用户名: 密码: 验证码:
祁连造山带晚加里东—早海西期造山过程的沉积响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
造山带和沉积盆地是地球表面最基本的两类构造单元。造山带沉积地质学是把这两个构造单元有机相连的学科,它以现代地质学理论为指导,融造山带区域地层学、沉积学、大地构造学、地球化学及地球物理学为一体,探讨造山带沉积盆地形成和展布、物质构成、演化过程,重塑造山带古地理、古海洋、古构造及岩石圈动力学过程。造山带同造山过程的沉积响应即盆—山相互作用研究是造山带沉积地质学的重要内容,是当今沉积地质学的一个重要领域。同造山盆地的物源供给及其垂向变化研究是重塑盆地演化及其相邻造山带造山过程的重要方法。
     北祁连加里东造山带位于青藏高原东北缘。其构造演化是在新元古代Rodinia联合大陆裂解的基础上,经由寒武纪早期华北板块南缘裂谷盆地、寒武纪后期—奥陶纪初期成熟洋盆、奥陶纪中晚期北祁连活动大陆边缘、志留纪一早中泥盆世碰撞造山而形成的。然而对于该造山带的造山过程与同造山盆地性质争议颇多,对造山过程与同造山盆地转换的详细细节尚欠深入。本文以北祁连-走廊带奥陶纪-泥盆纪同造山盆地内的陆源碎屑岩为研究对象,在详实的野外调查基础上,采用碎屑岩碎屑组分分析、沉积地球化学和碎屑锆石年代学方法,对奥陶纪-泥盆纪碎屑岩物源进行了深入的研究,结合区域构造演化,讨论了北祁连加里东造山带造山过程中几个关键性的科学问题。
     中晚奥陶世天祝组碎屑锆石定年结果显示:中晚奥陶世北祁连-走廊带盆地沉积物源岩时代横跨太古代-早古生代,峰值区间在2.5Ga、1.6Ga、1.0Ga和0.47Ga。与区域岩浆热事件对比结果表明:太古代-早元古代碎屑锆石主要来自于盆地北侧的华北板块,而晚元古代-新元古代碎屑锆石则主要来自盆地南侧的中祁连地块的变质基底,早古生代碎屑锆石年龄一致于北祁连洋俯冲消减产生的北祁连岛弧。从物源垂向变化来看,前寒武碎屑颗粒主要分布在中晚奥陶世地层的上部,而早古生代碎屑颗粒主要分布在地层的下部,且由下向上含量逐渐递减。结合天祝组及与天祝组层位相当的、主要分布在北祁连-走廊带东段的古浪组的岩性特征——欠磨圆、分选的砾岩,本文认为天祝组和古浪组是中祁连地块与华北板块初始碰撞的沉积记录。根据天祝组底部物源供应的变化及变化前后层位中最小岩浆锆石年龄,确定了初始碰撞的时间应在467-450Ma之间。
     志留系碎屑岩碎屑组分分析显示:早志留世碎屑岩中石英含量自肃南-石灰沟-水泉依次增多,在各个剖面上,层位由下向上石英含量增高。从造山带走向上来看,岩屑含量由肃南-石灰沟-水泉逐渐降低,但其中变质岩岩屑由肃南-石灰沟-水泉依次增多,且水泉显著多于肃南和石灰沟的样品,但在水泉剖面上,变质岩岩屑由层位下部向上逐渐递减,而在肃南和石灰沟剖面上却逐渐增多。火山岩岩屑和沉积岩岩屑主要集中于肃南和石灰沟一带,水泉样品中极少。在肃南和石灰沟剖面上,火山岩岩屑由下部向上逐渐递减,而沉积岩岩屑却逐渐增多。长石碎屑含量东西部变化不大。
     志留系地球化学显示:①主量元素除来自东部靖远一带的泥岩接近于澳大利亚后太古代页岩(PAAS)外,其余均低于PAAS,显示出低成熟度的特征。靖远样品根据岩性主量元素分异明显:泥质岩较砂岩具有更高的铁镁质含量,更多的钾长石和粘土矿物,但是砂岩比泥岩拥有更高的SiO2含量。西部肃南志留系样品的层位由下向上SiO2逐渐降低,铁镁质组分逐渐增加,钾长石和斜长石含量相当。所有志留系样品中CaO与P2O5不具有线性关系而与CO2具有显著的线性关系,表明志留系样品中CaO主要来自于碳酸盐矿物;②在上地壳标准化蛛网图中,肃南样品微量元素较PAAS(?)低,而靖远地区的样品微量元素表现出较强的分异特征,泥质岩微量元素普遍高于ⅠPAAS,砂岩微量元素低于PAAS。同时,所有样品均亏损Nb、Ta和Sr元素,且肃南样品以及靖远水泉砂岩样品也显示Rb的亏损,而泥岩样品的Rb元素接近于上地壳。肃南样品以及靖远水泉的泥岩均富集Ni、Cr元素,而靖远砂岩中则显示Ni、Cr元素的弱亏损;③稀土元素球粒陨石标准化分配型式均显示右倾型。肃南旱峡组样品与PAAS相当,而旱峡组下伏地层的稀土元素普遍低于PAAS,而在靖远的样品中,泥岩较PAAS的稀土元素高,而砂岩显著低于PAAS,同样表现出了与主量元素和微量元素相似的特征。所有样品均显示较强的Eu负异常。岩石地球化学研究表明:东西部志留系源岩均以长英质岩石和基性岩石混合为主,并伴有少量花岗岩物质的混入,然而东部沉积物源区经历了弱的化学风化,并有经历了沉积再循环物质加入。源岩大地构造背景判别及碎屑锆石年代学表明:西部肃南一带沉积物主要来自中祁连变质基底(1.6Ga、1.0Ga)、北祁连岛弧(0.45Ga)、俯冲杂岩(0.5-0.6Ga)和华北板块(2.5Ga);而东部靖远一带沉积物主要来自中祁连变质基底(1.6Ga、1.0Ga)和华北板块(2.5Ga),没有来自北祁连岛弧(0.45Ga)的沉积物,结合中晚奥陶世沉积物中层位由下向上岛弧碎屑物质的逐渐减少,暗示了初始碰撞后,来自两侧陆块沉积物的大量涌入造成了北祁连岛弧被沉积物覆盖。
     中下泥盆统老君山组砾岩是北祁连造山带早、中泥盆世强烈隆升阶段形成的陆相磨拉石沉积。老君山组的碎屑组成、沉积地球化学都明显反映造山带物源。其中地球化学特征表明,由西到东,来自肃南、民乐、古浪和靖远的41件砂岩的岩石地球化学特征显著不同:①主量元素显示,西部(肃南、民乐)样品MgO+Fe2O3T值和Al2O3/SiO2值高于东部,而东部样品K2O/Na2O比值高于西部;②在上地壳标准化分布图中,所有样品均亏损Nb、Ta元素。其中西部样品亏损Rb元素,而富集Sc、Co、Ni、V和Cr元素。而东部样品亏损Sr元素且不富集Sc、Co、Ni、V和Cr元素;③稀土元素球粒陨石标准化分配型式均显示右倾型,而LaN/YbN比值和Eu/Eu*值西部样品较低,而东部样品较高。岩石地球化学特征表明,老君山组源岩在东西两段上存在差异。西部肃南一带源岩主要为铁镁质岩石,而东段古浪、靖远一带源岩主要为长英质岩石,民乐一带源岩兼具上述两种岩石特征。根据砾石形态以及沉积地球化学,老君山组沉积物主要以未遭受沉积分选和再循环作用的近源堆积为主,且西部源岩未遭受化学风化而东部遭受了低-中等程度的化学风化。大地构造背景判别和碎屑锆石年代学表明,西部肃南一带沉积物可能主要来自于卷入造山带的北祁连岛弧,自民乐向东,沉积物既有来自北祁连岛弧(0.5-0.4Ga)和俯冲杂岩(0.5-0.6Ga)的物质也有来自中祁连变质基底(0.7-1.4Ga)和华北板块(2.5Ga)的物质。
     上泥盆统沙流水组是加里东造山作用后伸展垮塌的沉积记录。位于造山带东部靖远沙流水的研究剖面中,石英含量较高,而长石、岩屑含量较低。所有样品均显示Nb、Ta、Sr元素的亏损,以及Eu的负异常。源岩经历了中等程度的化学风化作用,少量样品含有沉积分选及再循环的古老物质。岩石地球化学特征显示沙流水组源区岩石主要以长英质岩石和基性岩石的混合为主,并有少量来自花岗质岩石成份的贡献。源岩大地构造背景判别和碎屑锆石年代学研究证实,沉积物主要来自因造山作用被剥露出地表的北祁连岛弧(0.5-0.4Ga)、俯冲杂岩(0.5-0.6Ga)和卷入造山带的中祁连变质基底(1.6Ga, 1.0Ga)和华北板块(2.5Ga)的物质。
     根据北祁连-走廊带东西部奥陶系-泥盆系物源供给及其垂向变化规律,可获得如下结论:
     1、中晚奥陶世碎屑锆石年代学证明:中晚奥陶纪初期,北祁连-走廊带东部沉积物主要来自北祁连岛弧,没有来自两侧陆块(南部:中祁连地块,北部:华北板块)的物源。而到了中晚期,来自两侧陆块的沉积物大量涌入,并逐渐覆盖了北祁连岛弧,因而,在垂向上北祁连岛弧的物源在逐渐减少,而来自两侧陆块的沉积物逐渐增加。这种物源供应并结合野外砾石的分选和磨圆情况,推断天祝组(古浪组)沉积岩为中祁连地块与华北板块初始碰撞的沉积记录。
     2、志留系沉积岩碎屑组分、地球化学和碎屑锆石年代学分析证明:盆地东部物源主要以来自遭受较西部强的化学风化和沉积再循环的中祁连变质基底和华北板块的物质为主,没有北祁连岛弧的沉积物;而西部物源主要以来自未遭受化学风化和沉积再循环的北祁连岛弧、中祁连变质基底和华北板块的物质为主。
     3、泥盆系沉积岩碎屑组分、地球化学和碎屑锆石年代学分析证明:西部肃南一带早中泥盆统老君山组碎屑物质主要来自未遭受化学风化和沉积再循环的北祁连岛弧物质,缺乏大陆边缘物质。而东段既有来自北祁连岛弧的物质,也有来自中祁连地块和华北板块的物质,且沉积物源岩遭受了一定程度的化学风化。上泥盆统沙流水组沉积物继承了早期东部老君山组物源特征,主要以来自卷入造山带的北祁连岛弧、中祁连变质基底和华北板块的物质为主。
     4、北祁连奥陶纪-泥盆系碎屑锆石年龄谱显示,碎屑锆石年龄谱中均具有显著的华南特征的8-10亿年左右的峰值年龄,显示了亲扬子型而不同于华北型的特征,因而从沉积学物源供应角度证实了祁连山带亲扬子板块的构造属性。
     5、中祁连地块与华北板块之间的初始碰撞始于东段中晚奥陶世(467-450Ma),首先在东段武威一带发生的“点碰撞”,形成天祝组、古浪组碰撞砾岩和中上奥陶统之间的平行不整合或微角度不整合面——古浪运动。随后又于早志留世在西段肃南一带发生点碰撞,形成碰撞型鹿角沟组砾岩。因而北祁连晚加里东的造山过程不是过去认识的西早东晚,而是“东早西晚”的“斜向碰撞、不规则边缘碰撞”。
     6、来自中下泥盆统老君山组碎屑岩的地球化学研究表明:北祁连造山带的隆升过程不是以往认为的“西强东弱”特点,而是由“东早西晚”的“斜向碰撞、不规则边缘碰撞”作用引起的“东强西弱”的不均一隆升特点,而这种隆升也导致了晚泥盆世造山带东部的伸展垮塌。
     7、奥陶纪-泥盆纪北祁连-走廊带同造山盆地转换经历了弧后盆地(早、中奥陶世)-弧后残余洋盆(西段晚奥陶世)-前陆盆地(东段晚奥陶世-泥盆纪、西段志留纪—泥盆纪)的转换过程,由于“斜向碰撞、不规则边缘碰撞”作用的影响,在晚奥陶世-早志留世可能出现西部弧后残留洋盆与东部前陆盆地共存的构造格局。
Orogen and basin are the best basic structural types on the surface of Earth. The Orogenic Sedimentology is a subject that organically contact with them. With the modern geological theory, the Orogen Sedimentology employs the regional stratigraphy, sedimentology, tectonics, geochemistry, and geophysics to reveal the formation and distribution of basin, composition and evolvement, to reconstruct the paleogeography, the ancient ocean, the ancient structure and the lithosphere dynamics. Sedimentary response to orogenesis, also named to basin-range interaction, is an important content in the Orogenic Sedimentary and Sedimentary Geology. Provenance of synorogenic basin and its variation with the time are important ways and means by which to reconstruct the orogenesis and evolvement of basin.
     The North Qilian Orogenic Belt (NQOB) is located in the northeastern margin of the Tibetan Plateau. It succeeded the breakup of Rodinian Supercontinent, experiencing an evolution of rift in the early Cambrian and mature ocean in the late Cambrian-Ordovician, the active continent margin in the middle-late Ordovician, collision in Silurian-Devonian on the south margin of the North China Plate. The process of orogenesis and the attribute of synorogenic basin are still debated and the details of transfer of synorogenic basin is retain faintly. This paper studied the provenance of the terrigenous detrital rocks in Ordovician-Devonian by composition of fragment, sedimentary geochemistry and chronology of detrital zircon with the geological investigation in the field, which shed light on the several key scientific questions about tectonic evolution of orogen and synorogenic basin.
     Detrital zircons from the middle-late Ordovician were dated and show a wide age range from Archean to the early Paleozoic with prominent peak at around 2.5 Ga,1.6 Ga,1.0 Ga, and 0.47Ga. Combined the regional magmatic events, Archean and the early Proterozoic detritus mainly derived from the North China Craton (NC) to the north, whereas the Central Qilian Block (CQ) to the south likely provided the late Proterozoic grains. The early Paleozoic ages are in consistent with the time of magmatic arc related to subduction of oceanic crust. Precambrian grains were restricted to the upper of section, with Paleozoic grains descending from bottom to upper of section, which reflect the initial collision between the CQ and NC. The two youngest zircons from the bottom of section suggest that the time of initial collision is located in the 467Ma-450Ma.
     Composition of detrital rocks in Silurian shows quartz to ascend from Sunan to Shihuigou, to Shuiquan and from lower to upper in the section. Along the trending of orogen, rock fragments gradually descend from Sunan to Shihuigou, to Shuiquan, however, metamorphic rock fragments display a reverse variation. And metamorphic rock fragments in the Shuiquan area is evidently more than that in the Sunan and Shihuigou areas. In Shuiquan section, metamorphic rock fragments gradually descend from lower to upper, whereas those in the Sunan and Shihuigou sections ascend from lower to upper. The volcanic and sedimentary rocks fragments exist largely in the Sunan and Shuiquan areas and absent in the Shuiquan area. The volcanic rocks fragments gradually descend and the sedimentary rocks fragments ascend from lower to upper in Sunan and Shuiquan sections. In all studied sections, the content of feldspar in the eastern part of orogen is consistent with that in the western part of orogen.
     Geochemical analyses for detrital rocks in Silurian show:①major elements in all samples usually lower than those of PAAS, indicating the low mature, except for mudstones in the Shuiquan area. Mudstones from Shuiquan area occupy the higher femic, k-feldspar and clay minerals contents, and lower SiO2 content, relative to those of sandstones. Samples from Sunan area show the descending SiO2 content and ascending femic composition from lower to upper of section, but the contents of K-feldspar and plagioclase are equivalent in the lower and upper of section. CaO2 contents of most samples linearly relative to CO2 contents of them, which suggest that CaO2 are contained mainly in the carbonate.②All samples from Sunan area and sandstones from Shuiquan area display the lower trace elements contents relative to PAAS in the Upper crust-normalized spider diagrams, whereas mudstones from Shuiquan area show the higher trace elements contents than those of PAAS. In the upper crust-normalized spider diagrams, all samples are depleted in Nb, Ta, and Sr elements. Samples from Sunan area and sandstones from Shuiquan are depleted in Rb, whereas mudstones from Shuiquan area are closed to the upper crust in Rb. The contents of Ni, Cr elements are enrichment with all samples from Sunan area and mudstones from Shuiquan area and are depleted with sandstones from Shuiquan area.③All of the samples display a right-inclined REE pattern after Chondrite-normalized. Rare earth elements (REE) of samples from the Hanxia Formation in Sunan area are similar to those of PAAS, with the lower contents of the Lujiaogou, Angzanggou, Qunnaogou Formation relative to PAAS. REE of samples from Shuiquan area show similar characters to maior elements and trace elements. REE of sandstones is lower than that of PAAS and REE of mudstones is higher than that of PAAS. All samples exhibit relatively strong negative Eu anomalies. These geochemical characteristics suggest the input of the felsic and mafic clast with minor granitic rocks into the eastern and wastern area. However, source of sediments in the eastern part underwent the weak chemical weathering and sedimentary recycle. Evidences combining tectonic discriminations and detrital zircon chronology suggest that sediments in the Sunan area were derived mainly from the metamorphic basement of CQ (1.6Ga,1.0Ga), the North Qilian Continental Arc (NQA) (0.45Ga), subducted complex (SC) (0.5-0.6Ga) and NC (2.5Ga), whereas sediments in Shuiquan area predominately came from the metamorphic basement of CQ and NC without the NQA. Combined the descending volcanic rocks fragments from lower to upper, alteration of provenance indicates that NQA was buried under the sediments from the two continents after the initial collision.
     The Middle-Lower Devonian Laojunshan Formation is a suite of molasse formed during the rapid uplift of the North Qilian Orogenic Belt (NQOB).41 sandstones have be sampled from the Sunan and Minle sections in the western sector and the Gulang and Jingyuan sections in the eastern sector of the NQOB belt. Geochemical analyses of those samples indicated:①the MgO+Fe2O3T and Al2O3/SiO2 values are higher, and K20/Na2O ratios are lower in the western sector than those in the eastern sector.②All of them are depleted in Nb and Ta elements. The samples from the western sector are depleted in Rb element and enriched with Sc, Co, Ni, V, and Cr elements in the Upper Crust-normalized patterns. However, those from the eastern sector are depleted in Sr without enrichments of Sc, Co, Ni, V, and Cr.③All of the samples display a right-inclined REE pattern after Chondrite-normalized. But LaN/YbN and Eu/Eu* ratios of the samples from the western sector are lower than those of the samples from the eastern sector. These geochemical characteristics suggest the prominent input of mafic clast with minor granitic rocks into the Sunan area, felsic clast into the Gulang and Jingyuan area, both mafic and felsic clast into the Minle area. The angular shapes of gravels imply that these ill-sorted sediments were deposited near their sources without recycling. Geochemical features above also demonstrated that no major chemical weathering occurred for the western provenance, but deposits in the eastern sector resulted from low or middle degree chemical weathering. Evidences combining tectonic discriminations and detrital zircon chronology revealed that sediments in the Sunan area were derived mainly from NQA (0.5-0.4Ga) and SC (0.5-0.6Ga), while sediments in the Minle, Gulang, and Jingyuan areas were derived not only from NQA (0.5-0.4Ga) and SC (0.5-0.6Ga) but also from the basement of the metamorphic basement of CQ (1.6Ga、1.OGa) and NC (2.5Ga).
     The Upper Devonian Shaliushui Formation had recorded the end of the orogeny. Samples from the studied section located in the Shaliushui, Jingyuan County, contain major quartz and minor fragments and feldspar. All samples are depleted in Nb, Ta, and Sr elements and negative Eu anomalies. Geochemical data show that source underwent the middle chemical weathering and sediments did not undergo sedimentary recycle. Sediments were derived mainly from the felsic and mafic rocks, with minor granitic rocks. The tectonic discriminations and detrital zircon chronology revealed that sediments in the Upper Devonian were derived from NQA (0.5-0.4Ga) exhumed, and the metamorphic basement of CQ (1.6Ga、1.0Ga), SC (0.5-0.6Ga) and NC(2.5Ga) engulfed into orogen.
     Provenance and its alteration with the time can draw the following conclusion:
     1. The Late Ordovician detrital zircon chronology suggest that sediments in the eastern part of NQOB maily derived from the North Qilian Arc, no from the continental block at the two side of basin. However, until the late of Late Ordovician, a large of sediments from the two continental block, the Central Qilian Block to the south and the North China Plate to the north, were filled in the basin and buried the North Qilian Arc, which resulted into the decreasing sediments from the North Qilian Arc and the increasing sedioments from the two continental block with the time going. Integrated the outcrop of the Lujiaogou Formation, the Tianzhu Formation should be as sedimentary record of the initial collision.
     2. The composition, geochemistry and chronology of detrital rocks in Silurian show that provenance of eastern basin maily came from the Central Qilian Block and North China Plate and sediments underwent the chemical weathering and sedimentary recycle, whereas sediments without the chemical weathering and sedimentary recycle in the western basin mainly derived from the North Qilian Arc, the Central Qilian Block and North China Plate.
     3. The composition, geochemistry and chronology of detrital rocks in Devonian show that sediments from the Laojunshan Fromation in the western basin mainly derived from the North Qilian Arc without the chemical weathering, with no sediments from the continental block, and sediments did not undergo the sedimentary recycle. However, sediments deposited in the eastern part of basin mainly came from the North Qilian Arc, the Central Qilian Block and North China Plate, with the chemical weathering and sedimentary recycle. Provenance of the Upper Dovonian Shaliushui Formation inherited that of the Laojunshan Formation in the eastern basin. Sediments mainly were supplied by the North Qilian Arc, the Central Qilian Block and North China Plate engulfed into the orogenic belt.
     4. The detrital zircons with U-Pb ages of 8-10 Ga occur in the Ordovician-Devonian sediments, which indicated that the source of them, the Central Qilian block, similar to the Yangtze Plate and dissimilar to the North China Plate on the basis of sedimentology.
     5. The initial collision between the Central Qilian block and North China Plate happened in the Middle-Late Ordovician (467-450 Ma) at the eastern part of orogen, Wuweu area. This event resulted in the collisional conglomerate (the Tianzhu and Gulang Formation) and the unconformity between the middle and late Ordovician, named the Gulang Movement. The sequent collision occurred at the Sunan area in the Early Silurian and formed the Lujiaogou Formation conglomerate. Thus collision between the Central Qilian Block and North China Plate show that the orogeny of NQOB was diachronous in the trending direction from east to west.
     6. The provenance of the lower and middle Devonian Laojunshan Formation and the distributions of Silurian-Devonian jointly suggest that the orogeny of NQOB was diachronous in the trending direction and the eastern sector had stronger tectonic intensity compared to the western sector, which resulted into the Late Devonian collapse in the eastern part of orogen
     7. The synorogenic basin in the North Qilian-Hexi Corridor belt had transferred from the Early-middle Ordovician retroarc basin to the Late Ordovician remnant retroarc basin, to Silurian-Devonian foreland basin and the remnant retroarc basin and foreland basin indeed coexisted in the Late Ordovician-Early Silurian.
引文
[1]Wu H Q, Feng Y M & Song S G. Metamorphism and deformation of blueschist belts and their tectonic implications, North Qilian Mountains, China. Journal of Metamorphic Geology,1993, 11,523-536.
    [2]Song S G, Zhang L F, Niu Y, et al. Eclogite and carpholite-bearing metasedimentary rocks in the North Qilian suture zone, NW China:implications for Early Palaeozoic cold oceanic subduction and water transport into mantle. Journal of Metamorphic Geology,2007,25, 547-563.
    [3]Song S G, Niu Y, Zhang L F. et al. Tectonic evolution of early Paleozoic HP metamorphic rocks in the North Qilian Mountains, NW China:New perspectives. Journal of Asian Earth Sciences,2009,35,334-353.
    [4]张旗,王焰,钱青.北祁连早古生代洋盆是裂陷槽还是大洋盆—与葛肖虹讨论.地质科学,2000,35(1):121-128.
    [5]夏林圻,夏祖春,赵江天等.北祁连山西段元古宙大陆溢流玄武岩性质的确定.中国科学(D辑),2000,30(1):1-8.
    [6]冯益民,何世平.祁连山大地构造与造山作用.地质出版社,1996,135p.
    [7]冯益民.1998.北祁连西段的外来移置体.地质论评,44(4):365-371.
    [8]左国朝,刘义科,张崇.北祁连造山带中—西段陆壳残块群的构造—地层特征.地质科学,2002,37(3):302-312.
    [9]宋述光,张立飞,Y. Niu等.北祁连山榴辉岩锆石SHRIMP定年及其构造意义.科学通报,2004,49(6):592-595.
    [10]张建新,孟繁聪.北祁连和北阿尔金含硬柱石榴辉岩:冷洋壳俯冲作用的证据.科学通报,2006,51(14):1683-1688.
    [11]葛肖虹,刘俊来.北祁连造山带的形成与背景.地学前缘,1999,6:223-230.
    [12]毛景文,张作衡,简平等.北祁连西段花岗质岩体的锆石U-Pb年龄报道.地质论评,2000,46(6):616-620.
    [13]吴才来,杨经绥,杨宏仪,等.北祁连东部两类Ⅰ型花岗岩定年及其地质意义.岩石学报,2004,20(3):425-432.
    [14]史仁灯,杨经绥,吴才来等.北祁连玉石沟蛇绿岩形成于晚震旦世SHRIMP年龄证据.地质学报,2004,78(5):649-657.
    [15]杜远生,周道华,龚淑云等.甘肃靖远-景泰泥盆系湖相风暴岩及其古地理意义,矿物岩石,2001,21(3):69-73
    [16]杜远生,张哲,周道华等.北祁连-河西走廊志留纪和泥盆纪古地理及其同造山过程的沉积响应.古地理学报,2002,4(4):1-8.
    [17]杜远生,朱杰,韩欣等.从弧后盆地到前陆盆地—北祁连造山带奥陶纪—泥盆纪的沉积盆 地和构造演化.地质通报.2004,23(9-10);911-917.
    [18]杜远生,朱杰,顾松竹.北祁连肃南一带奥陶纪硅质岩沉积地球化学特征及其多岛洋构造意义.地球科学——中国地质大学学报,2006,31(1):101-109.
    [19]杜远生,朱杰,顾松竹.北祁连永登石灰沟奥陶纪硅质岩地球化学特征及其大地构造意义.地质论评,2006,52(2):184-189.
    [20]杜远生,朱杰,顾松竹,等.北祁连造山带寒武系-奥陶系硅质岩沉积地球化学特征及其对多岛洋的启示.中国科学(D辑),2007,37(9):1329-1314
    [21]曾建元,杨怀仁,杨宏仪等.北祁连东草河蛇绿岩:一个早古生代的洋壳残片.科学通报,2007,52(7):825-835.
    [22]张招崇,周美付,Paul T R等.北祁连山西段熬油沟蛇绿岩SHRIMP分析结果及其地质意义.岩石学报,2001,17(2):222-226.
    [23]王永和,焦养泉,李建星,等.中祁连北缘奥陶纪岩浆弧地层.现代地质,2008,22(5):724-732.
    [24]Xiao W J, Brian F W, Yong Y, et al. Early Paleozoic to Devonian multiple-accretionary model for the Qilian Shan, NW China. Journal of Asian Earth Sciences,2008, doi:10.1016 /j.jseaes.2008.10.001.
    [25]Zhang G B, Zhang L F, Song S G, et al. UHP metamorphic evolution and SHRIMP geochronology of a meta-ophiolitic gabbro in the North Qaidam, NW China. Journal of Asian Earth Sciences,2008, doi:10.1016/j.jseaes.11.013.
    [26]Zhang L F, Wang Q, Song S G, et al. Lawsonite blueschist in Northern Qilian, NW China:P-T pseudosections and petrologic implications, Journal of Asian Earth Sciences,2008, doi: 10.1016/j.jseaes.11.007.
    [27]徐学义,何世平,王洪亮等.早古生代北秦岭—北祁连结合部构造格局的地层及构造岩浆事件约束.西北地质,2008,41(1):1-20.
    [28]杨经绥,刘福来,吴才来,等.中央碰撞造山带中两期超高压变质作用:来自含柯石英锆石的定年证据.地质学报,2003,77(4):463-477.
    [29]杨经绥,吴才来,张建新,等.中央巨型超高压变质带和两期超高压变质作用的年代学证据.科学中国人,2005,47-52.
    [30]张瑞林,赵江天,申少宁.北祁连山早古生代海相火山沉积相及地质找矿.北京:地质出版社,1997,133p.
    [31]Busby C J, Ingersoll R V. Tectonics of sedimentary basins. Blackwell Science, Oxford,1995.
    [32]王随继.第十六届国际沉积学大会在南非召开.沉积学报.2002,(3):398-399.
    [33]李忠.“从最高到最深—从第17届国际沉积学大会看沉积学研究前沿.沉积学报,2006,24(6):928-933.
    [34]刘树根罗志立,赵锡奎,等.中国西部盆山系统的耦合关系及其动力学模式-以龙门山-川西前陆盆地系统为例.地质学报,2003,77(2):177-186
    [35]Bahroudi A., Koyi H A. Tectono-sedimentary framework of the Gachsaran Formation in the Zagros foreland basin. Marine and Petroleum Geology,2004,21:1295-1310.
    [36]Singh A.P., Mishra D.C. Tectonosedimentary evolution of Cuddapah basin and Eastern Ghats mobile belt (India) as Proterozoic collision:gravity, seismic and geodynamic constraints. Journal of Geodynamics,2002,33:249-267.
    [37]Ziegler P A, Dezes P. Cenozoic uplift of Variscan Massifs in the Alpine foreland:Timing and controlling mechanisms. Global and Planetary Change,2007,58:237-269.
    [38]Kumar R, Suresh N, Sangode S J. Evolution of the Quaternary alluvial fan system in the Himalayan foreland basin:Implications for tectonic and climatic decoupling. Quaternary International,2007,159:6-20.
    [39]Hulka C, Gra'fe K.-U, Sames B, etal. Depositional setting of the Middle to Late Miocene Yecua Formation of the Chaco Foreland Basin, southern Bolivia. Journal of South American Earth Sciences,2006,21:135-150.
    [40]Martina F, Federico M D, Ricardo A A. Mio-Pliocene volcaniclastic deposits in the Famatina Ranges, southern Central Andes:A case of volcanic controls on sedimentation in broken foreland basins. Sedimentary Geology,2006,186:51-65.
    [41]Bhatia S B, Bhargava O N. Biochronological continuity of the Paleogene sediments of the Himalayan Foreland Basin:paleontological and other evidences. Journal of Asian Earth Sciences,2006,26:477-487.
    [42]Abascal L V. Combined thin-skinned and thick-skinned deformation in the central Andean foreland of northwestern Argentina. Journal of South American Earth Sciences,2005,19: 75-81.
    [43]Jain V T, Sinha R. Response of active tectonics on the alluvial Baghmati River, Himalayan foreland basin, eastern India. Geomorphology,2005,70:339-356.
    [44]吴根耀,马力.“盆”“山”耦合和脱耦:进展、现状和努力方向.大地构造与成矿学,2004,28(1):81-97.
    [45]刘和甫.盆地-山岭耦合体系与地球动力学机制.地球科学——中国地质大学学报.2001,26(6):581-596.
    [46]刘树根,罗志立,赵锡奎,等.中国西部盆山系统的耦合关系及其动力学模式-以龙门山-川西前陆盆地系统为例.地质学报,2003,77(2):177-186
    [47]李继亮,肖文交,闫臻.盆山耦合与沉积作用.沉积学报,2003,21(1):52-60.
    [48]王清晨,李忠.盆山耦合与沉积盆地成因.沉积学报,2003,21(1):24-30.
    [49]王二七.山盆耦合一种重要形式:造山带及其侧陆盆地.科学通报,2004,49(4):370-374.
    [50]李勇,Allen P A,周荣军等.青藏高原东缘中新生代龙门山前陆盆地动力学及其与大陆碰撞作用的耦合关系.地质学报,2006,80(8):1101-1109.
    [51]李勇,黎兵,Steffen D等.青藏高原东缘晚新生代成都盆地物源分析与水系演化.沉积学报,2006,24(3):309-320.
    [52]刘少峰,张国伟,Heller P L循化-贵德地区新生代盆地发育及其对高原增生的指示.中国科学D辑,2007,37(增刊),235-248.
    [53]李国彪,万晓樵,丁林等.藏南古近纪前陆盆地演化过程及其沉积响应.沉积学报,2004,455-464.
    [54]丁林.西藏雅鲁藏布江缝合带古新世深水沉积和放射虫动物群的发现及对前陆盆地演化的制约.中国科学D辑,2003,33(1):47-58.
    [55]李忠,孙枢,李任伟,等.合肥盆地中生代充填序列及其对大别山造山作用的指示.中国科学 (D辑),2000,30(3):256-263.
    [56]李忠,李任伟,孙枢,等.大别山南麓中生代盆地充填记录对造山作用属性的反映.中国科学(D辑),2002,32(6):469-478
    [57]刘少峰,张国伟,张宗清,等.合肥盆地花岗岩砾石同位素年代学示踪.科学通报,2001,49(9);477-486
    [58]Liu S F, Steel R, Zhang G W. Mesozoic sedimentary basin development and tectonic implication, northern Yangtze Block,eastern China:record of continent-continent collision. Journal of Asian Earth Sciences 2005,25:9-27.
    [59]陈守建,李荣社,计文化等.昆仑造山带晚泥盆世沉积特征及构造古地理环境.大地构造与成矿学,2007,31(1):44-51.
    [60]Zheng H, Huang X, Butcher K. Lithostratigraphy, petrography and facies analysis of the Late Cenozoic sediments in the foreland basin of the West Kunlun. Palaeogeography, Palaeoclimatology, Palaeoecology,2006,241:61-78.
    [61]张传恒,刘典波,张传林,等.新疆博格达地区早二叠世软沉积物变形构造:弧后碰撞前陆盆地地震记录.地学前缘,2006,13(4):255-266.
    [62]陈发景,汪新文,汪新伟.准噶尔盆地的原型和构造演化.地学前缘,2005,12(3):77-89.
    [63]Gao C. Sedimentary facies changes and climatic-tectonic controls in a foreland basin, the Urumqi River, Tian Shan, Northwest China. Sedimentary Geology,2004,169:29-46.
    [64]刘树根,罗志立,赵锡奎,等.试论中国西部陆内俯冲型前陆盆地的基本特征.石油与天然气地质,2005,26(1):37-56.
    [65]刘少峰,张国伟.盆山关系研究的基本思路、内容和方法.地学前缘,2005,12(3):101-111.
    [66]李曰俊,陈从喜,买光荣,等.陆_陆碰撞造山带双前陆盆地模式-来自大别山、喜马拉雅和乌拉尔造山带的证据.地球学报,2000,21(1):7-16.
    [67]刘池洋,赵红格,杨兴科,等.前陆盆地及其确定和研究.石油与天然气地质,2002,23(4):307-313.
    [68]Rudnick R L, Gao S, Composition of the continental crust:In Rudnick, R.L. (Editor), Treatise on Geochemistry, v.3, The Crust, Elsevier,2003,1-64 p.
    [69]McLennan S M. Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochem. Geophys. Geosys.2001,2, article no.2000GC000109.
    [70]Hofmann, A. The geochemistry of sedimentary rocks from the Fig Tree Group, Barberton greenstone belt:implications for tectonic, hydrothermal and surface processes during mid-Archaean times. Precambrian Research,2005,143:23-49.
    [71]Roddaz M, Debat P, Niki'ema S. Geochemistry of Upper Birimian sediments (major and trace elements and Nd-Sr isotopes) and implications for weathering and tectonic setting of the Late Paleoproterozoic crust, Precambrian Research,2007,159,197-211.
    [72]Long X P, Sun M, Yuan C, et al. Early Paleozoic sedimentary record of the Chinese Altai: Implications for its tectonic evolution. Sedimentary Geology,2008,208:88-100.
    [73]Kasanzu C, Maboko M.A.H., Manya S, et al. Geochemistry of fine-grained clastic sedimentary rocks of the Neoproterozoic Ikorongo Group, NE Tanzania:Implications for provenance and source rock weathering. Precambrian Research,2008,164:201-213.
    [74]Lambeck, A, Huston, D, Maidment, D, et al. Sedimentary geochemistry, geochronology and sequence stratigraphy as tools to typecast stratigraphic units and constrain basin evolution in the gold mineralized Palaeoproterozoic Tanami Region, Northern Australia. Precambrian Research,2008,166:185-203.
    [75]许德如,马驰,Nonna, B C,等.海南岛北西部邦溪地区奥陶纪火山-碎屑沉积岩岩石学、矿物学和地球化学:源区及构造环境暗示.地球化学,2007,36(1):11-26.
    [76]Hallsworth C R, Chisholm J I.2007.Provenance of late Carboniferous sandstones in the Pennine Basin (UK) from combined heavy mineral, garnet geochemistry and palaeocurrent studies. Sedimentary Geology,10.1016-11.002
    [77]Dwight C. Paleocurrent analysis of a deformed Devonian foreland basin in the Northern Appalachians, Maine, USA. Sedimentary Geology,2002,148:425-447.
    [78]Andrzej Z. A Late Tournaisian synmetamorphic folding and thrusting event in the eastern Variscan foreland:40Ar/39Ar evidence from the phyllites of the Wolsztyn-Leszno High, western Poland. Int J Earth Sci,2003,92:185-194.
    [79]Machado N.. Ages of detrital zircon from Anchean-paleoprotozoic sequences:implications for greenstone belt setting and evolution of a Transamazonian foreland basin in Quadrilatero Ferrifero, southeast Brazil. Earth and planetary science letter,1996,141:259-276.
    [80]Wilson M., et al.1999.40Ar-39Ar dating, geochemistry and tectonic setting of Early Carboniferous dolerite sills in the Pechora basin, foreland of the Polar Urals. Tectonophysics 313:107-118
    [81]尹崇玉,刘敦一,高林志,等.南华系底界与古城冰期的年龄:SHRIMP Ⅱ定年证据.科学通报,2003,48(16):1721-1725.
    [82]Kelty T K, Yin A, Dash B, et al., Detrital-zircon geochronology of Paleozoic sedimentary rocks in the Hangay-Hentey basin, north-central Mongolia:Implications for the tectonic evolution of the Mongol-Okhotsk Ocean in central Asia. Tectonophysics,2008,451, 290-311.
    [83]Bergman S, H"ogdah K, Nironen M. Timing of Palaeoproterozoic intra-orogenic sedimentation in the central Fennoscandian Shield:evidence from detrital zircon in metasandstone. Precambrian Research,2008,161:231-249.
    [84]闫全人,Hanson A D,王宗起,等.2004.南秦岭关家沟组砾岩的时代、成因环境及其构造意义.科学通报,49(14):1416-1423.
    [85]Hall C E, Jones S A, Bodorkos S. Sedimentology, structure and SHRIMP zircon provenance of the Woodline Formation, Western Australia:Implications for the tectonic setting of the West Australian Craton during the Paleoproterozoic. Precambrian Research,2008, doi:10.1016/j.precamres.2007.11.001.
    [86]Boulton S J, Robertson Alastair H F. The Miocene of the Hatay area, S Turkey:Transition from the Arabian passive margin to an underfilled foreland basin related to closure of the Southern Neotethys Ocean. Sedimentary Geology 2007,198:93-124.
    [87]Su W B, Huff W D, Ettensohn F R, et al. K-bentonite, black-shale and flysch successions at the Ordovician-Silurian transition, South China:Possible sedimentary responses to the accretion of Cathaysia to the Yangtze Block and its implications for the evolution of Gondwana. Gondwana Research,2009,15,111-130.
    [88]闫臻,王宗起,王涛,等.2007.秦岭造山带泥盆系形成构造背景:来自碎屑岩组成和地球化学方面的约束.岩石学报,23(5):1023-1042.
    [89]Dickinson W R, Suczek C A. Plate tectonics and sandstone compositions. Bull. Am. Ass. Petrol. Geol,1979,63(2):2164-2182.
    [90]Dickinson W R, Valloni R. Plate settings and provenance of sands in modern oceans. Geology,1980,8:82-86
    [91]Dickinson W R. Provenance of North American Phanerozoic sandstones in relation to tectonic setting. Bull. Geol. Soc. Am,1983,94:222-235
    [92]Dicknson W R. Interpreting provenance relations from detrital modes of sandstones. IN:Zuffa G G ed, Provenance of Arenites,1984,333-361
    [93]Ingersoll R V, Bullard T F, Ford R L. The effect of grain size on the detrial modes:a test of the Gazzi-Dickson point-counting Method. Journal of sedimentary research.1984,54: 103-116.
    [94]李忠,李任伟,孙枢,等.合肥盆地南部侏罗系砂岩碎屑组分及其物源构造属性,岩石学报,1999,15(3):438-445.
    [95]Cardona J P, Moral J M, Gutierrez Mas A, et al. Surface textures of heavy-mineral grains:a new contribution to provenance studies. Sedimentary Geology,2005,174:223-235.
    [96]罗静兰,史成恩,李博,等.鄂尔多斯盆地周缘及西峰地区延长组长8、长6沉积物源——来自岩石地球化学的证据.中国科学(D辑),2007,37(增刊):62-72.
    [97]Meinhold G, Anders B, Kostopoulos D, et al. Rutile chemistry and thermometry as provenance indicator:An example from Chios Island, Greece. Sedimentary Geology,2007, doi:10.1016/j.sedgeo.2007.11.004.
    [98]Hallsworth C R, Chisholm J I. Provenance of late Carboniferous sandstones in the Pennine Basin (UK) from combined heavy mineral, garnet geochemistry and palaeocurrent studies. Sedimentary Geology,2007,10.1016-11.002.
    [99]李任伟,李忠,江茂生,等.2000.合肥盆地碎屑石榴石组成及其对源区恢复和地层对比的意义.中国科学(D辑),30(增刊):91-98.
    [100]Bhatia M R. Plate tectonics and geochemical composition of sandstone. Journal of Geology, 1983,91:611-627.
    [101]Bhatia M R and Crook K A W. Trace element characteristics of gyaywake and tectonic of sedimentary basins.Cureau.Mineral.Petrol,1986,92:181-193.
    [102]Roser B P and Korsch R J. Determination of tectonic setting of sandstone mudstone suites using SiO2 content and K2O/Na2O ratio. J. Geol.,1986,94:635-650.
    [103]Taylor S R, McLennan S M. Sedimentary rocks and crustal evolution; tectonic setting and secular trends. J. Geol.1991,99,1-21.
    [104]McLennan S M, Hemming S R, Taylor S R, et al. Early Proterozoic crustal evolution: geochemical and Nd-Pb isotopic evidence from metasedimentary rocks, southwestern North America. Geochimica et Cosmochimica Acta,1995,59,1153-1177.
    [105]Cullers R L, Podkovyrov V N. The source and origin of terrigenous sedimentary rocks in the Mesoproterozoic Ui group, southeastern Russia. Precambrian Research,2002,117, 157-1183.
    [106]Jillian A S G. Geology and geochemistry of the clastic sequences from Northwestern Panay (Philippines):Implications for provenance and geotectonic setting. Tectonophysics,2009, doi:10.1016/j.tecto.2009.02.004.
    [107]Spalletti L A., Queralt I, Matheos S D, et al. Sedimentary petrology and geochemistry of siliciclastic rocks from the upper Jurassic Tordillo Formation (Neuque'n Basin, western Argentina):Implications for provenance and tectonic setting. Journal of South American Earth Sciences,2008,25:440-463.
    [108]Akarish A I M, El-Gohary A M. Petrography and geochemistry of lower Paleozoic sandstones, East Sinai, Egypt:Implications for provenance and tectonic setting. Journal of African Earth Sciences,2008,52,43-54.
    [109]李忠,郭宏,王道轩,等.库车坳陷-天山中、新生代构造转折的砂岩碎屑与地球化学记录.中国科学(D辑),2005,35(1):15-28.
    [110]方国庆,刘德良.复理石杂砂岩的化学组成与板块构造.沉积与特提斯地质,2000,20(3):105-112.
    [111]李双应,李任伟,岳书仓,等.安徽肥西中生代碎屑岩地球化学特征及其对物源的制约.岩石学报,2004,20(3):667-676
    [112]李双应,李任伟,王道轩,等.大别山北缘凤凰台组砾石地球化学特征及源区构造环境.沉积学报,2005,23(3):380-388.
    [113]和政军,李锦轶,莫申国,等.漠河前陆盆地砂岩岩石地球化学的构造背景和物源区分析.中国科学(D辑),2003,(12):1219-1226.
    [114]Li Q G, Liu S W, Wang Z Q, et al. Contrasting provenance of Late Archean metasedimentary rocks from the Wutai Complex, North China Craton:detrital zircon U-Pb, whole-rock Sm-Nd isotopic, and geochemical data. Int J Earth Sci (Geol Rundsch),2008, 97:443-458.
    [115]Bueno J F, Oliveira E P, McNaughton N J. U-Pb dating of granites in the Neoproterozoic Sergipano Belt, NE-Brazil:Implications for the timing and duration of continental collision and extrusion tectonics in the Borborema Province. Gondwana Research,2009,15:86-97.
    [116]Greentree M R, Li Z X. The oldest known rocks in south-western China:SHRIMP U-Pb magmatic crystallisation age and detrital provenance analysis of the Paleoproterozoic Dahongshan Group. Journal of Asian Earth Sciences,2008,33:289-302.
    [117]Kalsbeek F, Frei D, Affaton P. Constraints on provenance, stratigraphic correlation and structural context of the Volta basin, Ghana, from detrital zircon geochronology:An Amazonian connection? Sedimentary Geology,2008,212,86-95.
    [118]Meinhold G, Reischmann T, Kostopoulos D, et al., Provenance of sediments during subduction of Palaeotethys:Detrital zircon ages and olistolith analysis in Palaeozoic sediments from Chios Island, Greece. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008,263:71-91.
    [119]李任伟,万渝生,陈振宇,等.根据碎屑锆石SHRIMP U-Pb测年恢复早侏罗世大别造山带源区特征.中国科学(D辑),2004,34(4):320-328.
    [120]Martin D M, Sircombe K N, Thorne A M, et al. Provenance history of the Bangemall Supergroup and implications for the Mesoproterozoic paleogeography of the West Australian Craton, Precambrian Res.,2008, doi:10.1016/j.precamres.2007.07.027.
    [121]Bagas L., Bierlein F.P., Bodorkos S. Tectonic setting, evolution and orogenic gold potential of the late Mesoarchaean Mosquito Creek Basin, North Pilbara Craton, Western Australia. Precambrian Research,2008,160,227-244
    [122]Hall C E, Jones S A, Bodorkos S. Sedimentology, structure and SHRIMP zircon provenance of the Woodline Formation, Western Australia:Implications for the tectonic setting of the West Australian Craton during the Paleoproterozoic. Precambrian Research,2008, doi:10.1016/j.precamres.2007.11.001.
    [123]Li R W, Li S Y, Jin F Q, et al. Provenance of Carboniferous sedimentary rocks in the northern margin of Dabie Mountains, central China and the tectonic significance:constraints from trace elements, mineral chemistry and SHRIMP dating of zircons. Sedimentary Geology,2004,166,245-264.
    [124]Howard K. E., Hand M., Barovich K. M. et al. Detrital Zircon Ages:Improving Interpretation via Nd and Hf Isotopic Data. Chemical Geology,2009, doi:10.1016/ j.chemgeo.2009.01.029.
    [125]吴福元,李献华,郑永飞,等Lu-Hf同位素体系及其岩石学应用.岩石学报,2007,23(2):185-220.
    [126]Sun M, Yuan C, Xiao W, et al. Zircon U-Pb and Hf isotopic study of gneissic rocks from the Chinese Altai:Progressive accretionary history in the early to middle Palaeozoic. Chemical Geology,2008,247,352-383
    [127]Yu J H, Suzanne Y O'R, Wang L, et al. Where was South China in the Rodinia supercontinent? Evidence from U-Pb geochronology and Hf isotopes of detrital zircons. Precambrian Research,2008, doi:10.1016/j.precamres.2008.03.002.
    [128]Luo Y, Sun M, Zhao G C, et al. A comparison of U-Pb and Hf isotopic compositions of detrital zircons from the North and South Liaohe Groups:Constraints on the evolution of the Jiao-Liao-Ji Belt, North China Craton. Precambrian Research,2008, doi:10.1016/j.prec-amres.2008.01.002.
    [129]Zeh A, Gerdes A, Klemd R, et al. U-Pb and Lu-Hf isotope record of detrital zircon grains from the Limpopo Belt-Evidence for crustal recycling at the Hadean to early-Archean transition. Geochimica et Cosmochimica Acta,2008,72,5304-5329.
    [130]Wu F, Yang J, Simon A W, et al. Detrital zircon U-Pb and Hf isotopic constraints on the crustal evolution of North Korea. Precambrian Research,2007,159,155-177.
    [131]Xia X, Sun M, Zhao G C, et al. U-Pb and Hf isotopic study of detrital zircons from the Wulashan khondalites:Constraints on the evolution of the Ordos Terrane, Western Block of the North China Craton. Earth and Planetary Science Letters,2006,241,581-593.
    [132]Yang J, Wu F, Shao J, et al. Constraints on the timing of uplift of the Yanshan Fold and Thrust Belt, North China. Earth and Planetary Science Letters,2006,246,336-352.
    [133]Zhang S, Zheng Y, Wu Y, et al. Zircon U-Pb age and Hf-O isotope evidence for Paleoproterozoic metamorphic event in South China. Precambrian Research,2006,151, 265-288.
    [134]第五春荣,孙勇,袁洪林,等.河南登封地区嵩山石英岩碎屑锆石U-Pb年代学、Hf同位素组成及其地质意义.科学通报,2008,53(16):1923-1934.
    [135]谢静,吴福元,丁仲礼.浑善达克沙地的碎屑锆石U-Pb年龄和Hf同位素组成及其源区意义.岩石学报,2007,23(2):523-528.
    [136]Kemp A I S, Hawkesworth C J, Paterson B A, et al. Episodic growth of the Gondwana supercontinent from hafnium and oxygen isotopes in zircon. Nature,2006,439,580-583.
    [137]Pietranik A B, Hawkesworth C J, Storey C D, et al. Episodic, mafi c crust formation from 4.5 to 2.8 Ga:New evidence from detrital zircons, Slave craton, Canada. Geology, 2008,36,875-878.
    [138]Fralick P.W., Hollings P., Metsaranta R. et al. Using sediment geochemistry and detrital zircon geochronology to categorize eroded igneous units:An example from the Mesoarchean Birch-Uchi Greenstone Belt, Superior Province. Precambrian Research, 2009,168,106-122.
    [139]Sun W H, Zhou M F. The -860-Ma, Cordillern-Type Guandaoshan Dioritic Pluton in the Yangtze Block, SW China:Implications for the Origin of Neoproterozoic Magmatism. Journal of Geology,2008,116,238-253.
    [140]Waele B D, Fitzsimons I C W. The nature and timing of Palaeoproterozoic sedimentation at the southeastern margin of the Congo Craton; zircon U-Pb geochronology of plutonic, volcanic and clastic units in northern Zambia. Precambrian Research,2007,159:95-116.
    [141]闫义,林舸,王岳军,等.盆地陆源碎屑沉积物对源区构造背景的指示意义.地球科学进展,2002,17(1):85-90.
    [142]王荃,刘雪亚.我国西部祁连山区的海洋地壳及其大地构造意义,地质科学,1976,1,42-55.
    [143]甘肃省地质矿产局.甘肃省岩石地层.中国地质大学出版社,1997,314p.
    [144]夏林圻,夏祖春,徐学义.北祁连山海相火山岩岩石成因.地质出版社,1996,153p.
    [145]甘肃省地质矿产局.甘肃省区域地质志.地质出版社,1989,692p.
    [146]青海省地矿局.青海省区域地质志,地质出版社,1991,605p.
    [147]向鼎璞.祁连山火山岩及其火山作用,兰州大学学报(自然科学版),1982,1:
    [148]向鼎璞.祁连山地区构造特征.地质科学,1982,4:
    [149]向鼎璞.祁连山主要地质特征.青藏高原地质文集(17)1985.
    [150]肖序常,陈国铭,朱志直.祁连山古蛇绿岩带的地质构造意义.地质学报,1978,52(4):281-295
    [151]左国朝.北祁连地区早古生代碰撞缝合作用.见:唐克东主编.中国北方板块构造文集(1).北京:地质出版社,1986,27-35.
    [152]左国朝,刘寄陈.北祁连早古生代大地构造演化.地质科学,1987,24(1):14-24.
    [153]左国朝,吴汉泉.北祁连中段早古生代双向俯冲-碰撞增生模式剖析.地球科学进展, 1997,12(4):315-323.
    [154]Xu, Z. Q., Yang, J. S., Wu, C. L., Li, H. B.,2006, Timing and mechanism of formation and exhumation of the Northern Qaidam ultrahigh-pressure metamorphic belt. Journal of Asian Earth Sciences,28,160-173.
    [155]万渝生,许志琴,杨经绥,等.祁连造山带及临区前寒武纪深变质基底的时代与组成.地球学报,2003,24(4):319-324.
    [156]Smith, A.D.,2006. The geochemistry and age of ophiolitic strata of the Xinglongshan Group: implication for the amalgamation of the Central Qilian belt. Journal of Asian Earth Sciences,28:133-142.
    [157]曾建元,杨宏仪,万渝生,等.北祁连山变质杂岩中新元古代(-775Ma)岩浆活动记录的发现:来自SHRIMP Ⅱ锆石U-Pb定年的证据.科学通报,2006,51(5):575-581.
    [158]董国安,杨怀仁,杨宏仪等.祁连地块前寒武纪基底锆石SHRIMP U-Pb年代学及其地质意义.科学通报,2007,52(13):1572-1585.
    [159]徐旺春,张宏飞,柳小明.锆石U-Pb定年限制祁连山高级变质岩系的形成时代及其构造意义.科学通报,2007,52(10):1174-1180.
    [160]许志琴,徐慧芬,张建新,等.北祁连走廊南山加里东俯冲杂岩增生地体机动力学.地质学报,1994,68(1):1-15
    [161]宋述光.1997.北祁连俯冲杂岩带的构造演化.地球科学进展,12(4):351-365.
    [162]闫臻,肖文交,刘传周,等.2006.祁连山老君山砾岩的碎屑组成和源区大地构造背景.地质通报,25(1-2):83-98.
    [163]Taylor, S.R., McLennan, S.M., The continental crust:its composition and evolution. Blackwell Scientific Publications, Oxford, UK,1985,312p.
    [164]Cullers, R L, Mineralogical and chemical changes of soil and stream sediment formed by intense weathering of the Danburg granite, Georgia, USA. Lithos,1988,21,301-314.
    [165]McLennan S M, Taylor SR, McCulloch M T, et al. Geochemical and Nd-Sr isotopic composition of deep-sea turbidites:crustal evolution and plate tectonic associations. Geochimica et Cosmochimica Acta,1990,43,375-388.
    [166]Fedo C M, Nesbitt H W, Young G M, Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosoils, with implications for paleoweathering conditions and provenance. Geology,1995,23,921-924.
    [167]Condie K C, Noll J P.D, Conway C.M. Geochemical and detrital mode evidence for two sources of Early Proterozoic sedimentary rocks from the Tonto Basin Supergroup, central Arizona. Sediment Geol,1992,77:51-76.
    [168]Nesbitt H W M, Young G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature,1982,299:715-717.
    [169]Bock B, McLennan S M, Hanson G N. Geochemistry and provenance of the Middle Ordovician Austin Glen Member (Normanskill Formation) and the Taconian Orogeny in New England. Sedimentology,1998,45:635-655.
    [170]She Z B, Ma C Q, Mason R, et al. Provenance of the Triassic Songpan-Ganzi flysch, west China. Chem Geol,2006,231:159-175.
    [171]McLennan S M, Hemming S, McDaniel D K, et al. Geochemical approaches to sedimentation, provenance, and tectonics. Geological Society of America Special Paper, 1993,284,21-40.
    [172]Floyd P A, Winchester J A, Park R G. Geochemistry and tectonic setting of Lewisian clastic metasediments from the early Proterozoic Lock Marie Group of Gairlock, Scotland. Precambrian Research,1989,45,203-214.
    [173]Condie, K.C., Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales. Chemical Geology,1993,104,1-37.
    [174]Wan Y S, Yang J S, Xu Z Q, et al. Geochemical characteristics of the maxianshan complex and Xinglongshan group in the eastern segment of the Qilian Orogenic Belt. Geological Review,2000,43(1),52-68.
    [175]Taylor S R, McLennan S M. The geochemical evolution of the continental crust. Rev Geophys,1995,33(2):241-265.
    [176]李文渊,郭周平,王伟.北祁连山加里东期聚敛作用的构造转换及其成矿响应.地质论评,2005,51(2):120-127.
    [177]戚学祥,张建新,李海兵,等.北祁连南缘右行韧性走滑剪切带的同位素年代学及其地质意义.地学前缘,2004,11(4):469-479.
    [178]马昌前,杨坤光,明厚利,等.大别山中生代地壳从挤压转向伸展的时间:花岗岩的证据.中国科学(D辑),2003,33(9):817-827.
    [179]DeCelles, P., Giles, K., Foreland basin systems. Basin Research,1996,8,105-123.
    [180]李曰俊,邝国敦,吴浩若,等.钦州前陆盆地——关于钦州残余海槽的新认识.广西地质,1993,6(4):13-18.
    [181]Sinclair H D. Flysch to molasse transition in peripheral foreland basins:The role of the passive margin versus slab breakoff. Geology,1997,25,1123-1126.
    [182]雍拥,肖文交,袁超,等.中祁连东段古生代花岗岩的年代学、地球化学特征及其大地构造意义.岩石学报,2008,24(4):855-866.
    [183]苏建平,胡能高,张海峰,等.中祁连西段黑沟梁子花岗岩的锆石U-Pb同位素年龄及成因.现代地质,2004,18(1):70-74.
    [184]Tseng C Y, Yang H J, Yang H Y, et al. Continuity of the North Qilian and North Qinling orogenic belts, Central Orogenic System of China:Evidence from newly discovered Paleozoic adakitic rocks. Gondwana Research,2009, doi:10.1016/j.gr.2009.04.003.
    [185]张建新,张泽明,许志琴,等.阿尔金构造带西段榴辉岩的Sm-Nd及U-Pb年龄—阿尔金构造带中加里东期山根存在的证据.科学通报,1999,44(10):1109-1112.
    [186]孟繁聪,张建新,杨经绥,等.柴北缘锡铁山榴辉岩的地球化学特征.岩石学报,2003,19(3):435-442.
    [187]Song S G, Zhang L F, Niu Y, et a.l Evolution from oceanic subduction to continental collision:A case study of theNorthern Tibetan Plateau inferred from geochemical and geochronological data. Journal of Petrology,2006,47:435-455.
    [188]陈丹玲,孙勇,刘良.柴北缘鱼卡河超高压榴辉岩的变质年龄.中国科学,2007,37(增):279-287.
    [189]Zhang J X, Mattinson C G, Meng F, et al. Polyphase tectonothermal history recorded in granulitized gneisses from the North Qaidam HP/UHP metamorphic terrane, western China: evidence from zircon U-Pb geochronology. Geological Society of America Bulletin,2008, 120:32-749.
    [190]Cawood P.A., Nemchin A.A.,2000, Provenance record of a rift basin:U/Pb ages of detrital zircons from the Perth Basin, Western Australia. Sedimentary Geology,134,209-234.
    [191]Yang J H, Du, Y S, Cawood P A, et al. Silurian collisional suturing onto the southern margin of the North China Craton:Detrital zircon geochronology constraints from the Qilian Orogen, Sedimentary Geology,2009, doi:10.1016/j.sedgeo.2009.07.001.
    [192]Greentree M R and Li Z. The oldest know rocks in south-western China:SHRIMP U-Pb magmatic crystallisation age and detrital provenance analysis of the Paleoproterozoic Dahongshan Group. Journal of Asian Earth Sciences,2008,33:289-302.
    [193]Li Z X, Li X H, Zhou H, et al. Grenvillian continental collision in South China:new SHRIMP U-Pb zircon results and implications for the configuration of Rodinia. Geology, 2002,30(2):163-166.
    [194]Zhang S B, Zheng Y F, Wu Y B, et al., Zircon isotope evidence for≥3.5 Ga continental crust in the Yangtze craton of China. Precambrian Research,2006,146:16-34.
    [195]Zhang, S. Zheng Y F, Wu Y B, et al., Zircon U-Pb age and Hf isotope evidence for 3.8 Ga crustal remnant and episodic reworking of Archean crust in South China. Earth and Planetary Science Letters,2006,252(1-2):56-71.
    [196]Gehrels G E, Yin A, and Wang X F. Detrital-zircon geochronology of the northeastern Tibetan plateau. GSA Bulletin,2003,115(7):881-896.
    [197]Xu B, Jian P, Zheng H F, et al. U-Pb zircon geochronology and geochemistry of Neoproterozoic volcanic rocks in the Tarim Block of northwest China:implications for the breakup of Rodinia supercontinent and Neoproterozoic glaciations. Precambrian Research, 2005,136,107-123.
    [198]Xu B, Xiao S H, Zou H B, et al. SHRIMP zircon U-Pb age constraints on Neoproterozoic Quruqtagh diamictites in NW China. Precambrian Research,2009,168,247-258.
    [199]Zhang C L, Li Z X, Li X H, et al. Neoproterozoic mafic dyke swarms at the northern margin of the Tarim Block, NW China:Age, geochemistry, petrogenesis and tectonic implications. Journal of Asian Earth Sciences,2009,35,167-179.
    [200]Lu S N, Li H K, Zhang C L, et al. Geological and geochronological evidence for the Precambrian evolution of the Tarim Craton and surrounding continental fragments. Precambrian Research,2008,160,94-107.
    [201]王洪亮,何世平,陈隽路,等.甘肃马衔山花岗岩杂岩体LA-ICPMS锆石U-Pb测年及其构造意义.地质学报,2007,81(1):72-78.
    [202]李怀坤,陆松年,相振群,等.北祁连山西段北大河岩群碎屑锆石SHRIMP U-Pb年代学研究.地质论评,2007,53(1):132-140.
    [203]Zhao G C, Kroner A, Wilde S A, et al. Lithotectonic elements and geological events in the Hengshan-Wutai-Fuping belt:A synthesis and implications for the evolution of the Trans-North China Orogen:Geological Magazine,2007,144,753-775.
    [204]Zhao G C, Wilde S A, Sun M,et al. SHRIMP U-Pb zircon ages of granitoid rocks in the Luliang Complex:implication for the accrection and evolution of the Trans-North China Orogen. Precambrian Research,2008,160,213-226.
    [205]He Y H, Zhao G C, Sun M, et al. SHRIMP and LA-ICP-MS zircon geochronology of the Xiong'er volcanic rocks:Implications for the Paleo-Mesoproterozoic evolution of the southern margin of the North China Craton. Precambrian Research,2009,168,213-222.
    [206]Wan Y S, Song B, Liu D Y, et al. SHEIMP U-Pb zircon geochronology of Palaeoproterozoic metasedimentary rocks in the North China Craton:evidence for a major Late Palaeoproterozoic tectonothermal event. Precambrian Research,2006,149:249-271.
    [207]Wan, Y S, Wilde S A, Liu D Y, et al. Further evidence fot-1.85 Ga metamorphism in the Central Zone of the North China Craton:SHRIMP U-Pb dating of zircon from metamorphic rocks in the Lushan area, Henan Province. Gondwana Research,2006,9,189-197.
    [208]Guo J H, Sun M, Chen F K, et al. Sm-Nd and SHRIMP U-Pb zircon geochronology of high-pressure granulite in the Sanggan zrea, North China Craton:timing of Paleoproterozoic continental collision. Journal of Asian Earth Science,2005,24,629-642.
    [209]Hou G T, Liu Y, and Li J, Evidence for-1.8 extension of the Eastern Block of the North China Craton from SHRIMP U-Pb dating of mafic dyke swarms in Shandong Province. Journal of Asian Earth Science,2006,27,392-401.
    [210]周红英,刘敦一,万渝生,等.鞍山地区3.3Ga岩浆热事件——SHRIMP年代学和地球化学新证据.岩石矿物学杂志,2007,26(2):123-129.
    [211]周红英,刘敦一,Nemchm A, et al.鞍山地区3.8Ga变质石英闪长岩遭受3.0Ga构造热事件叠加.地质论评,2007,53(1):120-125.
    [212]Wilde S A, Cawood P A, Wang K, et al. Determining Precambrian crustal evolution in China:a case-study from Wutaishan, Shanxi Province, demonstrating the application of precise SHRIMP U-Pb geochronology In:Malpas, J., Fletcher, C.J., Aitchison, J.C., Ali, J. (Eds.), Aspects of the Tectonic Evolution of China. Geol. Soc. Spec. Publ., London 226, 2004, pp.5-26.
    [213]Liu D Y, Nutman A P, Compston W, et al. Remnants of≥3800 Ma crust in the Chinese part of the Sino-Korean craton. Geology,1992,20,339-342.
    [214]董国安,杨宏仪,刘敦一等.龙首山岩群碎屑锆石SHRIMP U-Pb年代学及其地质意义.科学通报,2007,52(6):688-697.
    [215]殷洪福,张克信.中央造山带的演化及其特点.地球科学——中国地质大学学报,1998,23(5):438-442.
    [216]侯青叶,赵志丹,张宏飞,等.北祁连玉石沟蛇绿岩印度洋MORB型同位素组成特征及其地质意义.中国科学(D辑),2005,35(8):710-719.
    [217]王涛,张宗清,王晓霞,等.秦岭造山带核部新元古代碰撞变形及其时代——强变形同碰撞花岗岩与弱变形脉体锆石SHRIMP年龄限定.地质学报,2005,79(2):220-232.
    [218]张宗清,张国伟,刘敦一,等.秦岭造山带蛇绿岩花岗岩和碎屑沉积岩同位素年代学和地球化学.北京:地质出版社,2006,348p.
    [219]Wan Y S, Zhang J X, Yang J S, et al. Geochemistry of high-grade metamorphic rocks of the North Qaidam mountains and their geological significance. Journal of Asian Earth Sciences, 2006,28,174-184.
    [220]Yang J S, Wu C L, Zhang J X, et al., Protolith of eclogites in the north Qaidam and Altun UHP terrane, NW China:Earlier oceanic crust? Journal of Asian Earth Sciences,2006,28, 185-204.
    [221]Zhang J X., Yang J S, Meng F C, et al. U-Pb isotopic studies of eclogites and their host gneisses in the Xitieshan area of the North Qaidam mountains, western China:New evidence for an early Paleozoic HP-UHP metamorphic belt. Journal of Asian Earth Sciences, 2006,28,143-150.
    [222]李海兵,杨经绥,许志琴,等.阿尔金断裂带印支期走滑活动的地质及年代学证据.科学通报,2001,46(16):1333-1338.
    [223]张建新,孟繁聪,于胜尧,等.北阿尔金HP/LT蓝片岩和榴辉岩的Ar-Ar年代学及其区域构造意义.中国地质,2007,34(4):558-564.
    [224]Qiu, H. N., Wijbrans J.R. The Paleozoic metamorphic history of the Central Orogenic Belt of China from 40Ar/39Ar geochronology of eclogite garnet fluid inclusions. Earth and Planetary Science Letters,2008,268,501-514.
    [225]Katsube A, Hayasaka Y, Santosh M, et al. SHRIMP zircon U-Pb ages of eclogite and orthogneiss from Sulu ultrahigh-pressure zone in Yangkou area, eastern China. Gondwana Research,2009,15,168-177.
    [226]陆松年,陈志宏,相振群,等.秦岭岩群副变质岩碎屑锆石年龄谱及其地质意义探讨.地学前缘,2006,13(6):303-310.
    [227]Darby B J, Gehrels G. Detrital zircon reference for the North China block. Journal of Asian Earth Sciences,2006,26,637-648.
    [228]张建新,许志琴,陈文,等.北祁连中段俯冲-增生杂岩/火山弧的时代探讨岩石矿物杂志,1997,16(2):112-119.
    [229]Zhang J X, Meng F C, Wan Y S. A cold Early Palaeozoic subduction zone in the North Qilian Mountains, NW China:petrological and U-Pb geochronological constraints. Journal metamorphic Geology,2007,25,285-304.
    [230]Liou J G, Wang X M, Coleman R G, et al. Blueschists in major suture zones China. Tectonics,1989,8,609-619.
    [231]Wang C Y, Zhang Q, Qian Q, et al. Geochemistry of the early Paleoz-oic Baiyin volcanic rocks (NW China):implications for the tectonic evolution of the North Qilian orogenic belt. The Journal of Geology,2005,113:83-94.
    [232]Liu Y J, Neubauer F, Genser J, et al.40Ar/39 Ar ages of blueschist facies pelitic schists from Qingshuigou in the Northern Qilian Mountains, western China. Island Arc,2006,15, 187-198.
    [233]周志强,曹宣铎,赵江天,等.祁连山东部早古生代地层和沉积-构造演化.西北地质科学,1996,17(1):1-58.
    [234]甘肃省地质局.甘肃的奥陶系.内部资料,1979,148p.
    [235]Covey, M., The evolution of foreland basins to steady state:evidence from the western Taiwan foreland basin. In:Allen, P.A., Homewood, P.N. (Eds.), Foreland basins, IAS Special Publication, vol.8. Blackwell Scientific, Oxford,1986, p77-90.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700