用户名: 密码: 验证码:
某市岩溶地下水水源地四氯化碳污染机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以某岩溶水源地地质水文地质条件、长期积累的污染源资料及水源地污染动态的系统监测信息为基础,以先进的检测、模拟实验技术为手段,从水源地污染途径与方式、污染主通道、岩溶地下水及土壤污染特征及规律、四氯化碳迁移污染机理实验模拟、水源地四氯化碳输入输出平衡分析等诸方面,系统研究了该水源地多元结构体系(下伏岩溶含水层、上覆松散层)中四氯化碳污染的机理,论文要点如下:
     (1)污染源为某农药厂,四氯化碳进入岩溶含水层的途径主要有:含四氯化碳废水通过岩溶发育的裸露灰岩直接流入或通过土层的渗漏间接进入。
     利用野外示踪试验查明了七里沟水源地CCl4污染物运移主通道位于向斜盆地的轴部。在主运移通道上污染物运移速度最高达3027.8米/小时。
     (2)水源地岩溶地下水四氯化碳迁移污染特征如下:
     在平面上四氯化碳污染羽呈“哑铃型”形态,污染重心分布在南部污染源亚区和北部人工集中排泄亚区,且南区四氯化碳浓度明显高于北区。
     四氯化碳污染羽的时间动态变化受污染源输入、地下水开采量、人工流场等因素的影响。2004年前,丰水期四氯化碳污染羽范围大于平水期和枯水期,且丰水期污染加重。受2005年始北区开采量锐减、南北水头差减小(小于10m)的影响,同一年份里两端污染集中区内无论四氯化碳污染羽范围还是污染程度,丰水期和枯水期的变化都不大,但污染浓度呈逐年下降之势。
     (3)四氯化碳在土壤中的垂向渗透迁移室内模拟试验研究表明:
     土壤有机质含量是影响四氯化碳在土壤中渗透迁移的重要因素。在有机质含量较高的土壤中,四氯化碳在土壤有机质中的分配起主导作用,本研究中有机质含量分别为1.60%、0.13%和0.059%的粘壤土,土壤中CT平衡浓度分别为:113.3、8.6和4.1μg/kg。黏土夹层对四氯化碳的迁移有阻挡、延滞作用,会延缓四氯化碳的垂向迁移,造成四氯化碳的蓄积、浓度的升高。
     淋溶模拟试验的结果表明,土壤有机质含量是影响四氯化碳淋溶性的主要因素。在有机质含量高的土壤中四氯化碳的淋溶性较差,淋洗较难清除其中的四氯化碳。
     (4)开发了研究地下水中四氯化碳通过(含水层、土壤)二元结构向上挥发迁移、污染的模拟实验方法,结果表明:
     土壤含水率对四氯化碳的挥发迁移有很大影响。土壤水分是影响土壤吸附四氯化碳的主导因子,土壤水分含量越大吸附量越小;土壤水分对四氯化碳在土壤气相中的挥发迁移具强烈的阻滞作用,而土壤有机质含量对此的影响甚微,土壤含水率仍然是主导因子。
     土壤气相中的四氯化碳平衡浓度与储液室中四氯化碳浓度关系符合亨利定律。
     四氯化碳在土壤中的迁移符合一级反应动力学规律。动力学分析也显示影响四氯化碳在不饱和土壤中迁移的主导因子是含水率而非有机质含量,土壤水分对四氯化碳在土壤中的迁移具阻滞作用。
     土柱通风吹脱实验表明,土壤的有机质含量对土壤中四氯化碳的残留影响明显,土壤的有机质含量越高,残留量越大;温度是另一重要影响因素,当环境温度从10℃升高至20℃时,四氯化碳的挥发速率提高近3倍。
     (5)室内模拟试验揭示了土壤四氯化碳污染的机理:
     排污渠含四氯化碳废水在沟底发生渗漏,是造成排污渠附近土壤四氯化碳污染原因。
     污染地下水上覆土壤会受到来自下部地下水中四氯化碳向上挥发迁移的污染。由于农药厂井地下水中四氯化碳浓度很高(平均为1336.5μg/L),造成了附近土壤四氯化碳较重污染,土壤中四氯化碳浓度最高达52.1μg/kg。污染最重的层段一般在2.5米以下。
     (6)盆地四氯化碳的输入来源主要是农药厂排污沟和农药厂厂区的渗漏。四氯化碳主要输出途径是人工抽水排泄和通过三元结构(基岩含水层、潜水含水层、土壤)向上挥发排泄等。排污沟渗漏输入的四氯化碳量很小,在输出项中以人工抽水排泄为主。
     年输入输出缺口很大,2001年在5.0t/a以上,2004年为1.30t/a,2005年也在0.27t/a以上。这个缺口就是农药厂内部的无组织排放或有意识的偷排量。
     盆地岩溶地下水四氯化碳自然和人工排泄量、排泄速度是较大的,只要不再发生大量偷排现象,岩溶地下水四氯化碳污染程度会逐渐减轻。
Based on the geological and hydro-geological conditions of a Karst water source, as well as long-term water pollution information and means of simulation experiment, we studied the mechanism of carbon tetrachloride contamination of the water sources systematically, and the conclusions are as follows:
     (1) A pesticide plant is the pollution source, so the ways of carbon tetrachloride into the Karst aquifer are mainly: waste water from the pesticide factory flowing directly into the Karst aquifer through the exposed limestone Karst or through the leakage into the soil at the bottom of drainage.
     The field tracer tests show that the main transport channel of carbon tetrachloride is in the axis of a syncline basin. In the main migration channel, the contaminant transport speed can be up to 3027.8 m/h.
     (2) The migration and pollution characteristics of carbon tetrachloride of the Karst groundwater source are as follows:
     Carbon tetrachloride contamination plume in the plane is a "dumbbell" shape, and the focus of the distribution of pollution are in southern pollution source sub-region and northern artificial centeralized excretion sub-region, and the concentration of CT in the south is significantly higher than that in the north.
     The developments of the carbon tetrachloride contamination plume are affected by pollution inputs, groundwater extraction, artificial flow field and other factors. Before 2004, the scope of carbon tetrachloride contaminated plume in wet period was greater than that in the normal river flow period and dry period, and the pollution became serious in wet period. Affected by a significant reduction in the amount of northern artificial centeralized extraction and reduction of hydraulic head difference (less than 10 m) between north and south area at the beginning of 2005, for the two heavily polluted poles, changes both the scope of carbon tetrachloride contaminated plume, and pollution levels, between wet and dry seasons, were little in the same year, and the pollution concentration showed a declining trend in the different years.
     (3) The simulation study on the vertical penetration of CT in soils shows:
     The content of organic matter in soil is an important factor that affects the permeability of CT in soil. The soil interlayer has a great influence on the vertical penetration of CT. The clay interlayer has resistance and arrearage influence on the transposition of CT and it can retard the vertical transposition of CT, which can cause the accumulation and increase of concentration of CT.
     The eluviation results show that the content of soil organic matter is the main factor affecting the leaching of CT. The leaching of CT is poor in soils with high organic matter content, so it is more difficult to remove CT in this condition. Another important factor affecting the leaching of CT is soil particle size. The leaching of CT in sandy loam soil is better than that in sticky nature soil.
     (4) The study on the volatilization and transfer of CT through the bedrock aquifers and soil shows:
     Soil moisture content has great influence on the volatilization and transportation of CT in soil. When the soil organic matter content is lower (<3.02% in this research), moisture content plays a leading role in affecting the adsorption of CT. The greater the moisture content, the smaller the absorption capacity. Similarly, the moisture has a great blocking effect on the volatilization and transfer of CT in soil-gaseous phase. On the contrary, the volatilization and migration of CT in the soil-gaseous phase is affected little by the content of soil organic matter, and the soil moisture content still plays a leading role in this situation. The relation between concentration of CT in soil-gaseous phase and that in liquid storage bottle conform to the Henry's Law.
     The migration of CT in the soil accorded with the first order reaction kinetics. The kinetic analysis shows that the dominant facor which affected the migration of CT in soil was also the moisture. The moisture had a blocking effect on the migration of CT.
     The ventilation experiment shows that the soil organic matter content plays an important role in the residues of CT in the soil, and the higher the soil organic matter content, the more residual amount. Temperature significantly affects the volatilization of CT in the soil, when the temperature increases from 10℃to 20℃, the latter evaporation rate of CT is nearly three times of the former. The ventilation experiment can simulate the dynamic change of volatilization and residues of CT in unsaturated soil.
     (5) We have studied the mechanism of contamination of CT in the soil through the indoor simulation experiment:
     The waste water containing carbon tetrachloride in the ditch of the outfall is leaked; it is why the soil is contaminated near the ditch.
     The overlying soil of contaminated groundwater is polluted by the volatilization and migration of CT from the groundwater. As the concentration of CT in groundwater near pesticide plant is on the high level (average 1336.5μg/L), the soil in this region is polluted by CT severely, and the concentration is up to 52.1μg/kg. Generally, the most polluted layer is below 2.5 meters deep.
     (6) The main input source of CT in the basin is the leakage of pollutant in sewage ditch near the pesticide plant and the leakage or secret emissions of pesticide plant and so on. The main output pathway of CT in groundwater is volatilization transfer and artificial pumping excretion and so on. Actually, the input carbon tetrachloride by means of the leakage in the sewage ditch is little. The output item of CT is mainly by artificial pumping of water.
     Input-output gap is large every year, it’s estimated that it was more than 5.0 t/a in 2001, 1.30 t/a in 2004 and 0.27 t/a in 2005. This gap is owing to the unorganized pesticide plant emissions or conscious secretly emissions.
     The natural and artificial excretion and excretion rate of carbon tetrachloride are large in the Karst groundwater of the basin. So long as a large number of secret emissions do not occur, the contamination of carbon tetrachloride pollution will rapidly reduce in the Karst groundwater.
引文
[1]前川统一朗.日本地下水污染问题、土壤污染对策及污染治理技术[G]//地下水污染控制与修复战略研讨会论文集,北京:2004年4月:1-3.
    [2]武晓峰,唐杰,藤间幸久.地下水中轻质有机污染物(LNAPL)透镜体研究[J].环境污染与防治,2000,22(3):17-20.
    [3]李家伦,孙菽芬,洪钟祥.地下水污染生物处理方法研究综述[J].气候与环境研究,1998,3(2):31-34.
    [4]于猛.我国将开展首轮地下水调查[N].人民日报,2005-1-29(5).
    [5]武晓峰,唐杰,藤间幸久.土壤、地下水中有机污染物的就地处置[J].环境污染治理技术与设备,2000,1(4):46-51.
    [6] Davidson, J.M.,Nielsen, D.R.,Biggar, J.W. The dependency of Siol Water Uptake and Release on the Applied Pressure Increment[J].Soil Science Society of America,Proc,1996,30: 198-304.
    [7]黄进富.土壤中水/有机液体保持特性研究[D].台北:国立交通大学土木工程研究所,1996.
    [8] Li, F.D., Tang, C.Y. ,Yang, Y.H. .Nitrate contamination of groundwater in the alluvial fans of the Taihang Mts and Yanshan Mts[J]. IAHS-AISH Publication , 2008,12:79-85.
    [9] Showers, William J.,Genna, Bernard, Mcdade, Timothy. Nitrate contamination in groundwater on an urbanized dairy farm. Environmental Science and Technology,2008,7: 4683-4688.
    [10] SpaldingR F,ExnerME.Occurrence of Nitrate in Groudwater-A Review[J].Journal of Environmental Quality,1993,22:382-402.
    [11] Nolan BT,Ruddy B C,HittK J et a.l. Risk of Nitrate in Groudwater of the United States-A National Perspective[J].Environmental Science and Technology,1997,31(8):2229-2236.
    [12]黄贻生摘译.地下水中的硝酸盐及其发展趋势[J].Soil and WaterConservation,1986,6.
    [13] Almasri, Mohammad N., Kaluarachchi, Jagath J., Ghabayen, Said,et al.Assessment of groundwater vulnerability to nitrate contamination in Gaza strip, Palestine[J]. World Water Congress 2005,2005,5:100-108.
    [14]汪珊,孙继朝,李政红.长江三角洲地区地下水环境质量评价[J].水文地质工程地质,2005 (6):30-37.
    [15]李保国,白由路,胡克林等.黄淮海平原浅层地下水中NO3-N含量的空间变异与分布特征[J].中国工程科学,2001,3(4):42-45.
    [16]徐小磊.淮河流域(安徽段)地下水污染调查评价与防治对策研究[J].安徽地质,2007,17(2):128-144.
    [17]邢光熹,施书莲,杜丽娟等.苏州地区水体氮污染状况[J].土壤学报,2001,38(4):540-546.
    [18]吕殿青,同延安,孙本华.氮肥使用对环境污染影响的研究[J].植物营养与肥料学报,1998,4(1):8-15.
    [19]刘宏斌,张云贵,李志宏等.北京市平原农区深层地下水硝态氮污染情况研究[J].土壤学报,2005,42(3):411-418.
    [20]刘宏斌,李志宏,张云贵等.北京平原地下水硝态氮污染状况及其影响因素研究[J].土壤学报,2006,43(3):405-413.
    [21]刘晓茹,冯惠华.我国水环境有机污染现状与对策[J].环境科学学报,1999,19(2):25-29.
    [22]俞光明,刘红樱,张泰利等.杭州市浅层地下水有机污染及其风险初步评价[J].资源调查与环境,2007,28(3):198-204.
    [23]张力,宗岩,董云庆.黑龙江省地下水污染防治对策[J].环境科学与管理,2008,33(8):70-71.
    [24]秦玉生,张雷,秦勇.日照市浅层地下水污染分析与保护措施研究[J].地下水,2008,30 (5):95-97.
    [25]丁燕,辛亮,丁涛.宁夏饮用水水源地面源污染现状及防治对策[J].宁夏农林科技,2008,(3):70-71.
    [26]杨强,李金轩,丁伟翠.浅析地下水污染的主要途径、危害及防治[J].地下水,2007,29(3):72-75.
    [27] M.L. Kram,A.A. Keller,J. Rossabi et al. DNAPL characterization methods and approaches,part 1:Performance comparisons[J]. Groundwater Monitor & Remediation,2001(Fall):109-123.
    [28] J.E. Chambers,M.H. Loke,R.D. Ogilvy et al. Noninvasive monitoring of DNAPL migration through a saturated porous media using electrical impedance tomography[J]. Journal of Contaminant Hydrology,2004,(68):1-22.
    [29] R.L. Johnson,J.M. Pankow. Dissolution of dense chlorinated solvents into groundwater Source functions for pools of solvents[J].Environmental Science and Technology,1992,26(5):896-901.
    [30] T.W. Griffin,K.W. Watson. A comparison of field techniques for confirming dense nonaqueous phase liquids[J]. Groundwater Monitor & Remediation,2002(Spring):48-59.
    [31] J. Rossabi,B.D. Riha,C.A. Eddy-Dilek et al. Field tests of a DNAPL characterization system using cone penetrometer-based Raman spectroscopy[J]. Groundwater Monitor & Remediati- on,2000(Fall):72-81.
    [32] T.J. Temples,M.G. Waddell,W.J. Domoracki et al. Noninvasive determination of the location and distribution of DNAPL using advanced seismic reflection techniques[J]. Ground Water,2001,39(3):465-474.
    [33] B.H. Kueper,D.B. Mcwhorter. The behavior of dense non-aqueous phase liquids in fractured clay and rock[J]. Ground Water,1991,29(5):716-728.
    [34] B.L. Parker,R.W. Gillham,J.A. Cherry. Diffusive disappearance of immiscible-phase organic liquids in fractured geologic media[J]. Ground Water,1994,32(5):805-820.
    [35] Jackson, Richard E., Dwarakanath, Varadarajan, Ewing, John E.,et al. Migration of viscousnon-aqueous phase liquids (NAPLs) in alluvium, Fraser River lowlands, British Columbia. Canadian Geotechnical Journal,2006,(7):694-703.
    [36]武晓峰,唐杰,藤间幸久.地下水饱和区中油-水两相流饱和度的试验研究[J].水利学报,2000,(10):12-15.
    [37]武晓峰,唐杰,藤间幸久.有机污染物在多孔介质中的残留[J].云南环境科学,2000,19(增刊):46-49.
    [38] M. Ostrom,C. Hofstee,R.C. Walker et al. Movement and remediation of trichloroethylene in a saturated heterogeneous porous medium 1. Spill behavior and initial dissolution[J]. Journal of Contaminant Hydrology,1999,(37):159-177.
    [39]宋汉周,A.D. Woodbury. TCE运移的计算机模拟—某碳酸岩含水层中地下水有机污染及其去除研究之二[J].河海大学学报,2000,28(3):14-19.
    [40] C.M. Loop,W.B. White. A conceptual model for DNAPL transport in karst ground water basins[J]. Ground Water,2001,39(1):119-127.
    [41] M. Jancin,W.F. Ebaugh. Shallow lateral DNAPL migration within slightly dipping limestone southwestern Kentucky[J]. Engineering Geology,2002(65):141-149.
    [42]刘建立.大武水源地裂隙岩溶水中石油类污染物运移机制及数值研究[D].南京:南京大学,2000.
    [43] C. T. Miller,E.H. Hill,M. Moutier. Remediation of DNAPL-contaminated subsurface systems using density-motivated mobilization[J]. Environ. Sci. Technol.,2000,34(4):719-724.
    [44]吴玉成.治理地下水有机污染抽出处理技术影响因素分析[J].水文地质工程地质,1998(1):27-29.
    [45] J.T. Londergan,H.W. Meinardus,P.E. Mariner et al. DNAPL removal from a heterogeneous alluvial aquifer by surfactant-enhanced aquifer remediation[J]. Groundwater Monitoring& Remediation,2001(Summer):71-81.
    [46] M.A. Cowell,T.C.G. Kibbey,J.B Zimmerman et al. Partitioning of ethoxylated nonionic surfactants in water/NAPL systems:Effects of surfactant and NAPL properties[J]. Environ. Sci. Technol.,2000,34(8):1583-1588.
    [47] J.W. Jawitz,R.K. Sillan,M.D. Annable et al. In-Situ alcohol flushing of a DNAPL source zone at a dry cleaner site[J]. Environ. Sci. Technol.,2000,34(17):3722-3729.
    [48] T.P. Talyor,K.M. Rathfelder,K.D. Pennell et al. Effects of ethanol on micellar aolubiliztion and plume migration during surfactant enhanced recovery of tetrachloroethene[J]. Journal of Contaminant Hydrology,2004(69):73-99.
    [49] Zhaohui Li, Hong Hailie. Combination of surfacatant solubilization with permanganate oxidation for DNAPL remediation[J]. Water Research,2008(42):605-614.
    [50] M. Pitts,K. Wyatt,K.R. Piontek. Utilization of chemical-enhanced oil recovery technology to remove hazardous oily waste from alluvium[C]. In Society of Petroleum Engineers International Symposium on Oilfield Chemistry,Richardson,Texas:33-34.
    [51] F.J. Holzmer,G.A. Pope,L. Yeh. Surfactant-enhanced aquifer remediation of PCE-DNAPL in low permeability sands[C]. In Proceedings of the Second International Conference on Remediation of Chlorinated and Recalcitrant Compounds. Ohio:Columbus,2000:107-118.
    [52] S.-W Jeong,A.L. Wood,T.R. Lee. Enhanced removal of DNAPL trapped in porous media using simultaneous injection of cosolvent with air influencing factors and removal mechanisms[J]. Journal of Hazardous Materials,2003(B101):109-122.
    [53] M. Scanchez,R. Ely. Recovery of trichloroethylene from a bench-scale aquifer by density manipulations[G]//Nonaqueous-phase Liquids:The First International Conference on Remediation of Chlorinated and Recalcitrant Compounds,1998,Monterley CA. Columns,OH: Battelle Press:181-185.
    [54] D. Brandes,K.J. Farley. Importance of phase behavior on the removal of residual DNAPLs from porous media by alcohol flooding[J]. Water Sci. Res,1993,65(7):869-878.
    [55] S.R.D Lunn,B.Kueper. Removal of pooled dense non-aqueous phase liquids from saturated porous media using upward gradient alcohol floods[J]. WRR,1997(33):2207-2219.
    [56] C. Hofstee,C.G. Ziegler,O. Trotschler et al. Removal of DNAPL contamination from the saturated zone by the combined effect of vertical upward flushing and density reduction[J]. Journal of Contaminant Hydrology,2004(67):67-78.
    [57] Huling S G, Pivetz B E. EPA,600-R-06-072,2006,Washington D C.
    [58]周克钊译.受污染土壤和地下水的就地化学氧化恢复[J].西南给排水,2002,24(1):36-43.
    [59] X.D.Li,Schwartz F.W. DNAPL remediation with in situ chemical oxidation using potassium permanganate. II. Increasing removal efficiency by dissolving Mn oxide precipitates[J]. Journal of Contaminant Hydrology,2004(68):269-287.
    [60] Kao CM, WuMJ. J. Hazard. Mater,2000,74(3):197-211.
    [61] Arienzo M. Chemosphere,2000,40(4):441-448.
    [62] Watts R J, Haller D R, Alexander P J, et al. J. Hazard.Mater,2000,76(1):73-89.
    [63] Teel A L, Warberg C R, Atkinson D A, et al. Wat. Res,2001,35(4):977-984.
    [64] InSituChemical Oxidation Team. The Interstate Technology and Regulatory Council,2005,ISCO-2,D25-D28.
    [65] D.D. Gates,R.L. Siegrist. In situ chemical oxidation of trichloroethylene using hydrogen peroxide[J]. Environ. Eng.,1995(121):639-644.
    [66] C.K-J. Yeh,H.M. Wu,T.C. Chen. Chemical oxidation of chlorinated non-aqueous phase liquid by hydrogen peroxide in natural sand systems[J]. Journal of Hazardous Materials,2003(B96):29-51.
    [67] P.G. Werner , M.F. Helmke. Chemical Oxidation of Tetrachloroethene in a Fractured Saprolite/Bedrock Aquifer[J]. Remediation,2003(winter):95-107.
    [68] P.K.C Kalarla,R.J. Watts. Depth of Fenton-like oxidation in remediation of surface soils[J]. Environ.Eng.,1997(123):11-17.
    [69] R. Boopathy. Anaerobic biotransformation of carbon tetrachloride under various electron acceptor conditions[J]. Bioresource Technology,2002(84):69-73.
    [70] J.M. Fernandez-Sanchez,E.J. Sawvel,P.J.J. Alvarez. Effect of Fe0 on the efficiency of integrated microbial- Fe0 treatment progress[J]. Chemosphere,2004(54):823-829.
    [71] E.J. Andrews,P.J. Novak. Influence of ferrous iron and pH on carbon tetrachloride degradation by Methanosarcina Thermophila[J]. Wat. Res.,2001,35(9):2307-2313.
    [72] G. Jin, A.J. Englande Jr. Redox Potential as a controlling factor in enhancing carbon tetrachloride biodegradation[J]. Wat. Sci. Technol.,1996,34(10):59-66.
    [73] HudakP.F. Monitoring groundwater at landfill equipped with leaehate colleetion system[J]. Environmental Contamination and Toxieology,2001,(66):156-161.
    [74] Stan J Morrison,Donald R Metzler.Brian P Dwyer.Removal of As,Mn,Mo,Se, U,V and Zn from groundwater by zero-valent iron in a Passive treatment cell:reaetion progress modeling[J].Journal of Contominant Hydrology,2002,(56):99-116.
    [75] Georgios Bartzas,Kostas Komnitsas,Ioannis Paspaliaris.Laboratory evaluation of Fe0 barriers to treat aeidic leaehates[J].Minerals Engineering,2006,19(5):505-514.
    [76] USEPA.Long term performance of permeable reaetie barriers using zero-valent Iron:an evaluation at two sites[R].EPA/600/S-02/001,2002.
    [77]孟凡生等.铬污染地下水的PRB修复试验[J].工业用水与废水,2005,36(2):2-5
    [78] Chen, K.F. , Kao, C.M., Wang, J.Y.,et al.Natural attenuation of MTBE at two petroleum-hydrocarbon spill sites. Journal of Hazardous Materials,2005,10:10-16.
    [79] C.N. Mulligan,R. N. Yong. Natural attenuation of contaminated soils[J]. Environmental International,2004(30):587-601.
    [80]武晓峰.通过生物营养剂(HRC)的注入加速地下水中污染物的自然降解[G]//地下水污染控制与修复战略研讨会,北京,2004年4月:21-23.
    [81] T.P. Clement,C.D. Johnson,Y. Sun et al.. Natural attenuation of chlorinated ethane compounds: model development and field-scale application at the Dover site[J]. Journal of Contaminant Hydrology,2000(42):113-140.
    [82]汪民,吴永峰.地下水微量有机污染[J].地学前沿,1996,3(2):169-174.
    [83]国家卫生部.生活饮用水卫生规范.2001.
    [84] S. Sautter BHI ERC Team Zeroes in on Sources of Carbon Tetrachloride Contamination [R]. Hanford Rench March 19,2001:1-17.
    [85] J. F. Manwaring,D. B. Lowell A. Van and Barbara Faust. EPA Puts Emergency Water Provisions into Action[J]. Water & Wastes Eng,1980,17(4):40-43.
    [86] Bhopal water,http://www.greanpeace.org.
    [87] A.N Helperin et al. Colifonia’s contaminated groundwater[J]. Natural Resources Defense Council,April 2001:3-18.
    [88] M. J. Feiria-Grandara,R.A. Ferreira. Occurrence of Halogenated Hydrocarbons in the Water Supply of Different Cities of Galicia (Spain) [J]. Environ. Tech, 1992,13(5):437-447.
    [89] A. Skrokki. Quality of Drinking Water from One Surface Water Plant and Six Groundwater Plants in the Town of Kajaani in Finland[J]. Renewable Resources—water,1992,48(1):78-81.
    [90] A. Richard,R.C. Brown,E.R. Blake. Brandstetter. Livermore Ground Water Protection Management Program[R]. LLNL Environmental Report for 1995:9-11.
    [91] Hamilton county general health district,Hamilton county groundwater quality status report[R],1997-2001.
    [92] Erogia Environmental Protection Division Hazardous Site Inventory July 1,2002.Site Summary.
    [93]方生,陈秀玲.地下水开发引起的环境问题与治理[J].地下水,2001,23(1):8-11.
    [94]田家怡.小清河沿岸地下水污染强度及发展速度预测的研究[J].环境科学学报,1994,14(2):160-167.
    [95]黄业茹,施均慧.饮用水中挥发性有机物(VOCs)的GC-MS分析[J].分析测试技术与仪器,1999,5(1):37-44.
    [96]张达政,陈鸿汉,李海明等.浅层地下水卤代烃污染初步研究[J].中国地质,2002,29(3):326-329.
    [97]刘晓丽,梁冰,薛强.地下水环境中有机污染物迁移转化动力学模型的研究[J].工程勘察,2003(1):24-26.
    [98] Li Xingang,Huang Guoqiang,Shen Tiemeng. Kinetic mass transfer between NAPL and gas during soil vapor extraction[J].Chinese of Chem Eng,2002,10(5):610-614.
    [99] R.D. Rogers,J.C. McFarlane. Sorption of Carbon Tetrachloride,Ethylene Dibromide,and Trichloroethylene on Soil and Clay[J]. Environ. Monitor Assess,1981,1(2):155-162.
    [100] J.M. Wu,H.S. Huang,C.D. Livengood. Ultrasonic Destruction of Chlorinated Compounds in Aqueous Solution[J]. Water Pollution,1992,11(3):195-201.
    [101] S.M. Froud, R.W. Gillham,J.F. Baker et al. Sequential Treatment Using Abiotic Reductive Dechlorination and Enhanced Bioremediation[J]. Water Pollution,1997(4):249-254.
    [102] S.M.Bowen, R.L.Ames. Carbon Tetrachloride Adsorption By Granular Activated Carbon[R]. Los Alamos National Laboratory Report Submitted to Rocky Flats Environmental Technology Site(LA-UR-99-1248):1-16.
    [103] G.Jin,A.J.Englande. Carbon Tetrachloride Biodegradation in a Fixed-Biofilm Reactor and Its Kinetic Study[J]. Water Sci. Tech.,1998,4(8-9):155-162.
    [104] M.E. Witt, D.C. Wiggert, M.J. Dybas et al. Bioaugmentation and Numerical Simulation of Carbon Tetrachloride Transformation in Groundwater[J]. Water Pollution,1999(4):575-580.
    [105] Y.A. Gorby,J.E. Amonette,J.S. Fruchter. Remediation of Contaminated Subsurface Materials by aMetal-reducing Bacterium[C]. Water Pollution (Conf. Paper),1994:233-247.
    [106] T.L.Johnson,W. Fish,P.G. Tratnyek. Degradation of Carbon Tetrachloride by Iron Metal: Complexation Effects on the Oxide Surface[J]. Journal of Contaminated Hydrology,1998(29):379-398.
    [107] E. Mariance, B.H Hans Christian, O.C. Erik. Reductive Dechlorination of Carbon Tetrachloride Using Iron(II) Iron(III) Hydroxide Sulfate (Green Rust) [J]. Environ. Sci. Tech.,1999,33(2):307-311.
    [108] R.A. Doong,T.F. Chen,Y.W. Wu. Anaerobic dechlorination of carbon tetrachloride by free-living and attached bacteria under various electron-donor conditions[J]. Appl. Microbiol Biotechnol.,1997(47):317-323.
    [109] A. Francony,C. Petrier. Sonochemical degradation of carbon tetrachloride in aqueous at two frequencies:20kHz and 500kHz[J]. Ultrasonics Sonochemistry,1996(3):77-82.
    [110] M.R. Islam,D. Jewett, J.R. Williams. Calibration of Groundwater Flow and Contaminant Transport Modeling for Ogallala,Nebraska[C]. Water Pollution,1998(conf paper):105-110.
    [111] M. J. Truex,C.J. Murray,C. R. Cole et al. Assessment of Carbon Tetrachloride Groundwater Transport in Support of Hanford Carbon Tetrachloride Innovative Technology Demonstration Program. Pacific Northwest National Laboratory Report(PNNL-13560),2001.
    [112]陈淑美,干侣仙.水源水、饮用水中氯仿、四氯化碳含量与微核率相关性研究[J].中国环境科学,1995,15(2):55-58.
    [113]于勇、王淑惠等.水相中四氯化碳的激光闪光光解研究[J].化学学报,1999,57:1081-1087.
    [114]朱承驻、于勇等.水相中CCl4和CHCl3的紫外光解机理[J].环境科学,2001,2(3):6-10.
    [115]孙治荣,范延臻,李军等.活性炭纤维去除水中有机污染物的效果[J].环境科学,2000,21(5):101-103.
    [116] B.P Han,X.Y. Wang,X.Q. Zhu et al. Transport of carbon tetrachloride in karst aquifer[J]. The Proceedings of water Resources and the Urban Environment,Wuhan,P.R. China,2002:194-198.
    [117] B.P Han, X.Q. Zhu, X.F. Sun et al. Carbon TetrachlorideContamination Pathway of A Karst Groundwater Supply Source.Journal of China University of Mining & Technology,2006,35(1):198-201.
    [118] B.P. Han, X.Y. Wang, X.Q. Zhu, et al. Groundwater contamination by carbon tetrachloride in karstic area in China. ACTA SCIENTIAECIRCUMSTANTIAE,2004,24(6):983-988.
    [119] X.Q. Zhu, B.P. Han, X.K. Liu. Characteristics of carbon tetrachloride contamination in X water supply wells in a city[J]. Journal of Agro-Environment Science,2004,23(6):1188-1191.
    [120]徐曙光.国外岩溶地区地下水资源勘查评价技术方法的现状与进展[J].国土资源科技进展,2000 (2):51-57.
    [121] PEI Zong-ping, HAN Bao-ping, LIU Han-hu, et al. Tracer Experimental Study of the MainConveying Conduits of CCL4 Pollutant in the Qiligou Water Supply Resource[J].Journal of China University of Mining & Technology,2007,17(2):184-187.
    [122]谢玲琳,李友贵.酵母菌示踪剂及其在地下水连通试验中的应用[J].湖南地质,1999,18(4):269-270,274.
    [123]赵汝同.连通试验在温石埠矿区水文地质勘探中的应用[J].莱钢科技,1994,(4):45-49.
    [124]张乃兴,李伟,安立贵等.济南四大泉群水源地连通试验研究[J].山东师大学报(自然科学版),1998,13(4):408-412.
    [125]李超.某岩溶水源地四氯化碳污染动态规律研究及人体健康风险评价[D].徐州:中国矿业大学,2009
    [126]朱雪强,韩宝平,周东来.某农药厂周围土壤四氯化碳污染特征研究[J].农业环境科学学报2006,25(2):393-397.
    [127] A. Davis,G.G. Fennimore,C. Peck et al. Degradation of carbon tetrachloride in a reducing groundwater environment: implications for natural attenuation[J]. Applied Geochemistry,2003(18):503-525.
    [128] P.M. Jeffers, L.M. Ward, L.M. Woytowitch et al. Homogeneous rate constants for selected chlorinated methanes,ethanes,ethenes,and propanes[J]. Environ. Sci. Technol. 1989,14(23):965–969.
    [129] G.P. Curtis,M. Reinhard. Reductive dehalogenation of hexachloroethane,carbon tetrachloride,and bromoform by anthrahydroquinone disulfonate and humic acid[J].Environ. Sci. Technol. 1994(28):2393–2401.
    [130]刘绮.环境化学[M].化学工业出版社,2004,8:176-178.
    [131]娄保锋.有机污染物在沉积物上的竞争吸附效应及影响因素[D].浙江大学,2004.
    [132] W.A. Jury, W.F. Spencer,W.J Farmer. Behavior assessment model for trace organics in soil: III. Application of screening model[J]. Journal of Environment Quality, 1984(13):73-79.
    [133] Carmo, A.M.; Hundal, L.S.; Thompson, M.L. Sorption of hydrophobic organic compounds by soil materials: Application of unit eduivalent Freundlich coefficients[J]. Environ. Sci.Technol, 2000,34:4363-4369.
    [134]彭胜,陈家军,王红旗.挥发性有机污染物在土壤中的运移机制与模型[J].土壤学报,2001(3) 38:315-322.
    [135] Illangasekare T H, Ramsey J L, Karsten H J, Michael B B.Experimental Study of Movement and Distribution of Dense Organic Contaminants in Heterogeneous Aaquifers[J]. Journal of Contamin ant Hydrology, 1995,20:1-25.
    [136] Kueper B H, Frind E O.Two-phase flow in heterogeneous porous media.1.Model development[J]. Water Resour. Res,1991,27(6):1049-1057.
    [137] Schwille F. Dense chlorinated solvents in porous and fractured media[M]. Lewis,Chelse a .MI, 1988.
    [138] Compbell J H. Nonaqueous phase liquid flow through porous media:experimental study and conceptual sharp-front model development[J].M.S.Thesis, Department of Civil Environemntal and Architectural Eng., University of Colorado,Boulder,C O,1992:179.
    [139] Karickhof F, S. W. Organic pollutants sorption in aquatic systems. J. Hydr: Eng.( ASCE) 1984, 110:707-735.
    [140] Chiou,C.T.; Peters,L.J.; Fried, V.H.A Physical concept of soil-water equilibria for nonionic organic compounds[J]. Science (Washington, D.C.) 1979,206:831-832.
    [141] Chiou C T,et al.,Environ. Sci. Technol.,1985,19(12):1196-1200.
    [142] Karichoff S.W.,et al.,Water Res.,1979,13:242-248.
    [143]王连生.有机污染化学(上册)[M].科学出版社,1990:6-72,180-200.
    [144]许秀元,陈同斌.土壤中溶质运移模拟的理论与应用[J].地理研究,1998,1(17):99-104.
    [145]张瑾.除草剂胺苯磺隆在土壤中的淋溶及其影响因素的研究[D].安徽农业大学,2003.
    [146]张大弟,张晓红,吴仲可.四种农药流失性质的研究[J].上海环境科学,2000,19(9):444-446.
    [147] Cavanna S.; E, Garatti, E; Rastelli; G. P. Molinari. Adsorption and desorption of bensulfuron-methyl on Italian paddy field soils[J]. Chemosphere,1998,37(8):1547-1555.
    [148]刘维屏,季瑾.农药在土壤一水环境中归宿的主要支配因素一一吸附和分配[J].中国环境科学,1996 ,16(1):25-30.
    [149]戴树桂,刘广良等.土壤多介质环境污染研究进展[J].土壤与环境,2001,10(1):1-5.
    [150]徐瑞薇,胡钦红,靳伟等.多效唑在土壤中降解、吸附和淋溶作用[J].环境化学,1994,11(3):1-3.
    [151] Adamson, A.W. Physical Chemistry of Surfaces, 5th ed[M].; J.Wiley&Sons,Inc.;New York, 1990.
    [152] Weber, W.J.Jr.; McGinley,P.M.; Katz,L.E.A distributed reactivity model for sorption by soils and sediments.1.Conceptual basis and equilibrium assessments[J]. Environ.Sci.Technol, 1992,26:1955-1962.
    [153] McGinley, P.M.; Katz, L.E.; Weber, W.J.Jr. A distributed reactivity model for sorption by soils and sediments.2.Multicomponent systems and competive effectc[J]. Environ. Sci. Technol, 1993,27:1524-1531.
    [154] Young, T.M.; Weber, W.J.Jr. A distributed reactivity model for sorption by soils and sediments.3.Effects of diagenetic processes on sorption energetics[J]. Environ.Sci.Technol, 1995,29:92-97.
    [155] Weber, W.J.Jr.; Huang, W. A distributed reactivity model for sorption by soils and sediments.4.Intraparticle heterogeneity and phase-distribution relationships under nonequilibrium conditions[J].Environ.Sci.Teehnol,1996,30:881-888.
    [156] Huang,W.; Schlautman,M.A.; Weber, W.J.Jr. A distributed reactivity model for sorption by soils and sediments.5.The influence of near-surface characteristics in mineral domains[J]. Environ. Sci.Teehnol.1996, 2993-3000.
    [157] Weber, W.J.Jr.; Young, T.M. A distributed reactivity model for sorption by soils and sediments.6.Mechanistic implications of desorption under supercritical fluid conditions[J]. Environ. Sci. Teehnol, 1997,31:1686-1691.
    [158] Young, T. M.; Weber, W. J. Jr. A distributed reactivity model for sorption by soils and sediments.7.Enthalpy and polarity effects on desorption under supercritical fluid conditions[J]. Environ. Sci. Techno,1997,31:1692-1696.
    [159] Leboef, E. J.; Weber, W. J. Jr. A distributed reactivity model for sorption by soils and sediments.8.Discovery of a humic acid glass transition and argument for a polymer-based model[J]. Environ. Sci.Technol,1997,31:1697-1702.
    [160] Hauang, W.; Yong,T. M.; Schlautman,M. A.; Hong Yu; Weber,W. J. Jr. A distributed reactivity model for sorption by soils and sediments.9.General isotherm nonlinearity and applicability of the dual reactive domain model[J].Environ.Sci.Technol,1997,31:1703-1710.
    [161] Huang, W; Weber, W.J.Jr. A distributed reactivity model for sorption by soils and sediments.10.Relationships between desorption,hysteresis,and chemical characteristics of organic domains[J].Environ.Sci. Technol,1997,31:2562-2569.
    [162]Johnson, M.D.T.; Michael KeinathⅡ, and Weber, W.J.Jr. A distributed reactivity model for sorption by soils and sediments.14.Characterization and modeling of phenanthrene desorption rates. Environ[J]. Sci. Technol, 2001,35:1688-1695.
    [163] Weber,W.J.Jr.; Sung Ho Kim; and Johnson,M.D.A distributed reactivity model for sorption by soils and sediments.15.High-coneentration co-contaminant effects on phenanthrene sorption and desorption[J]. Environ. Sci.Technol,2002,36:3625-3634.
    [164] Vieth, W.R. Diffusion in and through polymers,Hanser Verlag: Munich,1991.(Distributed in U. S. and Canada by Oxford University Press,New York)
    [165] Xing, B.; Pignatello, J.J.; Gigleotti, B. Competitive sorption between atrazine and other organic compounds in soils and model sothents[J].Environ.Sci.Technol,1996,30:2432-2440.
    [166] Xing , B.; Pignatello, J.J. Dual-mode sorption of low-polarity compounds in Glassy(Vinyl Chloride)and soil organic matter[J].Environ.Sci.Teehnol,1997,31:792-799.
    [167] Bruno, Kolb.Headspace sampling with capillary columns[J].Journal of Chromatography A. 1999, 8(12):163-205.
    [168] Chih-yu Chen and Shian-chee Wu.The adsorption of Benzene, toluene and ethylbenzene on soils near infiinite dilution[J].Chemasphere, 1995, 31 (10):79-87.
    [169] EPA.Volatile Organic compounds in soil and other solid matrices using equilibrium headspace analysis.
    [170] F. J. Santos and M.T.Galceran. The application of gas chromatography to environmental analysis[J].trends in analytical chemistry, 2002, 21:217-223.
    [171] Ingo Silgoner, Frwin Rosenberg, Manfired Grasserbauer.Determination ofi volatile organic compounds in water by purge-and-trap gas chromatography coupled to atomic emission detection[J].Journal of Chromatography A, 1997, 76(8): 259 - 270.
    [172] Unger D.R.et al., Environ. Sci. Technol., 1996, 30(4):1081-1090.
    [173]戴树桂.环境化学[M].北京:高等教育出版社,1997.
    [174]邓绍坡.土壤中四氯化碳垂向运移规律研究[D].徐州:中国矿业大学环测学院,2006.
    [175] Lindhardt, B.et.al. Contaminated Soil, 1993, 247-255.
    [176]黄国强,姜斌等.VOCs在土壤孔隙中扩散模型的适用性[J].天津大学学报,2004,37(11):945-948.
    [177] Petersen, L.W. Rolston, D.E, Moldrup, P. Volatile vapor diffusion adsorption in soil [J]. Environ Qual,1994,23(3/4):799-805.
    [178]Yates, S.R, Papiernik, S.K, Cao F. Analytical solutions for the transport of volatile organic chemicals in unsaturated layered systems[J].Water Resource Res,2000, 36(8): 1993-2000.
    [179] Burkhard, N, Guth, J.A. Rate of volatilization of pesticides from soil: Comparison of calculated results with those determined in a laboratory model system [J]. Pestc Sci, 1981, 12(1):37-44.
    [180] Jin Y, Jury W.A, Methyl bromide diffusion and emission through soil columns under various management techniques [J]. Environ Quality, 1995, 24: 1002-1009.
    [181] Gan J, Yates, S.R, Wang D. Effect of soil factors on methyl bromide volatilization after soil application [J ].Environ Sci Technol,1996,30:1629-1636.
    [182] Cohen, S.Z. Treatment and Disposal of Pesticide Wastes PP[J]. American Chemical society, 1984,59:297- 325.
    [183] Wania, F., et al., Chem. Eng. Date , 1994,39:572-577.
    [184]黄国强,李鑫钢,李凌.氯化苦在土壤中的挥发及残留分析[J].农药, 2002, 41(1):20-22.
    [185]高太忠,黄群贤,刘野,等.有机污染物在包气带中迁移转化实验研究[J].环境污染治理技术与设备, 2004,5(2):42-55.
    [186] Canter, L. W., Knox, R. C. Groundwater pollution control[M]. Michigan : Lewis Publishers Inc. , 1985.
    [187]汪自力,杨静熙.黄河大堤渗透系数的反演分析[J].人民黄河,1994,17(10):13-15.
    [188]张力春,肖长来,梁秀娟.稳定井流直线图解法确定含水层参数[J].世界地质,2006,25(01):67-70.
    [189]蔡书鹏,李修树.遗传算法在潜水含水层底高分布确定及参数识别中的应用[J].水利与建筑工程学报,2004,4:34-37.
    [190]杜春志,刘卫群,贺耀龙等.破碎岩体压实渗透非稳态规律的试验研究[J].矿山压力与顶板管理,2004,1:109-118.
    [191]邵龙潭.相间相互作用原理与土壤水动力学基本方程[J].水科学进展,2002,13(05):606-610.
    [192]闵涛,张世梅,彭亚绵.二维恒定各向同性介质渗透系数反演的遗传算法[J].数学的实践与认识,2006,09:145-149.
    [193]向友珍.渭北黄土台原灌区黄土渗透系数的演化研究——以周城-苏坊洼地为例[D].西北农林科技大学,2006,12.
    [194]张伯平,党进谦.土力学[M].西北农业大学水利与建筑工程学院,1998.
    [195]李佩成著.地下水动力学[M].北京:农业出版社,1991.
    [196]车振海.试论土攘渗透系数的经验公式和曲线图.东北水利水电,1995,9:17-19.
    [197]冶运涛,伍靖伟等.双套环测定土壤渗透系数数值模拟分析[J].灌溉排水学报,2007,6:14-18.
    [198] Vogel T , Huang K, Zhang R ,et . al . The Hydrus Code for Simulating One-Dimentional Water Flow , Solute Transport , and Heat Movement in Variably Saturated Media(Version 5. 0) [M] . California : U S Salinity Laboratory Agricultural Research Service U S Department of Agricultural Riverside , 1996.
    [199]朱雪强.四氯化碳在岩溶含水层中的运移规律研究[D].中国矿业大学,2005.
    [200]雷志栋,杨诗秀,谢森传.土壤水动力学[M].北京:清华大学出版社,1988,59-63.
    [201]盛裴宣,毛节泰,李建国等.大气物理学[M].北京:北京大学出版社,2003,242-246
    [202] USEPA,OAQPS,Hazardous Waste Treatment,Storage,and Disposal Facilities(TSDF)——Air Emission Models. 1989,41-43.
    [203]陈炼钢,武晓峰.地下水中VOC挥发因子模型的研究[J].环境化学,2007,26(6):810-814.
    [204] E·L·柯斯乐.扩散——流体系统中的传质[M].北京:化学工业出版社,2002,72-73.
    [205]陈卓如,金朝铭,王洪杰等.工程流体力学[M].北京:高等教育出版社,2004,17.
    [206]姚玉英.化工原理[M].天津:天津科学技术出版社,2005,81-82.
    [207] ASTM,Standard Guide for Itisk——Based Corrective Action(E2081—00). 2000,63-69.
    [208]韩宝平,朱雪强,孙晓菲等.某岩溶水源地四氯化碳污染途径研究[J].中国矿业大学学报,2006,25(1):61-65.
    [209]黄玉国,张纤维,肖瑞卿等.干旱地区土壤含水率对秋季造林成活率的影响[J]. 2007,5:40-42.
    [210]宋家常,单正翔,任明伟.淮北砂姜黑土区土壤含水率的简便计算方法[J]. 2000,4:16-17.
    [211]杨绍辉,王一鸣,孙凯.基于土壤含水率垂向变化规律的水分传感器布设[J]. 2008,39(5):104-107.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700