,但海水或相应的海源流体仍然是最为重要的白云化作用流体。
     川东北地区飞仙关组白云化系统可以归纳为两个在地球化学上存在着明显差异的白云化系统:开放白云化系统、封闭白云化系统。飞仙关组结晶白云岩和孔洞白云石很可能与封闭白云化系统中嘉陵江期高度蒸发浓缩的海源流体有关,对应着非同期海源流体来源的埋藏白云化模式;飞仙关组粒屑白云岩很可能与开放白云化系统中同期或近同期侧向或垂向泻湖蒸发海水有关,对应着准同生或较浅埋藏条件下浅部潜流环境中蒸发海水来源的渗透回流白云化模式;飞仙关组微晶白云岩的白云化流体很可能与开放白云化系统中大气淡水介入(混合)的海水—大气水混合流体有关,对应着准同生条件下潜流环境中海水—大气水混合的蒸发泵白云化模式,飞仙关组4段局部地区微晶白云岩可能对应着准同生期强还原环境下微生物(细菌)白云化模式。
There are giant reserves of natural gas and high-quality reservoir rocks in the deeply buried Triassic Feixianguan Formation, Northeastern Sichuan Basin, which is rare in the domestic and international marine carbonate reservoirs. The natural gas exploration for the Triassic Feixianguan Formation, Northeastern Sichuan Basin relates to the high-quality dolomite reservoirs, which are represented as advantage reservoir facie. If the high-quality dolomite reservoirs could be found, and then the natural gas exploration will be hopeful. The dolomitization and diagenesis of the high-quality dolomite reservoirs in Triassic Feixianguan Formation, Northeastern Sichuan Basin have become the hot research field in recent years. Based on detailed core description, field work and sample collection, the research of petrography, geochemistry, temperature and origin of dolomitizing fluids, dolomitizing system and mechanism was systematiclly carried out in this study.
     The main dolomite types in Triassic Feixianguan Formation include micrite dolomite, grainy dolomite (with good original texture), crystalline dolomite (poor or non-original texture) and dolomite cement. Vertically, crystalline and grainy dolomites are more likely to distributed in the Member 1 and 2 of Feixianguan Formation, and they are non-strata bound and local distribution, whereas dolomites in the Member 4 of Feixianguan Formation are significantly strata bound and regional distribution in the Northeastern Sichuan Basin.
     Limestone samples in the Triassic Feixianguan Formation are dominated by calcite mineral, of which Mn contents are less than 500ppm and Sr contents are more than 500ppm. The strontium and carbon isotopic evolution curve of marine carbonate in the Triassic Feixianguan Formation are rather consistent with the data from global coeval seawater, indicating that the global geological events control the evolution of strontium and carbon isotopic composition of seawater, whereas oxygen isotopes have exchanged with meteoric water or other diagenetic fluids and could not represent the original composition of the seawater. The strontium isotopic composition of dolomites in the Triassic Feixianguan Formation is higher than that of the corresponding coeval seawater, but dolomitizing fluids is still close to the seawater. The dolomites in the Member 1 and 2 of Feixianguan Formation inherited the carbon from seawater, whereas a few dolomites in the Member 4 of Feixianguan Formation with heavy carbon isotope signatures relate to bacterial sulfate reduction (BSR). The oxygen isotopic composition of dolomites in the Feixianguan Formation are almost close to each other, indicating the similar oxygen isotope composition of dolomitizing fluids and dolomitizing temperatures, but the dolomites in the Member 4 of Feixianguan Formation with higher oxygen isotope composition relate to high-salinity lagoon water after the strong evaporation.
     The homogenization temperatures of some fluid inclusions in the large dolomite crystals (mainly fine to medium grain) indicate that hose dolomite crystals may precipitate at 100℃to 130℃, which are consistent with the temperatures of main calcite precipitation, so they belong to the high-temperature dolomitizing fluids. The other large dolomite crystals (including powder to medium grain, and their mixed grain), which has few fluid inclusions or only small size ones, may precipitate in less than 100℃, so they belong to low-temperature dolomitizing fluids. The calculated temperatures of most dolomites in the Triassic Feixianguan Formation are at temperatures of 40℃-140℃(within the internal oxygen isotope geothermometer) or 60℃-100℃(within the external oxygen isotope geothermometer), and most of them are particularly at <100℃. The high-temperature zone of the calculated temperatures is significantly consistent with homogenization temperature of fluid inclusions, indicating calculated temperatures of the oxygen isotope geothermometer may provide a reliable estimation of dolomitizing temperature. The calculated temperatures of the oxygen isotope geothermometer further support that dolomites may precipitate almost in the low-temperature range at 40℃-100℃.
     The Ca/Mg ratios of the dolomitizing fluids in the Triassic Feixianguan Formation are more likely less than 1.17 at temperatures of 40℃-100℃, and the Triassic seawater or Triassic marine fluids were sufficiency to this ratio. The grainy dolomites (with good original texture) and crystalline dolomites (with poor or non-original texture) contain low Mn, Fe contents, whereas micrite dolomites contain high Mn, Fe contents. The Sr contents of dolomites in the Triassic Feixianguan Formation are generally less than 200ppm. The carbon sources of crystalline dolomites in the Feixianguan Formation relate to in-situ or distal migration of the dissolved carbonate, and carbon sources of grainy dolomites in the Feixianguan Formation relate to coeval or non-coeval seawater. The carbon sources of micrite dolomites in the Feixianguan Formation are more complex. Most of them are impacted by the mixture of light carbon isotope from meteoric water, and a few of them are impacted by pore water with heavy carbon isotope from bacterial sulfate reduction (BSR). The crystalline dolomites and dolomite cements are more likely related to the deeply buried dolomitizing fluids with relatively high temperature, and grainy dolomites (with good original texture) and micrite dolomites are more likely related to the dolomitizing fluids near surface with relatively low temperature. Some micrite dolomites are susceptible to further oxygen isotopic re-equilibrium in the recrystallized process. The 87Sr/86Sr ratios of dolomites in the Triassic Feixianguan Formation are significantly greater than that of coeval seawater, but the seawater is still the most important dolomitizing fluid.
     The dolomitizing systems in the Triassic Feixianguan Formation can be summarized in two significantly different types by geochemistry: open system and closed system. The crystalline dolomites and dolomite cements are more likely associated with closed system that relate to high-salinity evaporative seawater from the Jialingjiang Formation, and correspond to burial dolomitization by non-coeval seawater. The grainy dolomites are more likely associated with open system that relate to lateral or vertical high-salinity evaporative lagoon water, and correspond to penecontemporaneous or shallow burial dolomitization (seepage reflux) by evaporative seawater. The micrite dolomites are more likely associated with open system that relate to mixture of meteoric water and seawater, and correspond to penecontemporaneous evaporation-pump dolomitization in the mixing-zone, whereas a few micrite dolomites in the Member 4 of Feixianguan Formation may correspond to penecontemporaneous microbes (bacteria) dolomitization in the anoxic reducing condition.
引文
[1] ?berg G, Wickman T, Mutvei H. Strontium isotope ratios in Mussel shells as indicators of acidification[J]. Ambio, 1995, 24: 265–268.
    [2] Adams J F, Rhodes M L. Dolomitization by seepage refluxion[J]. AAPG Bulletin, 1960, 44: 1912–1920.
    [3] Alderman A R, Skinner H C W. Dolomite sedimentation in the south east of South Australia[J]. American Journal of Science, 1957, 255: 561–567.
    [4] Azmy K, Veizer J, Misi A, et al. Dolomitization and isotope stratigraphy of the Vazante Formation, S?o Francisco Basin, Brazil[J]. Precambrian Research, 2001, 112: 303–329.
    [5] Badiozamani K. The Dorag dolomitization model– application to the Middle Ordovicaiafn of Wisconsin[J]. Journal of Sedimentary Petrology, 1973, 43: 965–984.
    [6] Bissell H J, Chilingar G V. Classification of sedimentary carbonate rocks[M]//Chilingar G V, Bissell H J, Fairbridge R W. Carbonate Rocks: Origin, Occurrence, and Classification. Amsterdam: Elsevier, 1967, 87–168.
    [7] Bourrouilh–Le Jan F G. Déodat Gratet de Dolomieu: Life and works of a European geologist, naturalist and lithologist[J]. Comptes Rendus de l’Académie des Sciences–Series IIA–Earth and Planetary Science, 2000, 330: 83–95.
    [8] Brand U, Veizer J. Chemical diagenesis of multicomponent carbonate system 2: Trace elements[J]. Journal of Sedimentary Petrology, 1980, 50: 1219–1236.
    [9] Brown C W. Diagenesis of late Cambrian oolitic limestone, Maurice Formation, Montana and Wyoming[J]. Journal of Sedimentary Petrology, 1959, 29: 260–266.
    [10] Burke W H, Denison R E, Hetherington E A, et al. Variation of seawater 87Sr/86Sr throughout Phanerozoic time[J]. Geology, 1982, 10: 516–519.
    [11] Burnss J, McWenzie J A, Vasconcelos C. Dolomite formation and biogeochemical cycles in the Phanerozoic[J]. Sedimentology, 2000, 47(SuppII): 49–61.
    [12] Carmichael S K. Formation of replacement dolomite by infiltration of diffuse effluent: Latemar carbonate buildup, Dolomites, northern Italy[D]. Baltimore (Maryland): The Johns Hopkins University, Ph.D. Thesis, 2006, 1–218.
    [13] Carozzi A V. Microscopic sedimentary petrography[M]. New York: JohnWiley & Son Inc., 1960, 1–485.
    [14] Carpenter A B. The chemistry of dolomite formation I: the stability of dolomite[M]//Zenger D H, Dunham J B, Ethington R L. Concepts and models of dolomitization: Tulsa: SEPM Special Publication 28, 1980, 111–121.
    [15] Cayeux Lucien. Les Roches Sédimentaires de France, Roches Carbonatées[M]. Paris: Masson et Cie, 1935, 1–463.
    [16] Chilingar G V. Classification of limestones and dolomites on basis of Ca/Mg ratio[J]. Journal of Sedimentary Petrology, 1957, 27: 187–189.
    [17] Clayton R N, Friedman I, Graf D, et al. The origin of saline formation waters 1. Isotopic composition[J]. Journal of Geophysical Research, 1966, 71: 3869–3882.
    [18] Davies G R, Smith J L B. Structurally controlled hydrothermal dolomite reservoir facies: An overview[J]. AAPG Bulletin, 2006, 90: 1641–1690.
    [19] Derry L A, Keto L, Jacobsen S, et al. Sr isotopic variations in Upper Proterozoic carbonates from Svalbard and East Greenland[J]. Geochimica et Cosmochimica Acta, 1989, 53: 2331–2339.
    [20] Emery D, Robinson A G. Inorganic geochemistry: applications to petroleum geology[M]. Oxford: Blackwell Scientific Publications, 1993, 94.
    [21] Emiliani C, Edwards G. Tertiary ocean bottom temperatures[J]. Nature, 1953, 171: 887–888.
    [22] Fookes E. Development and eustatic control of an Upper Jurassic reef complex (Saint Germain–de–Joux, eartern France)[J]. Facies, 1995, 33: 129–149.
    [23] Friedman G M, Sanders J E. Origin and occurrence of dolostones[M]//Chilingar G V, Bissell H J, Fairbridge R W. Carbonate Rocks: Origin, Occurrence, and Classification. Amsterdam: Elsevier, 1967, 267–348.
    [24] Gao G, Land L S, Elmore R D. Multiple episodes of dolomitization in the Arbuckle Group, Arbuckle Mountains, South-Central Oklahoma: field, petrographic, and geochemical evidence[J]. Journal of Sedimentay Research, 1995, 65: 321–331.
    [25] Garven G, Freeze R A. Theoretical analysis of the role of groundwater flow in the genesis of stratabound ore deposits 2: Quantitative results[J]. American Journal of Science, 1984, 284: 1125–1156.
    [26] Hamza M S, Epstein S. Oxygen isotopic fractionation between oxygen of different sites in hydroxyl–bearing silicate minerals[J]. Geochimica et Cosmochimica Acta, 1980, 44: 173–182.
    [27] Hao F, Guo T L, Zhu Y M, et al. Evidence for multiple stages of oil cracking and thermochemical sulfate reduction in the Puguang gas field, Sichuan Basin, China[J]. AAPG Bulletin, 2008, 92: 611–637.
    [28] Haq B U, Hardenbol J, Vail P R. Chronology of fluctuating sea levels since the Triassic[J]. Science, 1987, 235: 1156–1167.
    [29] Hardie L A. On the significance of evaporites[J]. Annual Review of Earth and Planetary Sciences, 1991, 19: 131–168.
    [30] Hardie L A. Secular variations in seawater chemistry: An explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporites over the past 600 my[J]. Geology, 1996, 24: 279–283.
    [31] Holser W T, Magaritz M. Events near the Permian–Triassic boundary[J]. Modern Geology, 1987, 11: 155–180.
    [32] Hsu K J, Schneider J. Progress report on dolomitization–hydrology of Abu Dhabi Sabkhas, Arabian Gulf[M]//Purser B H. The Persian Gulf. New York: Springer, 1973, 409–422.
    [33] Huang S J, Zeng Y F. Geochemical characteristics of deep-seated Potassium-rich brine in the middle Triassic Leikoupo Formation, Sichuan, China[J]. Chinese Journal of Geochemistry, 1998, 17(2): 123–127.
    [34] Huang S J, Qing H R, Huang P P, et al. Evolution of strontium isotopic composition of seawater from Late Permian to Early Triassic based on study of marine carbonates, Zhongliang Mountain, Chongqing, China[J]. Science in China Series D–Earth Sciences, 2008, 51(4): 528–539.
    [35] Hyeong K, Capuano R.M. Ca/Mg of brines in Miocene/Oligocene sediments of the Texas Gulf Coast: Buffering by calcite/disordered dolomite equilibria[J]. Geochimica et Cosmochimica Acta, 2001, 65: 3065–3080.
    [36] Johnson J W, Oelkers E H, Helgeson H C. SUCRT92: A software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0°to 1000°C[J]. Computers & Geosciences, 1992, 18: 899–947.
    [37] Katz D A, Eberli G P, Swart P K, et al. Tectonic–hydrothermal brecciation associated with calcite precipitation and permeability destruction in Mississippian carbonate reservoirs, Montana and Wyoming[J]. AAPG Bulletin, 2006, 90: 1803–1841.
    [38] Kaufman A J, Knoll A H, Awramik S M. Biostratigraphic and chemostratigraphic correlation of Neoproterozoic sedimentary successions: Upper Tindir Group, northwestern Canada, as a test case[J]. Geology, 1992, 20: 181–185.
    [39] Kaufman A J, Jacobsen S B, Knoll A H. The Vendian record of Sr– and C–isotopic variations in seawater: implications for tectonics and paleoclimate[J]. Earth and Planetary Science Letters, 1993, 120: 409–430.
    [40] Kelley D S, Karson J A, Früh–Green G L, et al. A serpentine–hosted ecosystem: the Lost City Hydrothermal Field[J]. Science, 2005, 307: 1428–1434.
    [41] Koepnick R B, Burke W H, Denison R E, et al. Construction of the Seawater 87Sr/86Sr curve for the Cenozoic and Cretaceous: Supporting data[J]. Chemical Geology, 1985, 58: 55–81.
    [42] Korte C, Kozur H W, Bruckschen P, et al. Strontium isotope evolution of Late Permian and Triassic seawater[J]. Geochimica et Cosmochimica Acta, 2003, 67: 47–62.
    [43] Korte C, Kozur H W, Veizer J.δ13C andδ18O values of Triassic brachiopods and carbonate rocks as proxies for coeval seawater and palaeotemperature[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2005, 226: 287–306.
    [44] Korte C, Jasper T, Kozur H W, et al. 87Sr/86Sr record of Permian seawater[J]. Paleogeography Paleoclimatology Paleoecology, 2006, 240: 89–107.
    [45] Kozur H W. Integrated ammonoid, conodont and radiolarian zonation of the Triassic[J]. Hallesches Jahrb. Geowiss., 2003a, 25: 49–79.
    [46] Kozur H W. Integrated ammonoid, conodont and radiolarian zonation of the Triassic and some remarks to Stage/Substage subdivision and the numeric age of the Triassic stages[J]. Albertiana, 2003b, 28: 57–74.
    [47] Land L S. Diagenesis of skeletal carbonates[J]. Journal of Sedimentary Petrology, 1967, 37: 914–930.
    [48] Land L S. The isotopic and trace element geochemistry of dolomite: The state of the art[M]//Zenger D H, Dunham J B, Ethington R L. Concepts and models of dolomitization. Tulsa: SEPM Special Publication 28, 1980, 87–110.
    [49] Land L S. The applications of stable isotopes to the study of the origin of dolomite and to problems of diagenesis of clastic sediments[M]//Arthur M A, Anderson T F, Kaplan I R, et al. Stable isotopes in sedimentary geology. Tulsa: SEPM Short Course 10, 1983, 4–1–4–22.
    [50] Land L S. The origin of massive dolomite[J]. Journal of Geological Education, 1985, 33: 112–125.
    [51] Langmuir D. The geochemistry of some carbonate ground waters in central Pennsylvania[J]. Geochimica et Cosmochimica Acta, 1971, 35: 1023–1045.
    [52] Leighton M W, Pendexter C. Carbonate rock types[M]// Ham W E. Classification of Carbonate Rocks. Tulsa: AAPG Memoir 1, 1962, 62–85.
    [53] Lippman F. Sedimentary carbonate minerals[M]. Berlin: Springer-Verlag, 1973, 150.
    [54] Livingstone D A. Chemical composition of rivers and lakes[R]//Fleischer M. Data of geochemistry. Reston: U.S. Geological Survey Professional Paper 440 G, 1963, 41–44.
    [55] Lonnee J, Machel H G. Pervasive dolomitization with subsequent hydrothermal alteration in the Clarke Lake gas field, Middle Devonian Slave Point Formation, British Columbia, Canada[J]. AAPG Bulletin, 2006, 90: 1739–1761.
    [56] Lovering T S. The origin of hydrothermal and low temperature dolomite[J]. Economic Geology, 1969, 64: 743–754.
    [57] Luczaj J A. Evidence against the Dorag (mixing–zone) model for dolomitization along the Wisconsin arch–A case for hydrothermal diagenesis[J]. AAPG Bulletin, 2006, 90: 1719–1738.
    [58] Luczaj J A, Harrison W B, Williams N S. Fractured hydrothermal dolomite reservoirs in the Devonian Dundee Formation of the central Michigan Basin[J]. AAPG Bulletin, 2006, 90: 1787–1801.
    [59] Machel HG. Concepts and models of dolomitization: A critical reappraisal[M]//Braithwaite C J R, Rizzi G, Darke G. The geometry and petrogenesis of dolomite hydrocarbon reservoirs. London: Geological Society of London Special Publication 235? 2004, 7–63.
    [60] Machel H G. The pros and cons of various dolomite models: some work, some don't[C]. AAPG 2008 Annual Convention and Exhibition, April 20-23, San Antonio, Texas. 2008, 128.
    [61] Magaritz M. 13C minima follow extinction events: A clue to faunal radiation[J]. Geology, 1989, 17: 337–340.
    [62] McArthur J M. Recent trends in strontium isotope stratigraphy[J]. Terra Nova, 1994, 6: 331–358.
    [63] McArthur J M, Howarth R J, Bailey T R. Strontium isotope stratigraphy LOWESS version 3: best fit to the marine Sr–isotope curve for 0–509 Ma and accompanying look–up table for deriving numerical age[J]. Journal of Geology, 2001, 109: 155–170.
    [64] Miller K G, Katz M E. Oligocene to Miocene benthic foraminiferal and abyssal circulation changes in the North Atlantic[J]. Micropaleontology, 1987, 33: 97–149.
    [65] Milliken K L, Land L S, Loucks R G. History of burial diagenesis determined from isotopic geochemistry, Frio Formation, Brazoria county, Texas[J]. AAPG Bulletin, 1981, 65: 1397–1413.
    [66] Muchez P, Viaene W. Dolomitization caused by water circulation near the mixing zone: an example from the Lower Viséan of the Campine Basin (northern Belgium) [M]//Purser B H, Tucker M E, Zenger D H. Dolomites–A Volume in Honor of Dolomieu. Oxford: Blackwell Scientific Publications, 1994, 155–166.
    [67] Murray R C M. Origin of porosity in carbonate rocks[J]. Journal of Sedimentary Petrology, 1960, 30: 59–84.
    [68] Northrop D A, Clayton R N. Oxygen isotope fractionation in systems containing dolomite[J]. Journal of Geology, 1966, 74: 174–196.
    [69] Oliver J. Fluids expelled tectonically from orogenic belts:their role in hydrocarbon migration and other geologic phenomena[J]. Geology, 1986, 14: 99–102.
    [70] O'Neil J R, Clayton R N, Mayeda T K. Oxygen isotope fractionation in divalent metal carbonates[J]. Journal of Chemical Physics, 1969, 51: 5547–5558
    [71] Palmer M R, Edmond J M. The strontium isotope budget of the modern ocean[J]. Earth and Planetary Science Letters, 1989, 92: 11–26.
    [72] Reinhold C. Multiple episodes of dolomitization and dolomite recrystallization during shallow burial in Upper Jurassic shelf carbonates eastern Swabian Alb, Southern Germany[J]. Sedimentary Geology, 1998, 121: 71–95.
    [73] Ries J B. Aragonitic Algae in Calcite Seas: Effect of Seawater Mg/Ca Ratio on Algal Sediment Production[J]. Journal of Sedimentary Research, 2006, 76: 515–523.
    [74] Rosen M R, Miser D E, Starcher M A, et al. Formation of dolomite in the Coorong region, South Australia[J]. Geochimica et Cosmochimica Acta, 1989, 53: 661–669.
    [75] Rosenberg P E, Holland H D. Calcite–dolomite–magnesite stability relations in solutions at elevated temperatures[J]. Science, 1964, 145: 700–701.
    [76] Rosenberg P E, Burt D M, Holland H D. Calcite–dolomite–magnesite stability relations in solutions: The effect of ionic strength[J]. Geochimica et Cosmochimica Acta, 1967, 31: 391–396.
    [77] Sheppard S M F, Schwarz H P. Fractionation of carbon and oxygen isotopes and magnesium between coexisting metamorphic calcite and dolomite[J]. Contributions to Mineralogy and Petrology, 1970, 26: 161–198.
    [78] Shvetsov M S. Petrography of sedimentary rocks[M]. Moscow: Gosgeoltekhizdat, 1958, 1–416.
    [79] Sibley D F, Gregg J M. Classification of dolomite rock textures[J]. Journal of Sedimentary Petrology, 1987, 57: 967–975.
    [80] Smith J L B. Origin and reservoir characteristics of Upper Ordovician Trenton–Black River hydrothermal dolomite reservoirs in New York[J]. AAPG Bulletin, 2006, 90: 1691–1718.
    [81] Stein M, Starinsky A, Agnon A, et al. The impact of brine-rock interaction during marine evaporite formation on the isotopic Sr record in the oceans: Evidence from Mt. Sedom, Israel[J]. Geochimica et Cosmochimica Acta, 2000, 64: 2039–2053.
    [82] Teodorovich G I. Study of sedimentary rocks[M]. Leningrad: Gostoptekhyzdat, 1958, 1–572.
    [83] Urey H C. The thermodynamic properties of isotopic substances[J]. Journal of the Chemical Society (May), 1947, 562–581.
    [84] Urey H C, Epstein S, Mckinney C, et al. Method for measurement of paleotemperatures[J]. Geological Society of America Bulletin, 1948, 59: 1359–1360.
    [85] Urey H C, Lowenstam H A, Epstein S, et al. Measurement of paleotemperatures and temperatures of the Upper Cretaceous of England, Denmark, and the Southeastern United–States[J]. Geological Society of America Bulletin, 1951, 62: 399–416.
    [86] Vahrenkamp V C, Stewart P K. A new distribution coefficient for the incorporation of strontium into dolomite and its implications for the formation of ancient dolomites[J]. Geology, 1990, 18: 387–391.
    [87] Vasconcelos C, McKenzie J A, Bernasconi S, et al. Microbial mediation as a possible mechanism for natural dolomite formation at low temperatures[J]. Nature, 1995, 377: 220–222.
    [88] Vasconcelos C, Mckenzie J A. Microbial mediation of modern dolomite p recip itation and diagenesis under anoxic conditions, Lagoa Vermelha, Rio de Janeiro, Brazil[J]. Journal of Sedimentary Research, 1997, 67: 378–390.
    [89] Vasconcelos C, McKenzie J A, Warthmann R, et al. Calibration of theδ18O paleothermometer for dolomite precipitated in microbial cultures and natural environments[J]. Geology, 2005, 33: 317–320.
    [90] Veizer J, Ala D, Azmy K, et al. 87Sr/86Sr,δ13C andδ18O evolution of Phanerozoic seawater[J]. Chemical Geology, 1999, 161: 59–88.
    [91] Vengosh A, Starinsky A, Kolodny Y, et al. Boron isotope variations during fractional evaporation of sea water: new constraints on the marine vs. nonmarine debate[J]. Geology, 1992, 20: 799–802.
    [92] Vishnyakov S G. Genetic types of dolomite rock[J]. Doklady Akad. Nauk. S.S.S.R., 1951, 76: 112–113.
    [93] Von Der Borch C C. Stratigraphy and formation of Holocene dolomitic carbonate deposits of the Coorong area, South Australia[J]. Journal of Sedimentary Petrology, 1976, 46: 952–966.
    [94] Warren J K. Sedimentology and mineralogy of dolomitic Coorong lakes, South Australia[J]. Journal of Sedimentary Petrology, 1990, 60: 843–858.
    [95] Warren J K. Evaporites: Their Evolution and Economics[M]. Oxford: Blackwell Scientific Publications, 1999, 1–438.
    [96] Warren J. Dolomite: occurrence, evolution and economically important associations[J]. Earth-Science Reviews, 2000, 52: 1–81.
    [97] Young G C, Laurie J R. An Australian Phanerozoic timescale[M]. Oxford: Oxford University Press, 1996, 40–43, 136–148.
    [98] Zenger D H, Dunham J B, Ethington R L. Concepts and models of dolomitization[M]. Tulsa: SEPM Special Publications 28, 1980, 1–328.
    [99] Zhao W Z, Luo P, Chen G S, et al. Origin and reservoir rock characteristics of dolostones on the early Triassic Feixiangan Formation, NE Sichuan Basin, China: Significance for future gas exploration[J]. Journal of Petroleum Geology, 2005, 28(1): 83–100.
    [100]毕胜宇,郑聪斌,李振宏,等.鄂尔多斯盆地天环北段白云岩成因分析[J].东华理工学院学报(自然科学版), 2005, 28(1): 1–4.
    [101]陈更生,曾伟,杨雨,等.川东北部飞仙关组白云石化成因探讨[J].天然气工业, 2005, 25(4): 40–41.
    [102]陈锦石,邵茂茸,霍卫国,等.浙江长兴二叠系和三叠系界线地层的碳同位素[J].地质科学, 1984, 19(1): 88–93.
    [103]陈明启.川西南下二叠阳新统白云岩成因探讨[J].沉积学报, 1989, 7(2): 45–50.
    [104]陈荣坤.稳定氧碳同位素在碳酸盐岩成岩环境研究中的应用[J].沉积学报, 1994, 12(1): 11–21.
    [105]陈永权,周新源,赵葵东,等.塔里木盆地塔中1井藻纹层白云岩与竹叶状白云岩成因—基于岩石学、元素与同位素地球化学的厘定[J].地质学报, 2008, 82(6): 826–834, 866.
    [106]陈宗清.川东石炭系气藏分布规律与深化勘探[J].中国海上油气(地质), 2001, 15(3): 182–186.
    [107]邓长瑜,张秀莲,陈建文,等.黔东南地区寒武系碳酸盐岩成岩作用分析[J].沉积学报, 2004, 22(4): 588–596.
    [108]杜远生,殷鸿福,王治平.秦岭造山带晚加里东–早海西期的盆地格局和构造演化[J].地球科学—中国地质大学学报, 1997, 22(4): 401–405.
    [109]范德江,刘仲衡,韩德亮,等.中扬子二叠系白云石化模式[J].海洋湖沼通报, 1993, 15(3): 40–45.
    [110]方少仙,侯方浩,董兆雄.上震旦统灯影组中非叠层石生态系兰细菌白云岩[J].沉积学报, 2003, 21(1): 96–105.
    [111]冯增昭.沉积岩石学[M].北京:石油工业出版社, 1993, 321–338.
    [112]郭一华.川东地区石炭系储层成岩作用和天然气成藏规律[J].西南石油学院学报, 1994, 16(1): 1–10.
    [113]韩征,余素玉.滇西宁蒗—丽江地区泥盆系白云岩的成因[J].沉积学报, 1990, 8(2): 51–58.
    [114]何幼斌,冯增昭.四川盆地及其周缘下二叠统细—粗晶白云岩成因探讨[J].江汉石油学院学报, 1996, 18(4): 5–20.
    [115]胡明毅,李建明,翟永红,等.湖北随州上震旦统灯影组白云岩成岩作用及储层特征[J].江汉石油学院学报, 1997, 19(1): 1–6.
    [116]胡忠贵.川东―渝北地区石炭系白云岩成因与成岩系统研究[D].成都:成都理工大学博士论文, 2009.
    [117]胡作维,黄思静,王庆东,等.川东下三叠统飞仙关组—嘉陵江组界线附近的锶同位素组成[J].地层学杂志, 2007, 31(4): 354–360.
    [118]黄思静.海相碳酸盐矿物的阴极发光性与其成岩蚀变的关系[J].岩相古地理, 1990, 10(4): 9–15.
    [119]黄思静.上扬子二叠系—三叠系初海相碳酸盐岩的碳同位素组成与生物绝灭事件[J].地球化学, 1994, 23(1): 60–68.
    [120]黄思静.上扬子地台区晚古生代海相碳酸盐岩的碳、锶同位素研究[J].地质学报, 1997a, 71(1): 45–53.
    [121]黄思静,曾允孚.四川成都盆地某深层富钾卤水的地球化学特征及成因[J].沉积学报, 1997b, 15(3): 67–71.
    [122]黄思静,石和,张萌,等.锶同位素地层学在碎屑岩成岩研究中的应用[J].沉积学报, 2002, 20(3): 359–366.
    [123]黄思静,石和,毛晓冬,等.早古生代海相碳酸盐的成岩蚀变性及其对海水信息的保存性[J].成都理工大学学报(自然科学版), 2003, 30(1): 9–18.
    [124]黄思静,卿海若,裴昌蓉,等.川东三叠系飞仙关组白云岩锶含量、锶同位素组成与白云石化流体[J].岩石学报, 2006a, 22(8): 2123–2132.
    [125]黄思静,卿海若,胡作维,等.西藏南部晚白垩世厚壳蛤不同壳层的地球化学特征及其对古海洋信息的保存性[J].沉积学报, 2006b, 24(1): 68–74.
    [126]黄思静,孙治雷,吴素娟,等.三叠纪全球海水的锶同位素组成及主要控制因素[J].矿物岩石, 2006c, 26(1): 43–48.
    [127]黄思静,裴昌蓉,卿海若,等.四川盆地东部海相下、中三叠统界线的锶同位素年龄标定[J].地质学报, 2006d, 80(11): 1691–1698.
    [128]黄思静, Hairuo Qing,胡作维,等.四川盆地东北部三叠系飞仙关组碳酸盐岩成岩作用和白云岩成因的研究现状和存在问题[J].地球科学进展, 2007a, 22(5): 495–503.
    [129]黄思静, Qing Hairuo,胡作维,等.封闭系统中的白云石化作用及其石油地质学和矿床学意义—以四川盆地东北部三叠系飞仙关组碳酸盐岩为例[J].岩石学报, 2007b, 23(11): 2955–2962.
    [130]黄思静, Qing Hairuo,胡作维,等.四川盆地东北部三叠系飞仙关组硫酸盐还原作用对碳酸盐成岩作用的影响[J].沉积学报, 2007c, 25(6): 815–824.
    [131]黄思静,卿海若,胡作维,等.川东三叠系飞仙关组碳酸盐岩的阴极发光特征与成岩作用[J].地球科学–中国地质大学学报, 2008a, 33(1): 26–34.
    [132]黄思静, Hairuo Qing,黄培培,等.晚二叠世–早三叠世海水的锶同位素组成与演化—基于重庆中梁山海相碳酸盐的研究结果[J].中国科学(D辑:地球科学), 2008b, 38(3): 273–283.
    [133]黄思静,王春梅,黄培培,等.碳酸盐成岩作用的研究前沿和值得思考的问题[J].成都理工大学学报(自然科学版), 2008c, 35(1): 1–10.
    [134]黄思静,石和,覃建雄,等.川东P-T储层白云岩化机理及溶解过程的化学热力学研究[R].成都:成都理工大学档案馆, 2009.
    [135]蒋志斌,王兴志,张帆,等.四川盆地北部长兴组—飞仙关组礁、滩分布及其控制因素[J].中国地质, 2008, 35(5): 940–950.
    [136]金振奎,冯增昭.滇东—川西下二叠统白云岩的形成机理—玄武岩淋滤白云化[J].沉积学报, 1999, 17(3): 383–389.
    [137]蓝江华.四川盆地大池干井构造带石炭系古岩溶储层成因模式[J].成都理工学院学报, 1999, 26(1): 23–27.
    [138]雷卞军,强子同,陈季高.川东上二叠统生物礁成岩作用与孔隙演化[J].石油与天然气地质, 1991, 12(4): 364–375.
    [139]雷卞军,强子同,文应初.川东及邻区上二叠统生物礁的白云岩化[J].地质论评, 1994, 40(6): 534–543.
    [140]雷怀彦,朱莲芳.四川盆地震旦系白云岩成因研究[J].沉积学报, 1992, 10(2): 69–78.
    [141]黎平,吴亚军,姜金兰,等.川东北地区通南巴构造带三叠系天然气成藏规律及主控因素分析[C].成都:油气藏地质与开发工程国家重点实验室第4届国际学术研讨会论文集, 2007.
    [142]李淳.川东地区上石炭统碳酸盐岩成岩作用[J].石油大学学报(自然科学版), 1998, 22(5): 19–22.
    [143]李茂竹,王玉英.四川华蓥山中段下二叠统灰岩中“砂糖状白云岩”特征及其白云化作用的讨论[J].川煤地勘, 1991, (9): 45–48.
    [144]李天生.四川盆地寒武系沉积成岩特征与油气储集性[J].矿物岩石, 1992, 12(3): 68–78.
    [145]李文平.川东、鄂西长兴组礁的成岩作用与白云岩化[J].天然气工业, 1989, 9(1): 10–15.
    [146]李心如,刘效曾.川东地腹区长兴礁岩的成岩作用和孔隙演化特征[J].成都地质学院学报, 1991, 18(1): 111–119.
    [147]林耀庭,熊淑君.氢氧同位素在四川气田地层水中的分布特征及其成因分类[J].海相油气地质, 1999, 4(4): 39–45.
    [148]林耀庭,潘尊仁.四川盆地气田卤水浓度及成因分类研究[J].盐湖研究, 2001, 9(3): 1–7.
    [149]林耀庭,姚有成,康正华,等.四川宣达盐盆富钾富矿卤水地球化学特征及资源意义研究[J].盐湖研究, 2004, 12(1): 8–18.
    [150]刘德汉,肖贤明,熊永强,等.四川东部飞仙关组鲕滩气藏储层含自然硫不混溶包裹体及硫化氢成因研究[J].中国科学(D辑:地球科学), 2006, 36(6): 520–532.
    [151]刘树根,马永生,黄文明,等.四川盆地上震旦统灯影组储集层致密化过程研究[J].天然气地球科学, 2007, 18(4): 485–496.
    [152]刘树根,黄文明,张长俊,等.四川盆地白云岩成因的研究现状及存在问题[J].岩性油气藏, 2008, 20(2): 6–15.
    [153]刘文汇,腾格尔,高波,等.川东北高含硫天然气成藏机理及分布规律研究[R].北京:中国石化石油勘探开发研究院, 2008.
    [154]罗志立.中国西南地区晚古生代以来地裂运动对石油等矿产形成的影响[M]//罗志立,赵锡奎,刘树根,等.龙门山造山带的崛起和四川盆地的形成与演化.成都:成都科技大学出版社, 1994, 20–39.
    [155]马永生.四川盆地普光超大型气田的形成机制[J].石油学报, 2007a, 28(2): 9–14.
    [156]马永生,郭彤楼,赵雪凤,等.普光气田深部优质白云岩储层形成机制[J].中国科学(D辑:地球科学), 2007b, 37(增刊II): 43–52.
    [157]穆曙光,周茂,华永川.川东北地区下三叠统飞仙关组白云岩成因类型[J].天然气工业, 1994, 14(3): 23–27.
    [158]钱峥.川东石炭系碳酸盐岩孔隙演化中的埋藏胶结作用[J].石油大学学报(自然科学版), 1999, 23(3): 9–12.
    [159]强子同,郭一华,张帆,等.四川上二叠统老龙洞生物礁及其成岩作用[J].石油与天然气地质, 1985, 6(1): 82–90.
    [160]强子同,文应初,雷卞军,等.川东鄂西上二叠统生物礁白云石化岩石学和地球化学[J].地球化学, 1992, 21(2): 158–165.
    [161]秦建中,饶丹,蒋宏.高演化海相碳酸盐岩层系古温标的直接指标—包裹体均一温度[J].石油实验地质, 2008, 30(5): 494–498.
    [162]任建国,黄奕普,方志山,等.热带西太平洋雨水的氢氧同位素组成[J].海洋学报, 2000, 22(5): 60-64.
    [163]石新,王兴志,张帆,等.川西北地区栖霞组白云岩储集层研究[J].西南石油学院学报, 2005, 27(2): 13–16.
    [164]四川省地质局航空区域地质调查队.中华人民共和国地质图(广安幅, 1:20万)及说明书[R].成都:四川省地质矿产局, 1980.
    [165]四川省地质矿产局.四川省区域地质志[M].北京:地质出版社, 1991, 1–730.
    [166]四川省地质矿产局.四川省岩石地层[M].武汉:中国地质大学出版社, 1997, 78–176.
    [167]四川省地质矿产局川东南地质大队.中华人民共和国地质图(邻水县幅, 1:5万)及说明书[R].成都:四川省地质矿产局, 1995.
    [168]四川省区域地层表编写组.西南地区区域地层表—四川省分册[M].北京:地质出版社, 1978, 31–38.
    [169]四川油气区石油地质志编写组.中国石油地质志—四川油气区[M].北京:石油工业出版社, 1989.
    [170]宋鹤彬.四川盆地某井富钾硼溴浓卤水水化学同位素地球化学及形成机制[R].北京:中国地质科学院矿床地质研究所, 1994.
    [171]苏立萍,罗平,胡社荣,等.川东北罗家寨气田下三叠统飞仙关组鲕粒滩成岩作用[J].古地理学报, 2004, 6(2): 182–190.
    [172]苏立萍.川东北飞仙关组鲕粒白云岩储层发育规律及控制因素研究[D].北京:中国矿业大学学位论文, 2005.
    [173]陶士振,邹才能,张宝民,等.川东北飞仙关鲕滩气藏储层流体包裹体与成藏特征[J].矿物岩石地球化学通报, 2006, 25(1): 42–48
    [174]汪泽成,赵文智,张林,等.四川盆地构造层序与天然气勘探[J].北京:地质出版社, 2002, 1–287.
    [175]王芙蓉,陈振林,王雪莲,等.川东北地区石炭系成岩作用及储集性[J].海相油气地质, 2004, 9(1): 91–96.
    [176]王瑞华,牟传龙,谭钦银,等.达县—宣汉地区长兴组礁滩白云岩成岩作用与成岩环境研究[J].沉积与特提斯地质, 2006, 26(1): 30–36.
    [177]王士峰,向芳.资阳地区震旦系灯影组白云岩成因研究[J].岩相古地理, 1999, 19(3): 21–29.
    [178]王兴志,穆曙光,方少仙,等.四川盆地西南部震旦系白云岩成岩过程中的孔隙演化[J].沉积学报, 2000, 18(4): 549–554.
    [179]王兴志,张帆,蒋志斌,等.四川盆地东北部飞仙关组储层研究[J].地学前缘, 2008, 15(1): 117–122.
    [180]王一刚,张静,杨雨,等.四川盆地东部上二叠统长兴组生物礁气藏形成机理[J].海相油气地质, 1997, 5(1-2): 145–152.
    [181]王一刚,文应初,张帆,等.川东地区上二叠统长兴组生物礁分布规律[J].天然气工业, 1998, 18(6): 10–15.
    [182]王一刚,刘划一,文应初,等.川东飞仙关组鲕滩储层分布规律勘探方法与远景预测[J].天然气工业, 2002, 22(增刊): 14–19.
    [183]王一刚,文应初,洪海涛,等.四川盆地及邻区上二叠统—下三叠统海槽的深水沉积特征[J].石油与天然气地质, 2006, 27(5): 702–714.
    [184]王一刚,文应初,洪海涛,等.四川盆地三叠系飞仙关组气藏储层成岩作用研究拾零[J].沉积学报, 2007, 25(6): 831–839.
    [185]王运生,金以钟.四川盆地下二叠统白云岩及古岩溶的形成与峨眉地裂运动的关系[J].成都理工学院学报, 1997, 24(1): 8–16.
    [186]王志宏,李建明,高振中,等.渝东武隆上寒武统孔隙结构特征及成岩作用研究[J].沉积与特提斯地质, 2002, 22(3): 69–73.
    [187]魏国齐,陈更生,杨威,等.川北下三叠统飞仙关组“槽台”沉积体系及演化[J].沉积学报, 2004, 22(2): 254–260.
    [188]魏国齐,杨威,张林,等.川东北飞仙关组鲕滩储层白云石化成因模式[J].天然气地球科学, 2005, 16(2): 162–166.
    [189]吴仕强,朱井泉,胡文瑄,等.塔里木盆地寒武系—奥陶系白云岩稀土元素特征及其成因意义[J].现代地质, 2009, 23(4): 638–647.
    [190]吴素娟,黄思静,孙治雷,等.鄂尔多斯盆地三叠系延长组砂岩中的白云石胶结物及形成机制[J].成都理工大学学报(自然科学版), 2005, 32(6): 569–575.
    [191]夏邦栋.普通地质学[M].北京:地质出版社, 1995, 197–198.
    [192]夏吉文.蜀南地区飞仙关组混积台地层序地层与储层研究[D].成都:西南石油大学学位论文, 2009.
    [193]向芳,陈洪德,张锦泉.资阳地区震旦系灯影组白云岩中葡萄花边的成因研究[J].矿物岩石, 1998, 18(增刊): 136–138.
    [194]谢增业,单秀琴,李剑,等.川东北飞仙关组包裹体特征及其在天然气成藏研究中的应用[J].矿物岩石地球化学通报, 2006, 25(1): 49–54.
    [195]许效松,刘宝珺,赵玉光,等.上扬子西缘二叠—三叠纪层序地层与盆山转换耦合[M].北京:地质出版社, 1997, 9–16.
    [196]杨杰东,张俊明,陶仙聪,等.末元古系—寒武系底Sr、C同位素对比[J].高校地质学报, 2000, 6(4): 532–545.
    [197]杨克明,叶军,吕正祥.川西坳陷上三叠统成藏年代学特征[J].石油与天然气地质. 2005, 26(2): 208–213.
    [198]杨威,王清华,刘效曾.塔里木盆地和田河气田下奥陶统白云岩成因[J].沉积学报, 2000, 18(4): 544–548.
    [199]杨伟,胡明毅,宋海敬,等.四川盆地南部中—上寒武统储层成岩作用[J].海相油气地质, 2008, 13(4): 29–36.
    [200]杨晓萍,张宝民.四川盆地南部志留系碳酸盐灰泥丘成因与储集性[J].海相油气地质, 2002, 7(4): 26–32.
    [201]杨晓萍.四川盆地川南志留系和川东北三叠系碳酸盐岩沉积储层研究[R].北京:中国矿业大学博士后研究工作报告, 2003.
    [202]杨雨,文应初.川东北开江—梁平海槽发育对T1f鲕粒岩分布的控制[J].天然气工业. 2002, 22(增刊): 30–32.
    [203]杨遵仪,张舜新,杨基端,等.中国地层典—三叠系[M].北京:地质出版社, 2000, 1–139.
    [204]曾伟,黄先平,杨雨,等.川东北下三叠统飞仙关组白云岩成因及分布[J].西南石油大学学报, 2007, 29(1): 19–22.
    [205]曾允孚.石灰岩与白云岩的分类和命名[R]//成都地质学院沉积研究室.沉积专辑.成都:成都地质学院, 1981, 290–293.
    [206]曾允孚,黄思静, Kulke H,等.四川甘溪泥盆系观雾山组白云岩特征与其形成条件的关系[J].沉积学报, 1988, 6(4): 12–22.
    [207]曾允孚,张锦泉,郑和荣.四川龙门山唐王寨地区中上泥盆统白云岩成因[J].地质论评, 1991, 37(1): 1–11.
    [208]翟永红,郭成贤.中扬子台地北缘灯影组碳酸盐岩成岩作用序列及成岩模式[J].地质地球化学, 1997, 25(2): 45–52.
    [209]张理刚.稳定同位素有地质科学中的应用[M].西安:陕西科学技术出版社, 1985, 1–266.
    [210]张廷山,兰光志, Kersh S,等.四川盆地南北缘志留纪生物礁成岩作用及储层特征[J].沉积学报, 1999, 17(3): 374–382.
    [211]张荫本.四川盆地二叠系中的白云岩[J].石油学报, 1982, 3(1): 29–33.
    [212]郑荣才,刘文均,李祥辉,等.白云岩成因在层序地层研究中的应用—以龙门山泥盆系为例[J].矿物岩石, 1996, 16(1): 28–37.
    [213]郑荣才,胡忠贵,冯青平,等.川东北地区长兴组白云岩储层的成因研究[J].矿物岩石, 2007, 27(4): 78–84.
    [214]郑荣才,耿威,郑超,等.川东北地区飞仙关组优质白云岩储层的成因[J].石油学报, 2008a, 29(6): 815–821.
    [215]郑荣才,史建南,罗爱君,等.川东北地区白云岩储层地球化学特征对比研究[J].天然气工业, 2008b, 28(11): 16–21.
    [216]郑荣才,罗平,文其兵,等.川东北地区飞仙关组层序—岩相古地理特征和鲕滩预测[J].沉积学报, 2009, 27(1): 1–8.
    [217]郑永飞,陈江峰.稳定同位素地球化学[M].北京:科学出版社, 2000, 1–316.
    [218]中石油西南油气田分公司.中石油西南油气田分公司勘探成果及部署总图(2006)[R].成都:中石油西南油气田分公司, 2006.
    [219]周瑶琪,柴之芳,毛雪瑛,等.浙江长兴煤山二叠三叠系界线硫和锶同位素异常[J].中国科技大学研究生院学报, 1990, 7(1): 83–88.
    [220]朱光有,张水昌,梁英波.四川盆地深部海相优质储集层的形成机理及其分布预测[J].石油勘探与开发, 2006a, 33(2): 161–166.
    [221]朱光有,张水昌,梁英波,等. TSR对深部碳酸盐岩储层的溶蚀改造—四川盆地深部碳酸盐岩优质储层形成的重要方式[J].岩石学报, 2006b, 22(8): 2182–2194.
    [222]朱光有,张水昌,梁英波,等.四川盆地天然气特征及气源[J]. 2006c, 13(2): 234–248.
    [223]朱井泉,张瑞锡.平行连晶状白云石的发现及其成因探讨[J].现代地质, 1990, 4(2): 44–52.
    [224]朱井泉.华蓥山三叠系含盐建造中白云岩的成因阶段及其特征[J].岩石学报, 1994, 10(3): 290–300.
    [225]朱同兴,黄志英.地质记录中的海水白云岩化[J].岩相古地理, 1993, 13(5): 16–25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700