用户名: 密码: 验证码:
金沙江观音岩电站红层钙质砂岩类岩溶发育特征及渗透稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国岩溶地区面积广阔,岩溶发育类型多样,与岩溶有关的工程、环境问题涉及广泛而复杂。受区域构造、地下水、古地理环境以及古气候环境等综合作用,在金沙江观音岩水电站枢纽区分布的红色侏罗系陆相碎屑岩地层中,发育着大量溶蚀现象并形成规模尺度不一的溶蚀空间。这种溶蚀现象与传统意义上的碳酸盐岩岩溶有所差异,并且与红层中普遍存在的盐岩、膏岩在地下水作用下的溶解淋滤有本质区别。作为一种极为特殊岩溶现象,这类发育于陆相红色碎屑岩地层中的红层岩溶,因砾岩溶蚀和砂岩钙质流失形成的大规模溶蚀孔洞,对水电工程坝基防渗和工程渗透稳定存在重大不利影响。
     论文在研究金沙江观音岩水电站区域地质构造背景、区域侏罗纪以来岩相古地理演化史及其地层特征、坝段金沙江河谷演化史的基础上,通过对枢纽区钙质砂(砾)岩的溶蚀类型、空间展布特征、岩石学性质及其溶蚀作用特征进行描述,总结其岩溶发育规律、分析钙质砂(砾)岩溶蚀形成机理,并以溶蚀条件下的钙质砂(砾)岩岩体质量分级、钙质砂(砾)岩渗透能力分级为核心,对坝基岩体渗透变形及工程影响进行分析研究。论文在红层类岩溶的形成机理、发育特征及其对溶蚀工程特性研究方法方面具有一定的创新,主要成果如下:
     (1)综合分析坝基钙质砂(砾)岩体的宏观与微观岩溶发育特征,对红层溶蚀现象进行定位。通过对钙质砂(砾)岩的溶蚀形态、溶蚀类型、空间展布特征、岩石学性质、微观溶蚀作用特征描述、溶蚀能力计算和溶蚀对比试验研究,对观音岩水电站枢纽区坝基中的砾岩溶蚀、砂岩钙质流失问题进行定量分析,对钙质溶蚀现象进行了定位,认为:发育于攀西地区侏罗系中统蛇店组地层中的红层岩溶,是介于碎屑岩和碳酸盐岩岩溶间的一种特殊的类岩溶现象—其溶蚀强度介于两者之间,而溶蚀行为类似于灰岩;并与其他红层地层中盐岩、膏岩在地下水作用下的溶解淋滤存在根本区别;
     (2)系统分析溶蚀形成机理和发育历史。基于构造控制下地下水循环体系分析,综合采用水化学、同位素、水化学热力学和ESR测年方法,恢复地下水循环历史和钙质溶蚀史并结合金沙江河谷地貌和河谷演化史,系统分析了其溶蚀形成机理,推演钙质砂(砾)岩的溶蚀过程,认为:金沙江全线贯通进入现代河谷发展阶段以后,在区域循环系统控制下,受近浅表地下水循环系统和地表水流的作用影响,枢纽区钙质砂(砾)岩溶蚀时间在5.8~12.5×104a之间,对应金沙江河谷发育历史,该时段介于金沙江中下游河谷阶地中的Ⅱ、Ⅲ阶地发育期之间。并进一步计算分析其溶蚀潜力;
     (3)针对溶蚀条件下的岩体质量进行综合分级评价。结合平硐、钻孔波速、RQD等综合指标与其他单项指标,通过水电工程围岩工程地质分类、工程岩体分级以及RMR系统分类三种分类分级方法,对溶蚀条件下的坝基岩体质量,对比分析溶蚀作用对岩体质量的控制作用:①由于岩石胶结物的溶蚀,使得其岩体质量有较明显的减弱,总体上可减小一个量级;②提出不同溶蚀程度的钙质砂(砾)岩波速值溶蚀损伤折减率,其中砾岩为12.73~68.45%,砂岩为9.54~30.66%; (4)研究选取不同溶蚀程度的岩样进行渗透试验,获得其渗透性能与溶蚀程度间的内在关系,得出溶蚀钙质砂岩岩体渗透性能与岩石孔隙度间的关系式:K = 2×10-5e0.3298x(R2 = 0.9596)。同时,对于枢纽区钙质砾岩、钙质砂岩、粉砂岩、泥岩的互层结构地层,差异性溶蚀效应表现尤为显著,由此带来岩体渗透性能的复杂多样性。基于统计分析,提出观音岩电站枢纽区差异性溶蚀效应下岩体渗透系数,对钙质砂(砾)岩渗透能力的空间分布特征进行预测评价;
     (5)对工程条件下坝基岩体的渗透稳定性进行深入研究。通过对工程区地下水渗流场在天然条件和工程条件下的对比模拟计算,预测评价工程防渗措施效果。在此基础上,进行坝基岩体渗透变形判别,分析其在高水头压力下的渗透破坏模式(将以管涌为主)。并总结国内外红层区水利水电工程经验,对于存在大量溶蚀现象和较强的溶蚀发育潜力的枢纽区钙质砂(砾)岩坝基,建议采用防渗系统和排水系统并重的工程措施,重视加强排水设施,对提高软岩坝基的渗透稳定最为关键。
China has broad karst regions, various types of karst developed, thus involving extensive and complex karst-related engineering and environmental problems. Controlled by the regional structure, groundwater, ancient geography and ancient climate environment, corrosion phenomena was well developed, formed different scales of dissolution space in Jurassic continental red beds clastic rock formation in Guanyinyan Hydropower distribution area, Jinsha River. This dissolution phenomenon different with the carbonate karst erosion in traditional sense, also different with the rock salt, gypsum rock dissolution effect in groundwater. As a special karst phenomena, this kind of karst developed in the red beds of the continental red clastic is due to conglomerate dissolution and calcium loss of the sandstone, formed huge corrosion hole that affects the stability and deformation of the dam foundation as well as the seepage project significantly.
     Based on the study of the regional geological background, the palaeogeographic evolution history of rock after the Jurassic, the stratigraphic features, and the evolution history of the valley near the dam of the Jinsha River, combined with the description of the rock dissolution type, the spatial distribution characteristics, the properties of rocks and the characteristics of dissolution of calcareous sand (gravel), summarized the karst development pattern, the mechanism of karst erosion of calcareous sand (gravel), take the rock mass classification and the permeability classification of the calcareous sand (gravel) as the main work, analysis the seepage deformation of the dam foundation rock and its influence to the project. This paper proposed some new understandings in the red beds karst formation mechanism analysis, characteristics and research methods as follows:
     (1) Based on the investigation, described the corrosion morphology of the calcareous sand (conglomerate), corrosion types, spatial distribution characteristics, properties of rocks and characterization of micro-corrosion, calculated erosion capacity and carried out corrosion contrast testing research, analyses the solubility of the calcareous sand (gravel) rock quantitatively of Guanyinyan hydropower dam, orientated the calcium dissolution phenomena developed so deep underground (maximum depth of 150m), with such scale (the largest-diameter 7.91m) that : different from other leaching dissolved effect in red beds formation in the salt rock, gypsum rock in the grounwater, the semi-karst phenomena developed in the Jurassic Panxi Shedian formation is between red beds clastic rocks and carbonate rocks - the dissolution strength is less than carbonate rocks while strong than clastic rocks, the dissolution behavior is similar to limestone.
     (2) Based on the analysis of the groundwater circulation system under the control of structural, combined with the water chemistry, isotope, water chemical thermodynamics and ESR dating methods, restorated the groundwater circulation and the calcium dissolution history, combined with the valley landscape and valley evolution history of the dam area, Jinsha River, analysis formation mechanism of its dissolution systematically, and deduced the calcareous sand (gravel) rock dissolution process, concluded that: after Jinsha River valley into the modern era, under the control of regional groundwater circulation system, and by the shallow groundwater circulation near the surface and the role of water impact, the erosion time of calcareous sand(gravel)is during 5.8~12.5×104a in study area, corresponding to the historical development of the Jinsha River valley, between the development period of the terraceⅡand terraceⅢ. At last calculated the corrosion potential.
     (3) Combination with the individual indicators data of the adit, drilling velocity, RQD and other comprehensive index, according to hydroelectric project adjacent geological classification, rock mass classification and RMR classification methods, conducted a comprehensive classification of the dissolution rock under the dam foundation, compared the control role and the weaken effect of the dissolution of the rock mass quality, presented the discount rate of velocity values of corrosion damage for different degrees of calcareous sand (conglomerate).
     (4) According to the dissolution type, the spatial distribution characteristics and dissolution characteristics of the calcareous sand (gravel) rock, combined with various lithological association of calcareous conglomerate, sandstone, siltstone and mudstone rock, analysis the rock permeability test and field pressure test for four grades erosion degree, the paper proposed the permeability for difference lithologic association under the effect of dissolution of Guanyinyan power project area for the first time, and put up predictive evaluation of the spatial distribution of permeability for the calcareous sand (conglomerate).
     (5) Study the seepage stability of the rock mass under of dam foundation. Simulation and contrast the groundwater seepage field of project area under natural conditions and under the construction, prediction and evaluation the seepage control measures. On this basis, identified the infiltration deformation of the dam foundation rock mass, analyzed the penetration failure mode under high head pressure. Summarized the domestic and international experience of red beds hydropower project that exist large number of corrosion phenomena and strong dissolution of calcareous sand (gravel) rock foundation, proposed seepage system and the drainage system, the drainage facilities is essential to improve the penetration stability of soft rock foundation.
引文
[1]曾昭璇,黄少敏.中国自然地理·地貌[M].北京:科学出版社,1980:139-150
    [2]孔纪名,陈自生.川东1989.7暴雨过程中的红层滑坡.滑坡文集(9)[M].北京:中国铁道出版社,1989.
    [3]成昆铁路技术总结委员会.成昆铁路—第二册(线路、工程地质及路基)[M].北京:人民铁道出版社,1980.
    [4]胡文华,赵绍琮,杨子文.四川盆地红层岩石(体)物理力学性质指标汇编[C].水电部成都勘测设计院科研所,1983.
    [5]郑勇.四川盆地红层丘陵地区地下水开发前景[J].四川地质学报,2000,20(4):262~264
    [6]郑万模,魏伦武,李明辉.西南红层严重缺水地区找水工作[J].沉积与特提斯地质,2004,Vol.24(4).106~108
    [7]黄绍槟,程强,胡厚田.四川红层分布及工程环境特征研究[J].公路,2005(5):81~85
    [8]钟共清.湖南红层分布与岩溶形态分类探讨[J].水利技术监督,2005(2).45~47
    [9]刘尚仁.广东的红层岩溶及其水文地质特征[J].广东地质,1992,7(3):9~17.
    [10]梁百和等.粤北金鸡岭丹霞地貌的岩石学分析[J].热带地理.1992,12(2):133~140.
    [11]刘尚仁,黄瑞红.广东红层岩溶地貌与丹霞地貌[J].中国岩溶.1991,10(3),183~189.
    [12]刘尚仁.广东的红层岩溶及其机制[J].中国岩溶,1994,13(4):395~403.
    [13]王运生,吴俊峰,魏鹏等.四川盆地红层水岩作用岩石弱化时效性研究[J],岩石力学与工程学报, 2009,Vol.28 Supp.1:3102~3107.
    [14]徐瑞春.红层与大坝[M],北京:中国地质大学出版社, 2003.
    [15]彭华,吴志才.关于红层特点及分布规律的初步探讨[J].中山大学学报(自然科学版) 2003,42(15):109-113.
    [16]袁道先,朱德浩等.中国岩溶学[M].北京地质出版社,1994年4月.
    [17]袁道先.现代岩溶学和全球变化研究[J].地学前缘,1997. 4(1-2): 17-25
    [18]沈继方,万军伟,王增银,等.岩溶动力系统的演化及其资源环境效应[J].中国岩溶,2000, 19(2): 109-114
    [19]蒋忠诚.广西弄拉白云岩环境的岩溶地球化学迁移[J].中国岩溶,1997. 16(4): 304-311
    [20]刘再华,袁道先,何师意,等.地热CO2一水一碳酸盐岩系统的地球化学特征及其来源[J].中国科学(D辑),2000,30(2): 209~214
    [21]张祯武,杨胜强.岩溶水示踪探测技术的新进展[J].工程勘察,1999(5): 4043
    [22] Paterson K, Sweeting M M.The pinnacle karst of the Stone Forest, Lunan, China: an example of a subjacent karst.New Direction In Karst.England: Geo Books Regency House, 1986: 597-607
    [23] Jiang Zhongcheng.An analysis on formation of fengcong depressions in China.Carsologica Sinica, 1996, 15 (1~2): 83~90
    [24]刘再华.表层岩溶带的水温特征及其与下部包气带的对比[J].中国岩溶,1991,10(4): 277-282
    [25]蒋忠诚,袁道先.表层岩溶带的岩溶动力学特征及其环境和资源意义[J].地球学报,1999, 20(3): 302~308
    [26] Mangin A C.Contribution a I'etude hydrodynarnique des aquifers karstiques. Annalesde Speleologie, 1974, 29: 283-332
    [27] Williams P W.Subcutaneous hydrology and the development of doline and cockpit karst. Z Geomorph.N.F. 1985,29(4)
    [28] Peter W Huntoon.Hydrogeologic characteristics and deforestation of the stone forest karst aquifer south China, Groundwater, 1992, 30: 167-176
    [29]张叶春,李吉均,朱俊杰.晚新生代金沙江形成时代与过程研究[J].云南地理环境研究,1998,10(2):43~48.
    [30]韩宝平.微观喀斯特作用机理研究[M].北京:地质出版社1998.
    [31]黄润秋等.我国区域地质灾害评价的现状及问题[J].地质通报,2004,Vol.23(11):1078~1082.
    [32]黄润秋,王士天.中国西南地壳浅表地层动力学过程及其工程环境效应研究[M].成都:四川大学出版社. 2001.
    [33]张叶春.长江三峡贯通的时代及意义[J].西北师范大学学报(自然科学版),1995,31(2):52~ 56
    [34]光耀华.岩溶地区工程地质研究的若干新进展概述[J].中国岩溶,1998, 17(4): 378-383
    [35]韩宝平.微观喀斯特作用机理研究[M].北京:地质出版社,1998
    [36]韩行瑞.高大建筑物岩溶地基工程地质特征及环境效应[J].中国岩溶,1996(4)
    [37]邹成杰,光耀华等.水力水电岩溶工程地质[M].北京:水利电力出版社,1994年
    [38]陈强岩溶储气长隧道工程地质系统研究[D],西南交通大学博士论文,2005
    [39] Vjtech Fried. Hendrik F Hameka, Vldis Blukis.Physical Chemistry. New York:Macmillan Publishing Co. Inc., 1977, 64-213
    [40]沈照理,朱宛华,钟佐.水文地球化学基础[M].北京:地质出版社,1993.5-26
    [41]李宽良.水文地球化学热力学[M].北京:原子能出版社,1993, 44-96
    [42]袁道先.中国岩溶地球化学研究的进展[J].水文地质工程地质,1990, (5): 41-42
    [43] Dreybrodt WDeposition of calcite from thin films of natural calcareous solutions and the growth of speleothems.Chemical Geology. 1980, 29: 89-105
    [44] Georg Matthess.The properties of groundwaterjohn Wiley&Sons inc.1982
    [45] White W B.Geomorphology and Hydrology of karst terrains.Oxford University Press, New York, 1988
    [46] Yu N, Gordeyev.Growth of a crack produced by hydraulic fracture in a poroelastic medium. Int.J.Rock Mech.Min.Sci.&Geomech.Abstr, 1993,30(3): 233-238
    [47] Dreybrodt W.The role of dissolution kinetics in the development of karst aquifers in limestone: A model simulation of karst evolution.J.Geology, 1990, 98(5): 639-655
    [48] Siemers J, Dreybrodt WEarly development of karst aquifers on percolation network of fractures in limestone. Water Resources Research, 1998, 34(3): 409-419
    [49] Geog Kaufmann, JeanBraun.Karst aquifer evolution in fractured rocks.Water Resources Research, 1999, 35(11): 3223-3238
    [50] N. A. AI一Shayea, K. Khan and S.N. Abdujauwad. Effects of confining pressure and temperature on mixed-mode fracture toughness of a limestone rock. International Journal of Rock Mechanics and Mining Science, 2000, 37: 69-63
    [51] Dreybrodt WPrinciples of early development of karst conduits under natural and man-made conditions revealed by mathematical analysis of numerical models.Water Resources Research, 1996, 32(9): 2923-2935
    [52] Couvreur J F and Thimus J F.Failure process characterization of a limestone from deterministic models. Rock Mech. Rock Engng.2000, 33(1): 15-30
    [53] Rofael L, Solganik. Victoria GContinuum versus discontinuum damage mechanics of creep caused by micro-cracking. International Journal of Fracture. Nerthland, 2000, 101:181-201
    [54]陈鸿汉.多孔介质运移动力学[M].北京:地震出版社,2001
    [55]梁祥济.水岩相互及其对成矿作用的影响[M],北京:学苑出版社,1995
    [56]陈强,朱宝龙,王鹰等.秦岭越岭隧道地区构造应力场特征分析[J].中国铁道科学,2004, 25(1): 76-80
    [57] Knauss K G, Wolery T J.The dissolution kinetics of quarts as a function of pH and time at 70℃.Geochim. Cosmochim.Acta, 1988, 52: 43-53
    [58] Schott J, Berner R A, Sjoberg E L.Mechanism of pyroxene and amphibole weathering. Experimental studies of iron-free minerals. Geochim.Cosmochim.Acta, 1981, 45: 2123-2135
    [59] Lassaga A C.Transition state theory , In:AC lasaga, R J Kirkpatrick. Kinetics of Geochemical processes. Rev. Mineral.1981, 8: 135-169
    [60] Plummer L N, Parkhust D L, Wigley T L M.Critical review of calcite dissolution and precipitation [A]. Jennie E A. Chemically Modelling in Aqueous systems [A]. Am Chem Soc, Symp Ser, 1979, 93: 537-573
    [61] Dreybrodt WProcesses in karst systems. Heidelberg:Springer Series in Physical Environment, 1988: 1-288
    [62] Dreybrodt W, Buhmann D.A mass transfer model for dissolution and precipitation of calcite from solutions in turbulent motion. Chem Geol, 1991, 90:107-122
    [63] Kern M D.The hydration of carbon dioxide. J Chem Educ, 1960, 37: 14-23
    [64] Usdowski E.Reactions and equilibria in the systems CO2-H20 and CaC03-CO2-H20. Areview.Neues Jahrb Mineral Abh, 1982, 144: 148-171
    [65] Tole M PThe kinetics of dissolution of zircon (ZrSiq).Geochim. Cosmochim.Acta, 1985, 49: 453-458
    [66] Bruno J, Casas I, Puigdomenech 1. The kinetics of dissolution of UO2 under reducing conditions and the influence of and oxidized surface layer (U02+ Application of acontinuous flow-through ractor. Geochim.Cosmochim.Acta, 1991, 55: 647-658
    [67] Plummer L N.The mass balance approach chemical evolution of hydrologic systems. American Journal of Science, 1988, 28(2): 130-142
    [68] Mercado A. The kinetics of mineral dissolution in carbonate aquifers, as a tool for hydrological investigation.J.Hydrology, 1975, 24: 303-331
    [69] Francis. Groundwater geochem is try and calcite cemetation of the aquia aquifer in Southern Maryland. Water Resource Research, 1983, 19(2): 545-558
    [70]刘再华.Dreybrodt W.不同CO:分压条件下的自云岩溶解动力学机理[J].中国科学((B辑),2001, 31(4): 377-384
    [71] Liu Z, Dreybrodt WDissolution kinetics of calcium carbonate minerals in H20-CO2 solutions in turbulent flow: the role of the diffusion boundary layer and the slow reaction H2O+CO2—H++HC03.Geoch im ica et Cosmoch im ica Acta, 1997, 61:2879-2889
    [72]谭凯旋,张哲儒,王中刚.矿物溶解的表面化学动力学机理[J].矿物学报.1994, 14(3): 207-214
    [73]陈鸿汉,董英,张永祥.济南泉域岩溶系统碳循环[J].中国岩溶.1998, 17(4): 319-324.
    [74]曹玉清,胡宽熔,张永祥.岩溶化学环境水文地质学[M].吉林大学出版社,1994.
    [75]胡宽熔,曹玉清.碳酸盐岩区水质和化学动力学模型研究[J].水文地质工程地质,1993,(3): 8-14
    [76]胡宽熔,曹玉清.碳酸盐岩区水质和化学动力学模型研究[J].水文地质工程地质,1993,(4): 35-40
    [77]段水云.用地下水化学动力学方法计算出的水文地质参数来定量评价水文地质条件——以太原三给地垒及周围地区为例[J].水文地质工程地质,2001, (5): 62-65
    [78]张永祥,薛禹群,曹玉清.碳酸盐溶解、沉淀控制下的反应-迁移模型研究[J].煤田地质与勘探,1996, (5): 32-35
    [79]韩同春,王海青.热力学在混凝土腐蚀研究中的应用[J].焦作工学院学报,1997, 16(4):65-70
    [80]陈强,魏有仪,刘少巍等.岩溶隧道中地下水侵蚀性的化学热力学分析与评价[J].水文地质工程地质,2003, 30(6):21-24
    [81]陈强,朱宝龙,胡厚田.地下水对混凝土侵蚀性的热力学研究[J].中国铁道科学,2003,24(6):57-60
    [82]钟共清.浅论王家厂水库大坝坝基红层砾岩的岩溶水文地质特征[J].湖南水力,1995(2): 16-18
    [83]左重辉,曾晓阳..株洲航电枢纽红层溶蚀风化土固结灌浆试验研究[J].人民珠江,2004(5): 23-24
    [84]中国水力发电工程工程地质卷[M].北京:中国电力出版社,2000
    [85]韩爱果.坝基岩体质量量化分级及图形展示-以金沙江溪洛渡水电站为例[D].成都理工大学工学博士学位论文,2002
    [86] ]周思孟.复杂岩体若干岩石力学问题[M].北京:中国水利水电出版社,1998
    [87]李俊亭王愈吉主编地下水动力学[M]北京地质出版社1987.
    [88]李阳兵,候建筠,谢德林.中国西南岩溶生态研究进展[J].地理科学2002,22(3):365~370.
    [89]康颜仁,项式均,等,1990.中国南方岩溶塌陷[M].广西:广西科学技术出版社.
    [90]朗赟超.喀斯特地下水文系统物质循环的地球化学特征——以贵阳市和遵义市为例[D].中国科学院研究生院博士学位论文. 2005.
    [91]贾疏源,李晓..古岩溶和深岩溶——岩溶地质及水文地质研究进展[C].当代地质科学技术进展会议论文集.北京:地质出版社. 1995.
    [92]黄润秋,王贤能.深埋隧道工程主要灾害地质问题分析[J].水文地质工程地质,1998.(4):21~24.
    [93]黄尚瑜,宋焕荣.油气储层的深岩溶作用[J].中国岩溶,1997,16(3):189~198.
    [94]黄书汉,钱孝星.岩溶地下水研究的回顾与展望[J].水利水电科技进展,1997,Vol.17(4):11 ~13.
    [95]韩宝平.国外岩溶水文地质学进展[J].中国岩溶,1993(2):97~102.
    [96]韩贵琳,刘丛强.贵州河流河水的锶同位素与喀斯特地区化学风化作用[J].第四纪研究,2000,20(6):70.
    [97]韩庆之,曾克峰,梁杏等.区域岩溶水水化学特征与渗流研究[J].地质科技情报,1998. 17(2): 9~14.
    [98]韩行瑞等.岩溶水系统[M].北京:地质出版社1993.
    [99] Romm E.S. Flow Characteristics of Fractured Rocks,Nedra,Moscow,1966.
    [100] Long J.C.S. etal, Porous media equivalents for networks of discontinuous fractures, WaterResources Res., Vol.18, No.3, 1982.
    [101]田开铭对裂隙岩石渗透性的初步探讨[J]地质研究1982.1
    [102]张有天张武功裂隙岩体渗透特性渗流数学模型及系数量测[J]岩石力学1982.8
    [103]杜延龄许国安黄一和复杂岩基三维渗流分析研究[J]水利学报1984.3
    [104] Snow,D.T.,A Parallel Plate Model of Fractured Permeable Media,Ph.D.Thesis,Univ. Calif.Berkeley,1965.
    [105] Lomize, G.M., Flow in Fractured Rock(in Russian), Gosemergoizdat, Moscow, 1951, P127.
    [106]田开铭论裂隙岩石的水文地质模型[J]勘测科学技术1984.4
    [107] Elsworth,D. & Doe,T.W.,Application of Non-linear Flow Laws in Determining Rock FissureGeometry From Single Borehole Pumping Tests,Int.J.Rock Mech. Min. Sci.&Geomech.Abstr., 1986,Vol.23,No.3, p245-254.
    [108]速宝玉詹美礼赵坚仿天然岩体裂隙渗流的实验研究[J]岩土工程学报1995.5
    [109]杨晓宁,陈洪德,寿建峰等。碎屑岩次生孔隙形成机制[J],大庆石油学院学报,2004,28(1):4~7
    [110]沃尔特,施密特.砂岩成岩过程中的次生储集孔隙[M].北京:石油工业出版社,1982.272-276.
    [111]黄思静,侯中键.地下孔隙度和渗透率在空间和时间上的变化及影响因素[J].沉积学报,2001 ,19 (2) :224 - 230.
    [112]朱敏.石面坦水电站坝基层状砂岩溶蚀管涌的堵漏设计[J],湖南水利,1996(6):5~9.
    [113]中国水电顾问集团公司昆明勘测设计研究院金沙江观音岩水电站层状地基工程地质特性及可利用研究报告[R],2007年12月.
    [114]曹去修,王志宏等.构皮滩拱坝坝基岩溶处理设计[J].水电2006国际研讨会,2006,11(2): 241-245.
    [115]张勇.软硬相间层状岩体修建高混凝土坝的适宜性研究[D].成都理工大学工学硕士学位论文.2006年5月.
    [116]中国水电顾问集团公司昆明勘测设计研究院金沙江中游河段观音岩水电站固结灌浆及帷幕灌浆试验成果报告[R],2008年.
    [117]李正坤,左重辉.湖南白垩系红色砾岩溶蚀风化特性研究[J].水利水电科技进展,2001,21(SO):80-821.
    [118]万军伟,沈继方等.清江高坝洲水电站岩溶发育规律及其对工程的影响[M].中国地质大学出版社,2006年.
    [119]方朝阳,代礼红,段亚辉.隘口沥青混凝土心墙堆石坝岩溶坝基稳定性分析及处理研究[J].岩石力学与工程学报.2006,25(2):3802-3808.
    [120]中国水电顾问集团公司昆明勘测设计研究院金沙江观音岩水电站坝基岩体利用标准与建基面优化研究报告[R],2008年11月.
    [121]杨燕.观音岩水电站坝基砂、砾岩溶蚀损伤力学特性与工程应用研究[D].成都理工大学工学硕士学位论文.2009年5月.
    [122]张贵金,徐卫亚.岩溶坝区溶蚀岩体的渗透性变异研究[J].岩石力学与工程学报,2005,24(9):1527~1533.
    [123]许模,张强,覃礼貌等.金沙江观音岩水电站钙质砂(砾)岩溶蚀机理、岩溶发育规律及对工程的影响研究报告[R],2005年9月.
    [124]卢书强,许模,张强等.金沙江某水电站钙质砂(砾)岩溶蚀对岩体质量的控制作用[J].中国地质灾害与防治学报,2007,18(2):74-77.
    [125]覃礼貌,许模.某水电站坝区侏罗纪“红层”沉积演化特征及其工程影响[J].水土保持研究。2007,14(3):374~383
    [126]漆继红,许模,钱琳,马莹.观音岩地区钙质砂(砾)岩溶蚀试验模拟研究[J].水土保持研究.2007,14(3):64~66
    [127]卢耀如.岩溶水文地质环境演化与工程效应研究[M].北京:科学出版社,1999.145~211.
    [128]张征,张人权,徐恒力等.岩溶含水介质渗透性空间结构分析的模型及其应用[J].中国岩溶,1995,14(2):113~121
    [129]邹成杰,何宇彬.喀斯特地貌发育的时空演化问题初论[J].中国岩溶,1995.15(1):49~59.
    [130]邹成杰.深部岩溶发育的基本规律与水库渗漏的研究[C].第四届全国工程地质大会论文选集.北京:海洋出版社1992.
    [131]宗坚.深部岩溶及其充填物[J].矿井地质,1990(2):37~41.
    [132]钟辉亚,王思敬等.某大型水电枢纽坝基埋藏型岩溶发育特征及深层承压水研究[J].工程地质学报,1998,6(2):174~180
    [133]郑茂辉,李鸿喜.岩溶断块区地下水流数值模拟[J].水文地质工程地质,2001(1):7~10.
    [134]赵景波,岳应利,袁道先.岩溶发育的物理化学模式[J].西安工程学院学报,1999,21(3):24~27.
    [135]张征,刘淑春,鞠硕华.岩溶含水介质渗透性参数空间最优估计的原理与方法[J].水文地质工程地质,1995(6):27~30.
    [136]张倬元,王士天等.工程地质分析原理(第二版)[M].北京:地质出版社. 1997.
    [137]张凤娥,卢耀如等.复合岩溶形成机理研究[J].地学前缘,2003,10(2):495~500.
    [138]张辉.地质结构控渗效应初探[J].工程地质学报,1999,Vol.7(2):135~140.
    [139]张家忠.张集水源地裂隙岩溶水三维数值模拟及相关问题研究[D].南京:南京大学博士学位论文. 2001.
    [140]袁道先.岩溶学词典[M].北京:地质出版社. 1988.
    [141]袁道先.我国西南岩溶石山的环境地质问题[J].世界科技研究与发展,1997(.5):93~97.
    [142]袁道先.现代岩溶学和全球变化研究[J].地学前缘,1997.4(1~2):17~25.
    [143]袁道先.岩溶地区的地质环境和水文生态问题[J].南方国土资源,2003.(1):22~25.
    [144]王宇.云南省岩溶水开发利用条件分析评价[J].水利学报,2001.(1):49~52.
    [145]王宇.西南岩溶地区岩溶水系统分类\特征及勘查评价要点[J].中国岩溶,2002, 21(2):114~119.
    [146]王焰新.鄂东南古岩溶岩系的识别及其时空发育特点[J].矿物岩石,1992,12(1):80~ 88.
    [147]王焰新,孙连,罗朝晖等.指示娘子关泉群水动力环境的水化学~同位素信息分析[J].水文地质工程地质,1997(3):1~5.
    [148]宋焕荣,黄尚瑜.碳酸盐岩化学溶蚀效应[J].现代地质,1993,7(3):363~371.
    [149]宋晓晨,徐卫亚.裂隙岩体渗流概念模型研究[J].岩土力学,2004,2(2):226~231.
    [150]聂跃平.黔南地区碳酸盐岩的溶蚀试验初探[J].中国岩溶,1984(1):31~46.
    [151]聂跃平.碳酸盐岩性因素控制下喀斯特发育特征——以黔中南为例[J].中国岩溶,1994,13(1):31~36.
    [152]卢耀如.中国喀斯特地貌的演化模式[J].地理研究,1986,5(4):25~35.
    [153]卢耀如.岩溶水文地质环境演化与工程效应研究[M].北京:科学出版社1999.
    [154]刘再华,W.Dreybrodt等. CaCO3~CO2~H2O岩溶系统的平衡化学及其分析[J].中国岩溶,2005,24(1):1~13.
    [155]刘红延.鄂西南岩溶水的基本特征及分布规律[J].资源环境与工程,2007,21(2):160~163.
    [156]刘俊贤,李廷强,袁丙华等.四川埋藏岩溶水及其开发利用[M].南宁:广西科技出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700