用户名: 密码: 验证码:
基于三维影像数据的震后次生地质灾害风险评估
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地震次生地质灾害是指由地震活动引起的地质灾害。地震次生地质灾害增强了地震灾害的破坏效应,加剧了地震的损失程度,因此次生地质灾害危险性评价是地震灾害情评估工作的重要组成部分,在地质灾害危险范围预测、地质灾害灾害损失预评估和地质灾害防治工程评价等方面发挥着重要的作用。应用遥感技术开展地质灾害调查评价是极其必要的,它可以贯穿于地质灾害调查评价、监测预警、灾情评估以及灾害防治的全过程,是当代高新技术发展的必然趋势。
     5·12汶川大地震诱发了大量滑坡、崩塌、泥石流等次生地质灾害,对人民群众的生命财产和社会经济的发展形成了严重威胁。针对次生地质灾害危险性评价,本文选取重灾区汶川县作为研究区域,结合汶川县地质灾害调查与区划项目,探讨了GIS技术与信息量法相结合的评价方法原理及其在汶川县地质灾害风险评估中的具体实施过程,利用三维遥感技术与地理信息技术的空间数据管理和空间数据分析平台,提取次生地质灾害的诱发因子,并对其与次生地质灾害的相关性进行了定量化评述,然后运用信息量模型对次生地质灾害危险性及其空间分布进行预测和定位。主要研究内容如下:
     (1)主要综述了GIS/RS在区域地质灾害研究中的应用情况和进展,分析了目前GIS/RS的区域地质灾害研究中现状和问题,阐述了三维遥感技术的应用现状和前景,讨论了GIS/RS技术支持下灾区区域地质灾害危险性评价的重点内容和合理的评价模式,为本文研究重点指明了方向,规划了研究的主要内容和期望解决的问题。
     (2)详细论述了崩滑流地质灾害研究中的关键遥感技术,讨论了数据源的选取、图像的光谱校正、几何校正和正射校正、三维遥感模型的建立,有针对性对地提出了地质灾害不同研究对象、不同研究阶段、不同研究程度的遥感图像处理方法。
     (3)利用多时相、高分辨率的IKNOS、QtrickBird卫星图像分析了滑坡的形成条件、发育特征、变形破坏迹象以及主要灾情状况。将三维遥感技术应用于汶川县次生地质灾害的信息提取,建立了滑坡区的高精度三维遥感遥感模型。在传统三维图像制作方法基础上,提出了一套实用有效的三维遥感影像制作方法,改善了三维遥感影像的制作效果,提高了三维遥感影像的制作水平,增强了大规模三维遥感影像的实用性。
     (4)利用ETM+、SPOT5影像相结合,提取了研究区的孕灾条件、崩滑流地质灾害发育现状,评价研究区地质灾害的分布特征。结合崩滑流地质灾害的成因及行为特征修正和完善了地质灾害遥感解译的识别标志和解译方法。
     (5)基于遥感技术提取地质灾害危险性评价指标的优势,提取次生地质灾害的诱发因子。分析了研究区内次生地质灾害与各影响因子地形地貌、地层岩性、水系、地震断裂之间的相关性特征,并结合信息量法模型进行次生地质灾害危险性评价。高度、中度和轻度危险区的面积分别为1130.196 km2、1739.584 km2、1213.219 km2。本次地震触发次生地质灾害的分布具有集群式分布的特点,即断裂带及其附近地区地质灾害集中发育,而远离断裂带区地质灾害很快衰减,呈零星分布;从灾害发育的区域特征分析,汶川县震后次生地质灾害呈现出北部和东部重、西部和南部轻的特点。所得研究结果与实际情况较吻合.表明地理信息系统结合信息量模型能够快速、有效的对次生地质灾害的空间分布以及危险性作出评价。
     研究表明,根据已有的滑坡先验知识,以遥感数据、区域地质调查资料作为滑坡因子数据源,结合部分野外调查数据,快速进行大中尺度的区域滑坡危险性评价是可行的。随着空间技术以及计算机技术的快速发展,高分辨率、雷达、高光谱遥感、数字自动测高、遥测数据的使用,能够为区域滑坡研究提供地物类型信息更为丰富的图像。结合地面工程地质、室内实验室测试资料进行中小尺度的地质灾害危险性评价是可行的,遥感技术应用于地质灾害研究需要进一步拓宽。
Secondary geological disasters in the earthquake are caused by seismic activity geological disasters. Geological disasters increased earthquake damage effect, increasing the extent of earthquake damage, therefore the risk of secondary geological disasters is an important part of earthquake disaster situation evaluation. It has played an important role in the scope of the geological hazard prediction, geological disaster loss of pre-assessment and evaluation of geological disaster prevention project. Application of remote sensing technology to carry out investigation and assessment of geological hazards is essential, as it can throughout the whole process of investigation and assessment of geological hazards, monitoring and early warning, disaster assessment and disaster prevention, which is the inevitable trend of the development of modern high technology.
     5·12 Wenchuan earthquake formed a series of secondary landslide, landslides, debris flows, and other mountainous geological disasters. It is a serious threat to peoples'lives and property and socio-economic development. For risk assessment of secondary geological hazards, this paper selected the worst-hit Wenchuan County as the study area, Explores the Combination of GIS technology and methods of evaluation the amount of information theory and its application in risk assessment of geological hazards in Wenchuan County, the specific implementation process, using three-dimensional remote sensing technology and geographical information technology, spatial data management and spatial data analysis platform, extract the secondary geological disaster-induced factors, and its secondary geological disasters with the correlation of the quantitative comments, and then use the amount of information model, the risk of secondary geological disasters and their spatial distribution to predict and positioning. Main research contents are as follows:
     (1)Chapter one provides a short view of several spatial information technologies applications on landslide field,such as remote sensing,GIS,digital elevation model. Described the application status and prospects of three-dimensional remote sensing technology. Discussed the GIS/RS with the technical support of geological disasters in the reservoir area of regional landslide hazard assessment focused on the evaluation of content and a reasonable model for the focus of this paper pointed out the direction, planning to study the main content and hope to solve the problem.
     (2) Key remote sensing technique was explained in detailes for collapse, landslide and debris flow geological hazard research. The data sources selection, the spectral image correction, geometric correction and ortho-correction, three-dimensional model establishment of remote sensing were introduced. Remote sensing image processing research methods have raised aim at different research object, different degrees, different research phase of geological hazard.
     (3) By using IKNOS and QuickBird satellite image multi-temporal, high-resolution to analyse of the formation conditions of landslide, growth characteristics, deformation indications and major disaster situation. Three-dimensional remote sensing technology was applied to extract geological hazards information in the secondary geological disasters and high precision three-dimensional remote sensing model of landslide region was established. A set of practical and effective method of producing three-dimensional remote sensing images was put forward based on the traditional method of three-dimensional image produced, which improve the production effect and level of three-dimensional remote sensing images, enhancing the practicality of large-scale three-dimensional remote sensing images.
     (4) By using ETM combined with SPOT images of the study to extracted pregnant conditions for disaster, development status collapse, landslide and debris flow geological hazards and evaluation of distribution of geological disasters. Combined with the causes and behavior characteristics of collapse, landslide and debris flow geological hazards to modify and improve the interpretation of geological hazards identification signs and interpretation methods.
     (5)Induced factors of secondary geological disasters were extracted based on the advantage of remote sensing technique. Analysis of correlative character between secondary geological disasters in the study area and the topography, lithology, hydrology, earthquake rupture, and use information value method to evaluate the risk of secondary geological disasters. The area of high risk, moderate risk and light risk is 1130.196 km2,1739.584km2,1213.219km2 respectively; The distribution of secondary geology disaster triggered by earthquake has the colony type distribution characteristic, namely the fault zone,both sides of water and the nearby regions to focus development of geological disasters, but far away form the fault zone area geology disaster quickly decay and assumes the fragmentary distribution; Analysis from the regional character of disaster devilment shows that risk of secondary geological disaster in north and east area were heavy, west and south were light. The research results inosculate preferably with the fact. So geographical information systems combined with information value model can be quickly and effectively evaluate the spatial distribution and risk of secondary geological disasters.
     Studies have shown that, according to the existing landslide priori knowledge to remote sensing data, regional geological survey data as a landslide factor data source, with part of the field survey data, large and medium-scale fast regional landslide risk assessment is feasible. As space technology and the rapid development of computer technology, high-resolution, radar, hyperspectral remote sensing, digital automatic altimeter, the use of remote sensing data can be provided for regional landslide research much richer type information features in the image. Combination of ground engineering geology, indoor laboratory test data of small-scale geological hazard assessment is feasible, remote sensing technology in geological hazards research needs further widened.
引文
[1]刘晓利.人工智能在地震滑坡危险性评价中的应用[D].2007.2.
    [2]柴贺军,刘汉超等.一九三三年叠溪地震滑坡堵江事件及其环境效应[J].地质灾害与环境保护,1995,6(1):7-17.
    [3]李强.基于GIS的重庆市北碚区滑坡灾害危险性评价[D].2008,5
    [4]李光,姚大全,张有林.汶川8.0级地震崩塌、滑坡的发育特点[J].防灾科技学院学报,2008,10(3):131-134
    [5]乔建平,蒲晓虹.川滇地震滑坡分布规律探讨[J].地震研究,1992,15(4):411-417.
    [6]李忠生.国内外地震滑坡灾害研究综述[J].灾害学,2003,18(4):64-70
    [7]唐川,朱静.GIS支持下的地震诱发滑坡危险区预测研究[J].地震研究,2001,(1):73-81
    [8]周本刚,张裕明.中国西南地区地震滑坡的基本特征[J].西北地质学报,994,16(1):95-103
    [9]许向宁.高地震烈度区山体变形破裂机制地质分析与地质力学模拟研究.成都理工大学博士论文.2006.4
    [10]邹谨敞,邵顺妹,蒋荣发.古浪地震滑坡的分布规律和构造意义[J].中国地震,1994,10(2):168-174
    [11]祈生文,伍法权,刘春玲,等.地震边坡稳定性的工程地质分析[J].岩石力学与工程学报,2004,23(16):2792-2797
    [12]KeeferD.V. Landslides caused by earthquakes [J]. Geological Society of America Bulletin, 1984,95(4)
    [13]PrestininziA,RomeoR. Earthquake-induced ground failure sinItaly [J].Engineering Geology, Special Issue 2000,58(3-4)
    [14]唐川,黄楚兴,万晔.云南省丽江大地震及其诱发的崩塌滑坡灾害特征[J].自然灾害学报,1997,6(3):76-84
    [15]孙崇绍,蔡红卫.我国历史地震时滑坡崩塌的发育及分布特征[J].自然灾害学报,1997,16(1):25-30
    [16]Hauswirth,E.K.,Pirkl,HRoch,K.H.,Scheidegger,A.E.:Untersuchungen eines Talzuschubesbei Lesach(Kals,Osttirol).Verh.Geol.B.A.,2:51-76,1979.
    [17]艾南山,刘百篪,周俊喜.历史地震滑坡与新构造应力场关系新知[J].兰州大学学报(自然科学版),1984,20(1):174-176
    [18]Nilsen.Tor H,Brabb.Earl E.Slope-Stability Studies in the San Francisco Bay Region, California. Reviews in Engineering Geology,v3,1977,p235-243
    [19]R.P.Gupta, B.C.Joshi.Landslide hazard zoning using the GIS approach, a case study from the Ramganga Catchment,Himalayas.Engineering Geology,1990,28(1-2):119-131
    [20]A.Carrara,M.Cardinali,R.Detti,F.Guzzetti,V.Pasqui.GIS techniques and statistical models in evaluating landslide hazard.Earth Surface Processes and Landforms,1991,16(5):427-445
    [21]Andrea GFabbri, Chang-Jo F.Chung, Paola Napolitano.GIS and sensitivity analysis in aquifer vulnerability representations.International Geological Congress,Abstracts—Congres Geologique Internationale,Resumes,1996,30, Vol.3,496
    [22]R.Guillande&6 others,1995.Automated mapping of the landslide hazard on the island of Tahiti based on digital satellite data,Mapping Sciences&RemoteSensing,1995,32(1):59-70.
    [23]R.Guillande&6 others,1995.Automated mapping of the landslide hazard on the island of Tahiti based on digital satellite data,Mapping Sciences&RemoteSensing,1995,32(1):59-70.
    [24]Cees J.van Westen.The modelling of landslide hazards using GIS.Surveys in Geophysics, 2000,21(2-3):241-255.
    [25]Christopher R.J.Kilburn,Alessandro Pasuto.2003.Major risk from rapid,large-volume landslides in Europe.Geomorphology,2003,54:3-9.
    [26]Ragozin A.L.Landslide hazard,vulnerability and risk assessment[Z].Landslides in research, theory and practice,1257-1262,Thomas Telford,London,2000.
    [27]H.L.Perotto-Baldiviezo,T.L.Thurow,C.T.Smith,R.F.Fisher,X.B.Wu.2004.GIS-based spatial analysis and modeling for landslide hazard assessment in steeplands,southern Honduras. Agriculture,Ecosystems and Environment,2004,103:165-176.
    [28]秦晓敏.基于GIS的滑坡地质灾害危险性评价[D].新疆大学硕士论文,2007,6
    [29]殷坤龙,朱良峰.滑坡灾害空间区划及GIS应用研究.地学前缘[J],2001,8(2):279-284.
    [30]吴益平.物元模型在滑坡灾害风险预测中的应用.地质科技情报[J],2003,22(4):96-99.
    [31]邢秋菊.基于GIS的滑坡危险性逻辑回归评价研究.地理与地理信息科学[J],2004,20(3):49-51.
    [32]殷坤龙,朱良峰.滑坡灾害空间区划及GIS应用研究.地学前缘[J],2001,8(2):279-284
    [33]乔建平.岷江上游滑坡危险度区划.水上保持学报[J],1994,8(1):39-44.
    [34]乔建平.滑坡危险度区划方法研究.国上经济[J],1995,(专刊):35-45.
    [35]阮沈勇,黄润秋.基于GIS的信息量法模型在地质灾害危险性区划中的应用[J].成都理工学院学报,2001,28(1):89-92.
    [36]殷坤龙,张梁等.地质灾害风险分析与GIS技术应用研究[J].地理学与国土研究,2002,18(4).
    [37]邢秋菊.基于GIS的滑坡危险性逻辑回归评价研究[J].地理与地理信息科学,2004,20(3):49-51.
    [38]乔建平,赵宇,杨文.四川省及重庆市滑坡危险度区划研究[J].自然灾害学报,2000,9(1):68-71.
    [39]唐川,等.2005.城市泥石流易损性评价[J].灾害学,2005,20(2).
    [40]唐川,等.2006.城市泥石流风险评价探讨[J].水科学进展,2006,17(3).
    [41]石菊松,张永双,董诚等.基于技术的巴东新城区滑坡灾害危险性区划[J].地球学报,2005,26(3):275-282.
    [42]吴树仁,张永双,石菊松等.三峡库区重庆市丰都县滑坡灾害危险性评价[J].地质通报,2007,26(5):576-582.
    [43]王涛,马寅生,龙长兴,等,2008.四川汶川地震断裂活动和次生地质灾害浅析.地质通报,27(11):1913-1922.
    [44]张永双,雷伟志,石菊松,等.四川5.12地震次生地质灾害的基本特征初析.地质力学学报,2008,14(2):109-116.
    [45]韩金良,吴树仁,何淑军.5.12汶川8级地震次生地质灾害的基本特征及其形成机制浅析.地学前缘(中国地质大学(北京)),2009,16(3):306-326.
    [46]徐青.地形三维可视化技术.测绘出版社,2000年8月第1版
    [47]李志林,朱庆数字高程模型武汉测绘科技大学出版社,2000年3月第1版
    [48]李树揩,薛永棋.高效三维遥感集成技术系统,科学出版社,2000年1月第1版162-171.
    [49]张立强,等.三维地形的动态生成及空间分析[J].同济大学学报,2003,31(6):738-742.
    [50]汤国安,刘学军,闾国年等,数字高程模型及地学分析的原理与方法.科学出版社,2005年8月第1版。
    [51]王建军,李青.基于图像的绘制技术[J].火力与指挥控制.2003.28(5):8
    [52]贾韶辉.基于RS与GIS技术宣汉县天台乡滑坡灾害危险性评价[D].2006,4
    [53]Mantovani,F.,Soeters,R.,VanWesten,C.J.,1996.Remote sensing techniques for landslide studies and hazard zonation in Europe[J].Geomorphology 15(3-4),213-225.
    [54]Metternicht,G.,Hurni,L.,Gogu,R.,2005.Remote sensing of landslides:an analysis of the potential contribution to geo-spatial systems for hazard assessment in mountainous environments[J].Remote Sensing of Environment,98(23),284-303.
    [55]Singhroy,V.,2005.Remote sensing of landslides.In:Glade,T., Anderson, M.,Crozier,M.J. (Eds.), Landslide Hazard and Risk.John Wiley and Sons Ltd.,West Sussex,England,pp. 469-492.
    [56]王治华RS+GPS获取滑坡基本信息[J].中国地质灾害与防治学报,2004,15(1):59.
    [57]李志忠,党福星,熊盛青等.苏门答腊岛DMC多光谱数据地质应用初步分析[J].遥感学报,2005,9(4):509-512.
    [58]党安荣,王晓栋,陈晓峰等.遥感图像处理方法.清华大学出版社,2003.4
    [59]张利平,崔永利,王宝山.不同地形类别条件下Quick Bird影像正射纠正精度分析,测绘与空间地理信息,2009,32(4):167-169.
    [60]林辉,何安国,赵煜鹏等.QU ICKB IRD数据处理及其应用[J].遥感信息,2004,(2):21 -24.
    [61]赵书河.高分辨率遥感数据处理方法实验研究[J].地学前缘,2006,(5):60-67.
    [62]刘军,王冬红,毛国苗.基于RPC模型的IKONOS卫星影像高精度立体定位[J].测绘通报,2004,(9):1-3.
    [63]孙成忠,李成名,洪志刚.基于卫星遥感影像的城市地图快速更新技术[J].测绘通报,2002,(12):17-19.
    [64]李忠生.地震危险区黄土滑坡稳定性研究[M].科学出版社,2004.
    [65]刘珺,贾明.浅谈遥感技术在地质灾害调查中的应用[J].科技情报开发与经济,2005,(5):170-171.
    [66]王瑞雪.遥感图像在地质灾害调查中的应用[J].昆明理工大学学报,1997,(4):17-21.
    [67]林茂炳,俞广.茂汶断裂带(耿达-汶川段)的基本特征[J].成都理工学院学报,1997,24(2):40-47.
    [68]汤国安,杨昕lArcGis地理信息系统空间分析试验教程[M].北京:科学出版社,2006:443.
    [69]Qi J. A modified soil adjusted vegetation index[J].Remote Sensing of Environment,1994, 48:119-126.
    [70]陈晋,陈云浩,何春阳等.基于土地覆盖分类的植被覆盖率估算亚像元模型与应用[J].遥感学报,2001,5(6):416-422.
    [71]Gitelson A, Kogan F, Zakarin E, et al. Using AVHRR data for quantitive estimation of vegetation conditions:calibration and validation[J]. Advances in Space Research,1998 (22):673-676.
    [72]Carlson T N, Ripley D A. On the relation between NDVI, fractional vegetation cover, and leaf area index[J]. Remote Sensing of Environment,1997,62 (3):241-252.
    [73]Rib H T,Liang T.Recognition and identification.In special report 176:Landslides:Analysis and Control[M].TRB,National Research Council,Washington,D.C.,1978:34-80.
    [74]Mollard J D.Regional landslide types in Canada[M].In reviews in engineering geology,Vol.3, Geological society of America,Boulder,Colo.,1977:29-56.
    [75]Brunsden D,Prior D B.Slope instability[M].John Wiley and Sons,New York,1984:620.
    [76]Guerricchio A,Melidoro GMovimenti di massa pseudo tettonici nell'apennino dell'Italia Meridionale[J].Geologia Applicata e Idrogeologica,1981,16:251-294
    [77]Cotecchia V,Guerricchio A,Melidoro GThe geomorphogenetic crisis triggered by the 1783 earthquake in Calabria(Southern Italy)[J]. Geologia applicata e idrogeologica,1986,21: 245-304.
    [78]刘沛,况顺达,姚智.RS、GIS在贵州省环境地质综合调查中的应用-以崩塌、滑坡、泥石流调查为例[J].贵州地质,2004,21(3):160-165.
    [79]王治华.滑坡、泥石流遥感回顾与新技术展望[J].国土资源遥感,1999(3):10-15.
    [80]王治华.数字滑坡技术及其应用[J].现代地质,2005,19(2):157-164.
    [81]Soeters,R.,Van Westen,C.J.,1996.Slope instability recognition,analysis and zonation.In: Turner,A.K., Schuster,R.L.(Eds.),Landslides,investigation and mitigation.Transportation Research Board, National Research Council, Special Report 247.National Academy Press, Washington D.C.,U.S.A.,pp.129-177.
    [82]Cheng,K.S.,Wei,C.,Chang,S.C.,2004.Locating landslides using multi-temporal satellite images[J]. Advances in Space Research 33(3),296-301.
    [83]叶润青,邓清禄,王海庆.基于图像分类方法滑坡识别与特征提取--以归州老城滑坡为例[J].工程地球物理学报,2007,4(6):574-577.
    [84]Restrepo,C.,Alvarez,N.,2006.Landslides and their contribution to land-cover change in the mountains of Mexico and Central America[J].Biotropica 38(4),446-457.
    [85]Oka,N.Application of photogrammetry to the field observation of failed slopes[J]. Engineering Geology,1998,50 (1-2):85-100.
    [86]Van Westen,C.J.,Getahun,F.L.Analyzing the evolution of the Tessina landslide using aerial photographs and digital elevation models[J]. Geomorphology,2003,54(1-2):77-89.
    [87]Dewitte,O.,Demoulin,A.Morphometry and kinematics of landslides inferred from precise DTM sinWest Belgium[J].Natural Hazards andEarth SystemSciences,2005,5(2):259-265.
    [88]Ferretti,A.,Prati,C.,Rocca,F.Permanent scatterers in SAR interferometry[J].Transactions on Geoscience and Remote Sensing,2001,39(1):8-20.
    [89]戴文亭.土木工程地质[M].武汉:华中科技大学出版社,2008.
    [90]卓宝熙.工程地质遥感判释与应用[M].北京:中国铁道出版社,2002.
    [91]李永颐,李斌山,陆成.遥感地质学[M].重庆:重庆大学出版社,1990.
    [92]卓宝熙.南昆铁路施工阶段遥感工程地质调查的应用[J].铁道工程学报.2003,1:32-37.
    [93]何蕴龙,陆述远.岩石边坡地震作用近似计算方法[J].岩土工程学报,1998,20(2):66-68
    [94]何宏林,孙昭民,王世元,等.汶川MS 8.0地震地表破裂带[J],地震地质,2008,30(2):359-361
    [95]Scheidegger,A.E..On the teconic setting of subrnerunested in amine slides and other mass movements[J],Coratiuna,1982,11-20.
    [96]艾南山.洒勒山滑坡与新构造应力场关系的探讨[J].兰州大学学报(自然科学版),1980,20(9):96-104.
    [97]艾南山,左发源.甘肃东乡地区滑坡滑动方向统计分析[J].兰州大学学报(自然科学版),1985,21(3):133.
    [98]黄润秋,李为乐.汶川大地震触发地质灾害的断层效应分析[J].工程地质学报,2009,17(1):9-10
    [99]唐川,朱静.GIS支持下的地震诱发滑坡危险区预测研究[J].地震研究,2001(1):73-81.
    [100]殷跃平.汶川八级地震地质灾害研究[J].工程地质学报,2008,16(4):433-444
    [101]张卓元,王士天,王兰生.工程地质分析原理[M].北京:地质出版社,1993
    [102]韩金良,吴树仁,汪华斌.地质灾害链[J].地学前缘,2007,14(6):11-2
    [103]梁京涛.遥感和GIS在汶川地震灾区地质灾害调查与评价中的应用研究—以青川县为例[D].成都理工大学,2009.5.
    [104]程思,易加强.四川省汶川县地质灾害的成因及防治对策[J].2007.4:
    [105]程思,易加强.汶川县地质灾害的成因及防治对策[J].2007.3:1-4.
    [106]殷坤龙.滑坡灾害预测预报[M].武汉:中国地质大学出版社,2004,27-29.
    [107]陶舒.汶川地震滑坡遥感信息提取及灾害危险性评价研究[D].首都师范大学,2009.
    [108]宴鄂川,刘汉超,张倬元.茂汶-汶川段岷江两岸滑坡分布规律[J].山地研究,1998,6(2):109-113.
    [109]李忠生.国内外地震滑坡灾害研究综述[J].灾害学,2003,18(4):64-70.
    [110]陈晓利,冉洪流,祁生文.1976年龙陵地震诱发滑坡的影响因子敏感性分析[J].北京大学学报(自然科学版)网络版(预印本),2008,2:50-56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700