用户名: 密码: 验证码:
敦煌莫高窟壁画病害水盐来源研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
著名的世界文化遗产,全国重点文物保护单位——敦煌莫高窟开凿在鸣沙山东麓的崖壁上,上下分为五层,南北长约1700m。最早开凿洞窟时间为前秦建元二年(公元366年),后经十六国、北魏、西魏、北周、隋、唐、五代、宋、西夏、元等朝代的相继开凿,形成了一座内容丰富、规模宏伟的石窟群。至今仍保存有洞窟735个,壁画45000余m~2,彩塑2415身,唐宋木结构窟檐5座,莲花柱石和铺地花砖数千块,是中国也是世界上现存内容最为丰富、规模最为宏大、保存最为完好的佛教艺术宝库,具有珍贵的历史、艺术和科学价值。
     受自然和人为因素的影响,加之制作材料较为脆弱等特点,敦煌莫高窟壁画产生了大量病害,其中如酥碱、空鼓、起甲、壁画脱落等多种病害均与可溶盐的富集和运移有关,而导致可溶盐运移的水汽来源一直是莫高窟保护中的研究热点和未解难题。本文从壁画结构和病害调查入手,开展了莫高窟区域地质与洞窟地层工程地质特征方面的调查与研究,研究了莫高窟地层含水、含盐及渗透特性,分析了莫高窟水环境特征和导致窟内壁画产生病害的水盐来源关系。主要内容包括可分为以下五个部分:
     (1)调查和分析了莫高窟壁画结构及制作材料,壁画盐害的种类、分布以及微观特征。莫高窟壁画由支撑体、地仗层、粉层和颜料层组成,这些层之间的接触面力学性质相对薄弱,适应环境能力差,是盐分容易富集而导致壁画产生病害的部位。壁画病害分为起甲、酥碱、空鼓、壁画大面积脱落、霉变、烟熏和变色等多种类型,除烟熏病害外,其他病害均与水汽和盐分的运移有关。导致莫高窟壁画产生病害的盐类主要为Na_2SO_4、NaCl等,从空间分布来看,莫高窟壁画盐害在下层洞窟最严重,上层其次,中层较轻微。
     (2)通过查阅资料、现场调查和室内试验,研究总结了莫高窟周边区域地质和洞窟开凿地层工程地质特征。莫高窟周边基岩绝大部分被第四系沉积物所覆盖,崖体及其下伏地层可划分为下更新统玉门组(Q_1)、中更新统酒泉组(Q_2)、上更新统戈壁组(Q_3)。按地层岩性和工程特性可将莫高窟崖体地层分为四个工程地质岩组,由上往下依次为A、B、C和D,洞窟主要分布在C组和D组中。受构造运动、长期风化卸荷及洞窟开挖的影响,在莫高窟崖体中分布有相互交错的构造裂隙、层面裂隙、纵张裂隙和卸荷裂隙,这些裂隙的相互作用与发展将直接影响洞窟围岩的稳定,同时这些裂隙也构成水或水汽运移的通道。
     (3)坑探和钻探成果、现场测定含水量、室内易溶盐测定、X射线CT以及高密度电阻率测定等大量野外和室内试验,较为全面地研究了莫高窟崖体表层、中部和深部地层的含水、含盐特征,以及影响水汽和盐分运移的地层渗透特性。
     通过研究得知,莫高窟崖体表部含水量大部分都在1%以上,最小为0.35%,最大为24.0%,含水量随崖体地层不同呈现不均匀性。钻探和温湿度监测结果显示莫高窟崖顶表面到深150m处地层中没有自由水,但有足以导致盐分潮解并在崖体内运移的水汽。易溶盐测定表明,莫高窟地层中的易溶盐主要为NaCl、Na_2SO_4,富集在地表至0.6m的范围内。敦煌莫高窟围岩不同地层具有不同的渗透性,通过现场渗透试验测得:Q_2-A层渗透系数6.50×10~(-3)cm/s;Q_2-C层的渗透系数为5.61×10~(-5)~4.50×10~(-4)cm/s;Q_3层的渗透系数1.11×10~(-3)cm/s;Q_4层的渗透系数1.08×10~(-2)cm/s。地层的水平渗透性能大于垂直渗透性能,由于冲洪积成因,即便处于同一地层岩组,渗透系数也有较大差别。利用高密度电阻率法可以反映莫高窟围岩的渗透特性和渗透速度,利用X射线CT计算出的孔隙比与实验中求得的孔隙比数值接近,在无法直接测定渗透系数的情况下,可利用X射线CT计算孔隙比推算出岩体局部的渗透系数,两种方法均适用于研究围岩的渗透性。
     (4)通过现场调查、长期监测以及室内测定,系统研究了莫高窟的水环境。研究表明,莫高窟多年平均降水量为36.45mm,且年内分配极不均匀。窟区唯一的地表水为大泉河,流量为0.0524m~3/s,年径流量为165.64×10~4m~3/a,水质矿化度达2g/L,属微咸水。依据莫高窟北区洪痕标高,恢复历史洪水过水断面,自莫高窟建窟以来,大泉河最大洪峰流量约为2600m~3/s~2800m~3/s。大泉河冲洪积扇的中下部地带普遍分布有地下潜水,水位埋深变化较大,地下水的补给来源主要是党河流域地下水的径流补给,即由SW向NE方向渗流。
     (5)利用高密度电阻率、温湿度监测和易溶盐测定等手段深入调查和研究了导致莫高窟产生病害的水盐来源。研究表明,莫高窟底层洞窟,尤其是底层洞窟西壁盐害较为严重的原因主要是岩体内有较高的水汽含量,岩体内部与洞窟之间形成一个动态平衡系统。它们之间的湿度差导致岩体深处的水汽不断带动盐分向洞窟表面运移,并在相对湿度达到盐分潮解临界值的较浅部位聚集。由于盐分的存在使得西壁对洞窟环境的变化非常敏感,当洞窟内较为干燥时,盐分停留岩体较浅部位,当外界因素导致岩体浅部水汽含量超过盐分潮解临界值时,盐分便向外运移,导致壁画产生病害。可见岩体内部水汽向外运移是导致盐分在洞窟壁面表聚的主要因素,而外界环境变化导致窟内湿度的升高与降低的循环是洞窟壁画产生盐害的诱发因素。
The Dunhuang Mogao Grottoes, the well-known world heritage site and the national key cultural relic's conservation unit, is located on the cliff at the east side of Mingsha Mountain. It has five layers from top to bottom and almost 1700 meters in length from north to south. The earliest time of excavated cave is former Qin Dynasty (366 years B.C.) and the rest caves excavated successively from dynasties of 16 states, the Northern Wei, the Western Wei, the Northern Zhou, Sui, Tang, Five Dynasties, Song, Western Xia and Yuan dynasties which engendered these abundant and magnificent grottoes. There are still 735 caves survived at present and they contain 45000 square meters of wall paintings, 2415 painted sculptures, 5 eaves of Tang and Song dynasties wooden structure and thousands of lotus pillars and pieces of paving tiles. Mogao Grottoes with its world's largest scale and best preserved condition is the famous treasure house of Buddhist art and it has precious historical, artistic and scientific value.
     With the influence of natural and man-made factors, combined with inherent susceptibility of fragile wall painting materials, the wall paintings of Mogao Grottoes produced a large number of diseases, such as efflorescence, flaking and large wall paintings detachment. These diseases can be connected with the accumulation and migration of soluble salt caused by moisture transform, so study on the source of moisture at Mogao Grottoes is a hot-topic and difficult subject. This paper began with the survey of wall painting's structure and disease and made investigation and research on regional geology environment and geological engineering characteristics of the strata in the Mogao Grottoes. For the first time a more comprehensive study on the strata's moisture, salt, permeability and analysis of relationship between water environment characteristics and source of moisture in the caves which lead to the wall painting's disease. Main contents can be divided as the following five sections:
     1. Investigation and analysis of wall painting's structure, materials,types, distribution and micro-features. The wall paintings of the Mogao Grottoes consist of the support layer, plaster layer, render layer and pigment layer. The interfaces between these layers have weak mechanical properties and thus poor adaptability to the environmental change. So these areas are easier for salt enrichment which leads to the wall painting disease. Wall painting disease can be divided into efflorescence, flaking, detachment, sootiness, mildew, discoloration, etc. In addition to sootiness, the rest diseases are related to the migration of moisture and salt. The types of salts that lead to wall painting disease of Mogao Grottoes are mainly Na_2SO_4 and NaCl. The wall painting's salt hazard of Mogao Grottoes is most serious at the bottom, upper second and slight in the middle for the spatial distribution.
     2. The around regional geological environment and geological engineering characteristics of the strata in which caves are studied by field investigation and laboratory test. Most of strata around Mogao Grottoes have been covered by the Quaternary sediment. The cave's cliff and its underlying strata can be divided into Pleistocene Yumen group (Q_1), middle Pleistocene Jiuquan group (Q_2), the Pleistocene Gobi group (Q_3). According to strata lithology and engineering character, the stratigraphy of cave's cliff can be divided into four engineering geological group, namely A, B, C and D from top to down. The caves mainly distribute in the C and D group. There are cross-cutting fissures, level fissures, longitudinal cracks and unloading fissures distributed in cliff of Mogao Grottoes by the influence of tectonic movement, long-term weathering and excavation of caves.The interaction and development among these fractures will directly affect the cave's surrounding rock's stability and meanwhile these fractures are also channels for migration of water and moisture.
     3. Various methods have been used in this study, such as geological pit, boring, moisture monitoring, soluble salt analysis, X-ray CT, high-density electrical resistivity measurement, as well as a large number of field and laboratory tests, comprehensive study on moisture, salinity characteristics and strata permeability which dominates the migration of water and moisture through the surface of cliff, middle and deep part of strata.
     Study shown that the water content of the surface is more than 1% with a maximum data 24.0% and minimum data 0.35%. The water content showed heterogeneity with different strata of cliff. The data from drilling and temperature-humidity monitoring indicate that there is no free water from cliff's surface to 150m deep strata, but there are enough moisture that can cause salt to dissolve and migrate. Test showed that the types of soluble salts concentrated from the range of earth surface to 0.6 meter high at Mogao Grottoes are mainly NaCl and Na_2SO_4. The different rock strata of Dunhuang Mogao Grottoes have different permeability. Measurement from on-site permeability test: the permeability coefficient of Q_2-C layer is 5.61×l0~(-5)-4.50×10~(-4) cm/s, Q_2-A layer is 6.50×10~(-3)cm/s, Q_3 layer is 1.11×10~(-3)cm/s, Q_4 layer is 1.08×10~(-2)cm/s.The strata lateral permeability of strata is larger than the vertical permeability. Even in the same stratigraphic rock group, the permeability coefficient is also quite different because of alluvial and flood origin. The use of high-density resistivity method can reflect penetration characteristics and penetration velocity of surrounding rock, the void ratio values obtained from calculation through X-ray CT are close to the experimental values. In case that the direct measurement of permeability coefficient is inconvenient, it can be calculated from the void ratio values acquired from X-ray CT calculation.
     4. Systematic study on the water environment of Mogao Grottoes through field investigation, long-term monitoring and indoor measurement. Studies have shown that the annual precipitation in Mogao Grottoes is 36.45mm and the distribution is very uneven with a year. The Daquan river which is the only surface water of grottoes area has a flux of 0.0524m~3/s, annual runoff 165.64×104m~3/a, water salinity 2g/L and it belongs to brackish water. Form the flood marks elevation on the north side of Mogao Grottoes, the restoration of historic flood cross section can be obtained. The maximum peak flow is calculated about 2600m~3/s~2800m~3/s after the time the Mogao Grottoes has been built. The groundwater is widely located in the middle and lower zone of Daquan river alluvial fan and the water table changes greatly with depth, recharged by the Dang River from the southwest to northeast.
     5. Investigations and studies have been down on the source of moisture and salt which lead to wall painting's diseases by means of high-density resistivity, temperature & humidity monitoring and measurement of soluble salts. Studies have shown that the salt hazard is mainly occured at the bottom layer of Mogao Grottoes, particularly in the West wall at the bottom of the caves due to the higher moisture content and dynamic equilibrium system between the rock and the air in the cave. The humidity difference lead to the moisture accumulation and even the salt to migration from inside of the rock to cave's surface when the relative humidity reaches the threshold at which the salt can be crystallization and aggregation. The presence of salt makes the western wall of the cave very sensitive to changes of the environment. The salt stays at the shallower parts of rock when the cave was relatively dry, and dissolved and migrated to the surface, leading to the wall painting's disease, when the moisture content induced by external factors exceeds the critical value.Therefore, it can be concluded that the salt accumulation on the wall surface of the caves are firstly responsible to the moisture migration within cave rocks, and secondly to the changes in air humidity of the cave induced by external environmental variation, such as weather change and guest resperation etc.
引文
[1]樊锦诗.基于世界文化遗产价值的世界文化遗产地的管理与监测-以敦煌莫高窟为例[J].敦煌研究,2008,(6):1-5.
    [2]陈港泉,苏伯民,赵林毅,等.莫高窟第85窟壁画地仗酥碱模拟试验[J],敦煌研究,2005(4):62-66
    [3]Winkler EM.Stone in architecture[M]Springer,Berlin Heidelberg,New York,1994.
    [4]Goudie AS,Viles HA.Salt weathering hazard[M].Wiley,London,1997.
    [5]Rodriguez-Navarro C,Doehne E.Salt weathering:influence of evaporation rate,supersaturation and crystallization pattern[J].Earth Surf Processes Landf,1999a,24:191-209
    [6]Thaulow N,Sahu S.Mechanism of concrete deterioration due to salt crystallization[j].Mater Charact,2004,53:123-127
    [7]Coussy O.Deformation and stress from in-pore drying-induced crystallization of salt[J].J Mech Phys Solids,2006,54:1517-1547
    [8]Rodriguez-Navarro C,Doehne E,Sebastian E.How does sodium sulfate crystallize implications for the decay and testing of building materials[J].Cem Concr Res,2000a,30:1527-1534
    [9]Scherer GW.Crystallization in pores[J].Cem Concr Res,1999,29:1347-1358
    [10]Scherer GW.Stress from crystallization of salt[J].Cem ConcrRes,2004,34:1613-1624
    [11]Flatt RJ.Salt damage in porous materials:how high supersaturations are generated[J].J Cryst Growth,2002,242:435-454
    [12]Steiger M.Crystal growth in porous materials-Ⅰ:The crystallization pressure of large crystals[J].J Cryst Growth,2005a,282:455-469
    [13]Steiger M.Crystal growth in porous materials.Ⅱ:Influence of crystal size on the crystallization pressure[J].J Cryst Growth,2005b,282:470-48
    [1]张明泉,张虎元,曾正中,等.敦煌壁画盐害及其地质北背景[A].敦煌研究文集·石窟保护篇(上)[C].兰州:甘肃民族出版社,1993.
    [2]郭宏,李最雄,宋大康,等.敦煌莫高窟壁画酥碱病害机理研究之一[J].敦煌研究,1998,(3):153-163.
    [3]Paul M.Schwartzbaum et al.Approaches to the conservation of mural paintings in underground structures-Case studies of recent projects by ICCROM Consultants and Staff [A],International Symposium on the Conservation and Restoration of Cultural Property-Conservation and Restoration of Mural painting(Ⅰ)[C].Tokyo National Research Institute of Cultural Properties,1982.
    [4]马清林,陈庚龄,卢燕玲,等.潮湿环境下壁画地仗加固材料研究[J].敦煌研究,2005,(5):66-72.
    [5]陈庚龄,马清林.潮湿环境下壁画地仗修复材料与技术[J].敦煌研究,2005,(4):51-60.
    [6]马赞峰,青木繁夫,犬竹和.敦煌莫高窟壁画地仗修补材料筛选[J].敦煌研究,2007,(5):22-27.
    [7]樊再轩,斯蒂文·里克比,丽莎·舍克德,等.敦煌莫高窟第85窟空鼓壁画灌浆加固材料筛选实验[J].敦煌研究,2007,(5):19-25.
    [8]樊再轩,斯蒂文·里克比,丽莎·舍克德,等.敦煌莫高窟第85窟壁画修复技术研究[J].敦煌研究,2008,(6):16-22.
    [9]孙儒僩.莫高窟的保护工作[J].敦煌研究,1988,(3):5-9.
    [10]段修业.对莫高窟壁画制作材料的认识[J].敦煌研究,1988,(3):41-59.
    [11]段修业,孙宏才.莫高窟第108窟酥碱起甲壁画的修复报告[J].敦煌研究,1990,(3):92-94.
    [12]李云鹤,等.聚醋酸乙烯和聚乙烯醇在壁画修复中的应用研究[J].敦煌研究,1990,(3):95-106.
    [13]Rodriguez-Navarro C,Doehne E.Salt weathering:influence of evaporation rate:super saturation and crystallization pattern[J].Earth Surface Processes and Landforms,1999,24(3):191-209.
    [14]Winkler EM,Singer PC.Crystallization pressure of salt in stone and concrete[J].Geol SocAm Bull,1972,83(11):3509-3513.
    [15]Klenz Larsen P.Desalination of a painted brick vault in Kirkerup Church[A].In:Proceedings ofICOM-CC 12th Triennial Meeting Lyon 29,1999,volⅡ:473-477.
    [16]Poul Klenz Larsen.The salt decay of medieval bricks at a vault in Brarup Church[J].Environ Geol,2007(52):375-383.
    [17]Rijniers L.Salt crystallization in porous materials[D].Technische Universiteit Eindhoven,2004.
    [18]敦煌研究院保护研究所病害调查组,日本东京国立文化财研究所病害调查组.莫高窟第53窟壁画酥碱病害原因的初步研究[A].敦煌研究文集·石窟保护篇(上)[C].兰州:甘肃民 族出版社,1993.
    [19]段修业,郭宏,付文丽.莫高窟第3窟疱疹状病害的研究与治理[A].敦煌研究文集.石窟保护篇(上)[C].兰州:甘肃民族出版社,1993.
    [20]郭宏,李最雄,裘元勋,等.敦煌莫高窟壁画酥碱病害机理研究之二[J].敦煌研究,1998,(4):159-172.
    [21]郭宏,李最雄,裘元勋,等.敦煌莫高窟壁画酥碱病害机理研究之三[J].敦煌研究,1999(3):153-175.
    [22]陈港泉,苏伯民,赵林毅,等.莫高窟第85窟壁画地仗酥碱模拟试验[J].敦煌研究.2005,(4):62-66.
    [23]苏伯民,陈港泉.不同含盐量壁画地仗泥层的吸湿和脱湿速度的比较[J].敦煌研究,2005,(5):62-66.
    [24]陈港泉,于宗仁.莫高窟第351窟壁画疱疹和壁画地仗可溶盐分析[J].敦煌研究,2008,(6):39-48.
    [25]Nobuaki Kuchitsu and Duan Xiuye.Geological Environment of the Mogao Grottoes at Dunhuang[A].International Conference on the Conservation of Grotto Sites--Conservation of Ancient Sites on the Silk Road[C]The Getty Conservation Institute,1993.
    [26]Sadatoshi Miura,Tadateru Nishiura,Zhang Yong jun,Wang Baoyi,and Li Shi.Microclimate of Cave Temples 53 and 194,Mogao Grottoes[A].International Conference on the Conservation of Grotto Sites--Conservation of Ancient Sites on the Silk Road[C]The Getty Conservation Institute,1993.
    [27]李最雄.丝绸之路石窟壁画彩塑保护[M].北京:科学出版社,2005.
    [28]靳治良,陈港泉,钱玲,等.莫高窟壁画盐害作用机理研究Ⅰ[J].敦煌研究,2008,(6):50-53.
    [29]靳治良,陈港泉,钱玲,等.基于莫高窟成盐元素相关系探究壁画盐害作用机理[J].化学研究与应用,2009,21(4):450-454.
    [30]靳治良,陈港泉,钱玲,等.莫高窟壁画盐害作用机理研究Ⅱ[J].敦煌研究,2009,(3):100-103.
    [31]张拥军,王宝义,前川信.观众对洞窟环境影响的实验分析[A].敦煌研究文集-石窟保护(上集)[C].兰州:甘肃民族出版社,1993.
    [32]王宝义,薛平,前川信.敦煌莫高窟窟内温度湿度的观测与分析[A].敦煌研究文集-石窟保护(上集)[C].兰州:甘肃民族出版社,1993.
    [33]Shin Maekawa,Zhang Yongjun,Wang Baoyi,Fu Wenli,and Xue Ping.Environmental Monitoring at the Mogao Grottoes[A].Intemational Conference on the Conservation of Grotto Sites--Conservation of Ancient Sites on the Silk Road[C]The Getty Conservation Institute,1993.
    [34]张国彬,薛乎,侯文芳,等.游客流量对莫高窟洞窟内小环境的影响研究[J].敦煌研究,2005,(4):83-86.
    [35]郑彩霞,秦全胜,汪万福.敦煌莫高窟窟区林地土壤水分的入渗规律[J].敦煌研究,2001,(3):172-178.
    [36]秦全胜,郑彩霞,汪万福,等.敦煌莫高窟窟区树木蒸腾耗水量的估算[J].敦煌研究,2002,(4):97-101.
    [37]樊再轩.莫高窟第九十四窟病害壁画的修复报告[J].敦煌研究,2000,(1):136-138.
    [38]段修业,傅鹏,付有旭,等.莫高窟16窟酥碱悬空壁画的修复[J].敦煌研究,2005,(4):30-34.
    [39]陈港泉,Michael Schilling,李燕飞,等.纸条检测法对第85窟壁画空鼓灌浆脱盐效果的评估[J].敦煌研究,2007,(5):45-49.
    [40]范宇权,陈兴国,胡之德.莫高窟壁画早期保护技术的比较研究[J].敦煌研究,2005,(5):71-74.
    [41]孙儒僩.莫高窟壁画保护的若干问题[A].敦煌研究文集.石窟保护篇(上)[C].兰州:甘肃民族出版社,1993.
    [42]姚鲁烽,彭金章.敦煌大泉河的河床演变及其对莫高窟崖体的影响[J].敦煌研究,2007,(5):87-92.
    [43]李红寿.敦煌莫高窟园林用水资源调查及园林用水分析[J].敦煌研究,2005,(4):87-96.
    [44]彭金章,王建军.敦煌莫高窟北区石窟:第一卷图版三:[M].北京:文物出版社,2000.
    [45]张明泉,张虎元,曾正中,等.莫高窟壁画酥碱病害产生机理[J].兰州大学学报(自然科学版),1995,31(1):96-101.
    [46]Richards,L.A.Capillary conduction of liquids through porous medium[J].Physics,1931(1):318-333.
    [47]Terzaghi,K.Theoretical Soil Mechanics[M].New York:Wiley,1943.
    [48]Colman,E.A.and Bodman,G.B.Moisture and energy conditions during downward entry of water into moist and layered soils[J].Proc.Soil Sci.Soc.Amer,1944,(9):1-3.
    [49]Philip,J.R.Linearized unsteady multidimensional infiltration[J].Water Resources Res,1986(22):1717-1727.
    [50]J.贝尔.多孔介质流体动力学[M].北京:中国建筑工业出版社,1983.
    [51]Freeze,R.A.and Cherry,J.A.Groundwater,Englewood Cliffs,N J:Prentice-Hall,1979.
    [52]Freeze,R.A.Three-dimensional transient saturated-unsaturated flow in a groundwater basin[J].Water Resources Research,1971,(7):929-941.
    [53]D.G弗雷德隆德(加拿大),H.拉哈尔佐(印度尼西业)著,陈仲颐等译.非饱和土力学[M].北京:中国建筑工业出版社,1997.
    [54]P.A.哈尔内著,陈钟祥,郎兆新译,地下水-气动力学[M].北京:石油工业出版社,1982.
    [55]Tindall J A,Kunkel J R.Unsaturated zone hydrology for scientists and engineers[M].New Jersey:Prentice-Hall,1999.
    [56]Van Genuchten M T h,Schaap M G,Mohanty B P,et al.Modeling flow and transport processes at the local scale[A].J.Feyen & K.Wigo.Modelling of transport processes in soils-International workshop of EurAgEng's field of interest on soil and water[C].The Netherlands:Wageningen Pers,Wageningen,1999.
    [57]T.N.Narasimhan.Hydraulic characterization of aquifers,reservoir rocks and soils:A history of ideals[J].Water Resources Research,1998,(34):33-46.
    [58]Lapidus,L.,and Amundson N.R.Mathematics of Adsorption in Beds[J].Phys.Chem,1952(56):984-988.
    [59]Nielsen.D.R.and Biggar J.W.Miscible displacement in soils:I[J].Experimental information,Soil Sci.Soc.Am.Proc,1961(25):1-5.
    [60]Nielsen.D.R.and Biggar J.W.Miscible displacement in soils:Ⅲ[J].Theoretical consideration,Soil Sci.Soc.Am.Proc,1962(26):216-221.
    [61]Bresler.E.Simultaneous transport of solute and water under transient unsaturated flow conditions[J].Water Resources Research,1972(9):975-986.
    [62]黄领梅,沈冰.水盐运动研究述评[J].西北水资源与水工程,2000.11(1):6-12.
    [63]Bresler.E.,Mcneal B.L.and Carter D.L.Saline and Sodic Soils(Principles Dynamics Modeling)[J],Advanced series in Agriculture Science 10,1982.
    [64]Brusseau M.L.and Rao R S.C.Modeling solute transport in structured soils:a review[J].Geoderma(Amsterdam),1990(46):169-192.
    [65]Chen C.,Thoma D.M.and Green R.E.et al.Two domain estimation of hydraulic properties in macropore soils[J].Soil Sci Soc Am.,1993(57):680-686.
    [66]李韵珠,陆景文,黄坚.蒸发条件下粘土层与土壤水盐运移[C].国际盐渍土改良学术讨论会论文集,176-190,1985.
    [67]刘亚平.稳定蒸发条件下土壤水盐运动的研究[C].国际盐渍土改良学术讨论会论文集.1985.
    [68]贾大林.利用同位素和数学模拟研究土壤水盐运动[C].国际盐渍土改良学术讨论会论文集.1985.
    [69]任理,李春友,李韵珠.粘性土壤溶质运移新模型的应用[J].水科学进展,1997(12):321-328.
    [70]杨玉建,杨劲松.土壤水盐运动的时空模式化研究[J].土壤,2004,36(3):283-288.
    [71]王全九,邵明安,郑纪.土壤水分运动与溶质迁移[M].北京:中国水利水电出版社,2007,78-111.
    [72]王全九.土壤溶质迁移特性的研究[J].水土保持学报,1993(2):15-20.
    [73]同延安,王全九.土壤-植物-大气连续体系中水运移理论和方法[M].西安:陕西科学技术出版社.1998.
    [74]DR.Nielsen et al.Water Flow and Solute Transport Processes in the Unsaturated Zone[J].Water Resource Research,1986,22(9):89-108.
    [75]隋红建,饶纪龙.土壤溶质运移的数学模拟研究现状以及展望[J].土壤学进展,1992,(5):1-6.
    [76]黄冠华,叶自桐,杨金忠.一维非饱和溶质随机运移模型的谱分析[J].水利学报,1995,(11):1-7.
    [77]蔡树英,杨金忠.考虑不动水体存在时区域水盐动态预测预报方法[J].武汉水利电力大学学报,1993,(6):268-275.
    [78]叶自桐.利用盐分迁移函数模型研究入渗条件下土层的水盐动态[J].水利学报,1990,(2):1-8.
    [79]吕殿青,王文焰,王全九.入渗与蒸发条件下土壤水盐运移的研究[J].水土保持研究,1999,(6):61-66.
    [80]Hanks R J,Bowers S A.Numerical solution of the moisture flow equation for infiltration into layered soil[J].Soil Sci.Soc.Am Proc.,1962,(26):530-534.
    [81]雷志栋,杨诗秀.非饱和土壤水分运动的数学模拟[J].水利学报,1982,19(2):141-153.
    [82]张瑜芳,张蔚棒.垂直一维均质土壤水分运动的数学模拟[J].工程勘察,1984,(4):51-55.
    [83]Bolton,E.F.,ETAL.Com,soybean and wheat yields on Brookston clay drained by plastic tubing installed by two methods of seven spacing and two depths[J],Canadian Agri.Engineer,1980,22(2).
    [84]Selim H M,Kirkham D.Unsteady two-dimensional flow of water in unsaturated soils above an impervious barrier[J].Soil Sci.Soc.Am.Proc.,1973(37):489-495.
    [85]Homung V,Messing W.A predictor-corrector alternation-direction implicit method for two-dimensional unsteady saturated-unsaturated flow in porous media[J].Hydro.,1980(47):317-323.
    [86]李恩羊.渗灌条件下非饱和土壤水分运动的数学模拟[J].水利学报,1982,(4):1-10.
    [87]Van Genuchten M Th.A comparison of numerical solutions of the one dimensional unsaturated-saturated flow and mass transport equation[J].Adv Water Resour.,1982,(5):47-55.
    [88]黄康乐.求解二维和饱和-非饱和溶质运移问题的交替方向特征有限单元法[J].水利学报,1988,(7):1-13.
    [89]朱学愚,谢春红.非饱和流动问题的SUPG有限元素数值法[J].水利学报,1994,(6):37-42.
    [90]任理.地下水溶质运移计算方法及土壤水热动态数值模拟的研究[D].武汉:武汉水利电力大学博士论文,1994.
    [91]高新科,张富仓.非饱和的土壤溶质运移数值模拟的初步研究[J].西北农业大学学报,1996,24(2):66-70.
    [92]李朝刚,王春晴.解非饱和流土壤溶质运移方程的数值方法[J].甘肃农业科技,1996,(5):18-20.
    [93]任建光,黄继忠,李海.无损检测技术在石质文物保护中的应用[J].雁北师范学院学报.2006,22(5):58-62.
    [94]底青云,石昆法,王妙月等.CSAMT法和高密度电法探测地下水资源[J].地球物理学进展.2001,16(3):53-58.
    [95]许锡昌,陈卫东,刘伟.地质雷达和高密度电法在废弃矿井探测中的应用[J].岩土力学.2002,23(增刊):126-132.
    [96]刘晓东.高密度电法在宜春市岩溶地质调查中的应用[J].中国地质灾害与防治学报.2002,13(1):72-75.
    [97]郭铁柱.高密度电法在崇青水库坝基渗漏勘查中的应用[J].北京水利.2001,(2):39-40.
    [98]吴长盛.北大港水库堤坝裂缝检测与评定技术研究[J].水利水电技术,2001,(5):61-63.
    [99]曾滔涛,罗庆华,石仁彬.高密度密度电法在公路勘察中的应用[J].科技创新导 报.2009,(9):70-72.
    [100]王玉清.综合物探在高层建筑选址工作中的应用[J].河南地质.2001,(3):208-211.
    [101]董浩斌,王传雷.高密度电法的发展与应用[J].地学前缘(中国地质大学,北京).2003,10(1):171-176.
    [102]Ali A.Nowroozi,G Richard Whittecar,Joel C.Daniel.Estimating the yield of crushable stone in an alluvial fan deposit by electrical resistivity methods near Stuarts Draft,Virginia[J].Journal of Applied Geophysics.1997(38):25-40.
    [103]P.B.Wilkinson,P.I.Meldrum,O.Kuras,et al.High-resolution Electrical Resistivity Tomography monitoring of a tracer test in a confined aquifer[J].Journal of Applied Geophysics.2009.
    [104]J.Martinez a,J.Benavente b,J.L.Garcia-Arrstegui.Contribution of electrical resistivity tomography to the study of detrital aquifers affected by seawater intrusion-extrusion effects:The river Velez delta(Velez-Malaga,southern Spain)[J].Engineering Geology.2009(108):161-168.
    [105]Kumari Sudha,M.Israil,S.Mittal.Soil characterization using electrical resistivity tomography and geotechnical investigations[J].Journal of Applied Geophysics.2009(67):74-79.
    [106]Giovanni Leucci.Contribution of Ground Penetrating Radar and Electrical Resistivity Tomography to identify the cavity and fractures under the main Church in Botrugno(Lecce,Italy)[J].Journal of Archaeological Science.2006(33):1194-1204.
    [107]Gil Lim Yoon,Jun Boum Park.Sensitivity of leachate and fine contents on electrical resistivity variations of sandy soils[J].Journal of Hazardous Materials.2001(84):147-161.
    [108]蒋宏耀,张立敏.考古地球物理学[M].北京:科学技术出版社,2000.
    [109]王书民,孟小红,李汝.频率域高密度电法在秦始皇陵地宫探测中的试验效果[J].物探与化探.2004,28(4):327-332.
    [110]Griffiths D H,Barker R D.Two-dimensional resistivity imaging and modeling in areas of complex geology[J].Journal of Applied Geophysics.1993,29(33):211-216.
    [111]付长民,李帝铨,王光杰,等.高密度电法数值模拟及其在寻找北京人头盖骨化石中的应用[J].地球物理学进展.2008,23(1):263-269.
    [112]苏永军,王绪本,罗建群.高密度电阻率法在三星堆壕沟考古勘探中应用研[J].地球物理学进展.2007,22(1):268-272.
    [113]王若,底青云.改进的佐迪反演方法及在考古中的应用研究[J].工程地质学报.1999,7(3):284-288.
    [114]SK Park,GP Van.Inversion of Pole-Pole Data for 3-D Resistivity Structure Beneath Arrays of Electrodes[J].Geophysics.1991,07(56):951-960.
    [115]Shima.H.Two-Dimensional Automatic Resistivity Tomography[J].Geophysics.1991,6(8):228-235.
    [116]Tadakuni Murai,Yukio Kagawa.Electrical Impedance Computed Tomography Based on a Finite Element Model[J].IEEE Transactions On Biomedical Engineering.1985,32(3):177-84.
    [117]Yataka Sasak i.3-D Resistivity Inversion Using the Finite-element Method[J].Geophysics.1994,59(11):1839-1848.
    [118]Yorkey T.J.,Webster J.G.,Tompkins W.I.Comparing Reconstruction Algorithms for Electrical Impedance Tomography[J].Transaction on Biomedical Engineering.1987,34(11):834-25.
    [119]黄建秋,张敏,邹忆军.高密度电阻率法探测土墩墓-以江苏省无锡市战国土墩墓为例[J].江汉考古.2007,(1):87-91.
    [120]闫永利.浅层电阻率层析成像和南祁连大地电磁测深研究[D].北京,中科院地球物理研究所.1998.
    [121]Anita Turesson.Water content and porosity estimated from ground-penetrating radar and resistivity[J].Journal of Applied Geophysics.2006(58):99-111.
    [122]A.Samou(e|¨)liana,I.Cousina,A.Tabbagh,et al.Electrical resistivity survey in soil science:a review[J].Soil & Tillage Research.2005(83):173-193.
    [123]田玉昆,刘怀山,张晶.高密度电法寻找地下水在即墨地区的应用[J].工程地球物理学报.2008,5(6):671-675.
    [124]董健,翟培合,张振勇.高密度电法在煤层工作面底板含水体探查中的应用[J].科学技术与工程.2008,8(6):1550-1552.
    [125]王士鹏.高密度电法在水文地质和工程地质中的应用[J].水文地质工程地质.2000,(1):52-56.
    [126]孙建孟,王永刚.地球物理资料综合应用[M].北京:石油大学出版社,2001.
    [127]方方,贾文懿,周蓉生等.利用α测氡技术寻找地下水[J].物探化探计算技术.1996,18(增刊):103-106.
    [128]何庆.RS和GIS技术集成及其应用[J].水文地质工程地质.2000,27(2):44-46.
    [129]魏加华,王光谦,李慈君等.GIS在地下水研究中应用进展[J].水文地质工程地质.2003,30(2):94-98.
    [130]#12
    [131]Vicker R.S.,Dolphin L.T.A communication on an archaeological radar experiment at Chaco Canyon[J].New Mexico,MASCA Newsletter.1975,11(1):6-8.
    [132]李大心.探地雷达探测古矿坑遗址研究[J].地球科学.1992,17(6):719-726.
    [133]钱复业.地面电探CT技术及其在三峡考古中的应用试验[J].考古.1997,(3).:80-85.
    [134]田兴玲,周霄,高峰.无损检测及分析技术在文物保护领域中的应用[J].无损检测.2008,30(3):178-182.
    [1]李最雄,丝绸之路石窟壁画彩塑保护[M],北京:科学出版社,2005年9月第一版:1-400.
    [2]张明泉,张虎元,曾正中,等.敦煌壁画盐害及其地质背景,敦煌研究文集,石窟保护篇(上),甘肃民族出版社.1993.
    [3]张明泉,张虎元,曾正中,等.莫高窟壁画酥碱病害产生机理[J].兰州大学学报(自然科学版),1995,(1):96-101.
    [4]张明泉,张虎元,曾正中,等.莫高窟地仗层物质成分及微结构特征[J].敦煌研究,1995,(3):27-28
    [5]郭宏,李最雄,宋大康,等.敦煌莫高窟壁画酥碱病害机理研究之一[J],敦煌研究,1998,(3):153-163.
    [6]郭宏,李最雄,裘元勋,等.敦煌莫高窟壁画酥碱病害机理研究之二[J].敦煌研究,1998,(4):159-161.
    [7]郭宏,李最雄,裘元勋,等.敦煌莫高窟壁画酥碱病害机理研究之三[J].敦煌研究,199,9(3):153-175.
    [8]陈港泉,苏伯民,赵林毅,等.莫高窟第85窟壁画地仗酥碱模拟试验[J],敦煌研究,2005,(4):62-66
    [9]Wang Xudong,Fu Peng,Summary of painting materials and techniques of the Mogao Grottoes[J],Mural Paintings of the Silk Road Culture Exchanges Between East and West.2007.
    [10]王旭东,陈港泉,樊再轩,等:WW/T0006--2007中华人民共和国文物保护行业标准“古代壁画现状调查规范”[S],北京:文物出版社出版,2008.
    [1]甘肃地质局.区域地质调查报告(敦煌幅1:20000)[R].1974.
    [2]国家地震局《阿尔金活动断裂带》课题组.阿尔金活动断裂带[M].北京:地震出版社,1992
    [3]国家地震局,中国地震烈度区划图(1:400万)[M].北京:地震出版社,1990.
    [4]袁道阳,石玉成,王旭东.敦煌莫高窟地区断裂新活动及其对石窟的影响[J],敦煌研究.2000(1):56-64
    [5]石玉成,徐晖平,王旭东.敦煌莫高窟地震安全性评价.敦煌研究[J],2000(1):49-55
    [6]兰州大学.敦煌莫高窟崖体及附加构筑物抗震稳定性研究[R].兰州:兰州大学,1995.12.
    [7]李宝兴,论甘肃西部“洞窟地层”的特征与时代[J],甘肃地质,1986,(6):61-77.
    [8]李最雄,丝绸之路古遗址保护[M],北京:科学出版社,2003.
    [9]张虎元,张明泉,曾正中,等,敦煌洞窟地层的工程特性[J].敦煌研究文集.石窟保护篇(上),兰州:甘肃民族出版社,1993。
    [10]王旭东,张明泉,张虎元,等,敦煌莫高窟洞窟围岩的工程特性[J].岩石力学与工程学报2000,19(6):756-761.
    [1]张明泉,张虎元,曾正中,等.敦煌洞窟地层的工程特性[J].敦煌研究文集.石窟保护篇(上).兰州:甘肃民族出版社.1993.
    [2]李最雄.丝绸之路古遗址保护[M],北京:科学出版社,2003.
    [3]李最雄.丝绸之路石窟壁画彩塑保护[M],北京:科学出版社,2005.
    [4]张明泉,张虎元,曾正中,等.莫高窟壁画酥碱病害产生机理[J].兰州大学学报(自然科学版),1995,(1):96-101.
    [5]张明泉,张虎元,曾正中等.莫高窟地仗层物质成分及微结构特征[J].敦煌研究,1995,(3):27-28
    [6]郭宏,李最雄,宋大康,等.敦煌莫高窟壁画酥碱病害机理研究之一[J],敦煌研究,1998,(3):153-163.
    [7]郭宏,李最雄,裘元勋,等.敦煌莫高窟壁画酥碱病害机理研究之二.敦煌研究[J],1998,(4):159-161.
    [8]郭宏,李最雄,裘元勋等.敦煌莫高窟壁画酥碱病害机理研究之三[J].敦煌研究,1999,(3):153-175.
    [9]陈港泉,苏伯民,赵林毅,等.莫高窟第85窟壁画地仗酥碱模拟试验[J],敦煌研究,2005(4):62-66.
    [10]马占国,缪协兴,陈占清,等.破碎煤体渗透特性的试验研究[J],岩土力学,2009,30(4):985-996.
    [11]高凌霞,栾茂田,杨庆,等.非饱和重塑黏土渗透性试验研究[J].岩土力学,2008,29(8):2267-2276.
    [12]张志红,赵成刚,李涛.氨氮在黏土防渗层中渗透和运移规律试验研究[J].岩土力学,2008,29(1):28-32.
    [13]唐晓松,郑颖人,董诚.应用神经网络预估粗颗粒土的渗透系数[J].岩土力学,2007,28Supp:133-143.
    [14]周启友.从高密度电阻率成像法到三维空间上的包气带水文学[J],水文地质工程地质,2003(6):97-102.
    [15]高亚成,冷元宝.高密度电阻率法的试验研究与应用[J],勘察科学技术,2005,(6):61-64.
    [16]闫永利,底青云,高立兵,等,高密度电阻率法在考古勘探中的应用[J],物探与化探,1998(6):452-457
    [17]杨发杰,巨妙兰,刘全德.高密度电阻率探测方法及其应用[J],矿产与地质2004,(4):356-360.
    [18]Ramirez A,Daily W,LaBrecque D,E.Owen D.Chesnut.Monitoring an underground steam injection process using electrical resis2tivity tomography[J].Water Resour.Res,1993,29(1):73-87.
    [19]Zhou Q Y,Shimada J,Sato A.Three dimensional soil resistivity inversion using patching method[J].Journal of the Japan Society of Engineering Geology,1999,39(6):524-532.
    [20]Zhou Q Y,Matsui H,Shimada J,A.Sato.Applications of electrical resistivity tomography in mapping rock dispersivity and monitoring water flow in heterogeneous media[A].A.N.Findikakis,Berkeley,the International Groundwater Symposium 2002[C],173-178,California:March,2002,25-28
    [21]Izumotani S.,Noguchi K.The behavior of velocity and resistivity of rocks due to fracture[J].ButsuriTansa,1998,51(3):219-228.
    [22]Nishimaki H,Sekine I,Saito A,etal.Electrical resistivity of rock and its correlation to engineering properties[J].ButsuriTansa,1999,52(2):161-171.
    [23]Daily W,Ramirez A L.Electrical imaging of engineering hydraulic barriers[J].Geophysics,2000,65(1):83-94.
    [24]M.S.Rahman Khan.Changes Produced in the Electrical Resistivity of ErH2 Thin Films When Converted to ErH 3 Due to Hydrogen Treatment[J].Appl.Phys.A 1984(35):263-265.
    [25]Kazuo Kamura,Yu Hara,Bulent Inanc,Masato Yamada Yuzo Inoue,Yusaku Ono.Effectiveness of resistivity monitoring for interpreting temporal changes in landfill properties[J].J Mater Cycles Waste Manag(2005)7:66-70.
    [26]张京津,王向公,杨林,蔡文渊,郭建明.地层水电阻率计算模型的建立[J].山东理工大学学报.2008,22(3):38-40.
    [27]李忠,武强,张德强,张进德.多道遥测地层电阻率法及在采空区勘探中应用[J].辽宁工程技术大学学报(自然科学版)2008,27(4):500-503.
    [28]张豆娟,曾保森,王善江,等.视地层水电阻率正态分布分析及应用[J].断块油气田.2009,16(1):123-125.
    [29]#12
    [1]王旭东,张虎元,郭青林,吕擎峰.敦煌莫高窟崖体风化特征及保护对策[J],岩石力学与工程学报,2009,28(5):1055-1063.
    [2]张明泉,王亚芹,王旭东等.敦煌大泉河径流量24小时变化规律分析,水文,2009,29(4):83-86
    [3]李红寿,汪万福,张国彬,薛平,侯文芳,邱飞.水系统对莫高窟小气候的影响[J].敦煌研究.2009(3):110-113.
    [4]李红寿,汪万福,郭青林,范宇权,李燕飞.敦煌莫高窟干旱地区水分凝聚机理分析[J].生态学报.2009,29(6):3198-3205.
    [5]张明泉,王旭东,贾宁,刘琴,郭青林.敦煌大泉河水环境特征分析[J],兰州大学学报,2006,42(04):7-10
    [6]桑学锋,张明泉,王浩,秦大庸.敦煌盆地地下水数值模拟及可视化与管理[J].兰州大学学报(自然科学版),2007,43(03):18-22.
    [7]孙然好,潘保田,牛最荣,刘志刚.河西走廊近50年来地表水资源时间序列的小波分析[J].干旱区地理,2005,28(04):455-459
    [8]张明泉,曾正中,蔡红霞,赵转军.敦煌月牙泉水环境退化与防治对策,兰州大学学报(自然科学版),2004,40(3):99-102.
    [9]张明泉,赵转军,曾正中.敦煌盆地水环境特征与水资源可持续利用[J].干旱区资源与环境,2003,17(04):71-76.
    [10]甘肃省地质调查院.河西走廊地下水勘查报告[R],2002.
    [11]甘肃省地勘局水文地质工程地质勘察院.甘肃省敦煌绿洲水土资源承载力评价报告[R],2002.
    [12]甘肃省地矿局第二水文地质工程地质队.甘肃省敦煌市区域水文地质调查报告[R],1997.
    [13]中国人民解放军○○九二九部队.敦煌幅区域水文地质普查报告[R],1982.
    [14]地质部西北水文地质工程地质大队.甘肃敦煌地区水文地质调查报告[R],1973.
    [1]汪万福,安黎哲,冯虎元,等.敦煌莫高窟窟前林带防护效应的风洞实验[J],中国沙漠,2009,(5):383-390.
    [2]屈建军,董光荣,文子祥,等.敦煌莫高窟的风沙危害与防治问题[J],中国科学(D辑),1997,(1):82-88.
    [3]Zhang W.M.,Qu J J,Dong Z.B.,et al.The airflow field and dynamic processes of pyramid dunes.Journal of Arid Environments,2000,(45):357-368.
    [4]汪万福,王涛,李最雄,等.敦煌莫高窟崖顶灌木林带防风固沙效应[J],生态学报,2004,24(11):2492-2500.
    [5]汪万福.敦煌莫高窟风沙危害与防治研究[D].北京:中国科学院研究生院博士学位论文,2006.
    [6]薛娴,张伟民,王涛.戈壁砾石防护效应的风洞实验与野外观测结果-以敦煌莫高窟顶戈壁的风蚀防护为例[J].地理学报,2000,55(3):375-382.
    [7]Wanfu Wang,Zhibao Dong,Tao Wang,et al.The equilibrium gravel coverage of the deflated gobi above the Mogao Grottoes of Dunhuang[J],China.Environ Geol,2006,50(7):1077-1083.
    [8]唐玉民,孙儒僩.莫高窟小气候的初步观测,敦煌研究文集.石窟保护篇上[M].兰州,甘肃民族出版社,1993.
    [9]三浦定俊,西浦忠辉,张拥军,王宝仪.敦煌莫高窟的气候,敦煌研究文集.石窟保护篇上[M].兰州,甘肃民族出版社,1993.
    [10]李实,曲建军.敦煌莫高窟气候环境特征,敦煌研究文集.石窟保护篇上[M].兰州,甘肃民族出版社,1993.
    [11]刘刚,薛平,侯文芳,Shin Maekawa.莫高窟85窟微气象环境的监测研究[J],敦煌研究,2000,(1):36-41.
    [12]张国彬,薛平,侯文芳,郭青林.游客流量对莫高窟洞窟内小环境的影响研究[J],敦煌研究,2005,(4):83-86.
    [13]侯文芳,薛,张国彬,张正模,王旭东.莫高窟第217窟微环境监测分析[J],敦煌研究,2005,(4):93-97.
    [14]李红寿,汪万福,张国彬,薛平,侯文芳,邱飞:地形地貌对莫高窟区域微环境的影响[J],敦煌研究,2008(3):98-102.
    [15]樊锦诗.基于世界文化遗产价值的世界文化遗产地的管理与监测-以敦煌莫高窟为例[J].敦煌研究,2008,(6):1-5.
    [16]李最雄.丝绸之路石窟壁画彩塑保护[M],北京:科学出版社,2005
    [17]徐淑青.莫高窟第98窟现状调查报告[J].敦煌研究,2005,(5):75-77.
    [18]郑彩霞,秦全胜,汪万福.敦煌莫高窟窟区林地土壤水分的入渗规律[J].敦煌研究,2001,(3):172-178.
    [19]秦全胜,郑彩霞,汪万福,等.敦煌莫高窟窟区树木蒸腾耗水量的估算[J].敦煌研究,2002,(4):97-101.
    [20]徐淑青,王旭东孙洪才,等.莫高窟第85窟现状调查评估.敦煌研究[J],2000,(1):174-180.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700