用户名: 密码: 验证码:
麻疯树pepc1基因的克隆及其调控烟草蛋白质和油脂合成的作用分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
麻疯树主要分布于热带和亚热带地区,在我国栽培或半野生于热带地区和干热河谷地区。麻疯树种子种仁中含有丰富的油脂成分,因此它很有可能成为未来替代化石能源的具有巨大开发潜力的木本油料树种之一。但适宜麻疯树种植的土地面积十分有限,麻疯树种仁含油量的提高可提高麻疯树单位面积产油量,可以缓解在有限适宜土地上发展麻疯树生物柴油的矛盾。通过基因工程技术导入调控油脂合成的基因是提高麻疯树种子含油率,培育高油新品种的有效方法之一。近年来研究发现磷酸烯醇式丙酮酸羧化酶(PEPCase)参与了植物种子油脂合成的调控,因此通过反义抑制技术控制麻疯树pepc基因的表达,可能是提高麻疯树种子含油量的有效途径。
     本研究以麻疯树未成熟种子为材料,采用RT-PCR和RACE法从中克隆了麻疯树pepc基因的一个家族成员pepc1,采用生物信息学分析了其氨基酸序列,构建pepc1基因的正义和反义表达载体,将它们导入烟草,通过转基因烟草的实时荧光定量PCR、PEPC酶活性测定、蛋白质、脂肪酸含量变化,研究pepc1基因在转录水平、翻译水平对烟草脂肪酸合成的影响,通过pepc1基因在麻疯树不同组织、种子发育不同阶段的表达模式研究pepc1基因在麻疯树中的转录水平表达情况,鉴定麻疯树pepc1基因对油脂合成的调控作用,为定向遗传改良提高麻疯树种子油含量建立技术体系和提供科学依据。主要研究结果如下:
     (1)通过RT-PCR法克隆了麻疯树vepc基因的cDNA片段,在此基础上又通过5'RACE法克隆了pepc基因的5’端,该cDNA全长3124bp,其中开放阅读框(ORF)长为2898bp,编码了965个氨基酸。
     (2)通过对麻疯树PEPCase蛋白的生物信息学分析表明,该蛋白的分子量为110.6kD,该蛋白酸性氨基酸占总氨基酸的14.6%,碱性氨基酸占总氨基酸的13.5%,理论等电点6.18,稳定系数为46.5,单条肽链属于不稳定蛋白。二级结构主要以无规卷曲为主,间或α螺旋和β直链。麻疯树PEPCase蛋白是亲水性的,无跨膜区及信号肽。本研究克隆的pepc基因编码的蛋白属于基因家族中的PEPC1,基因为pepc1。与蓖麻的氨基酸同源性最高,在系统进化树中也与蓖麻先聚合,它与烟草的同源性也很高。通过NCBI的保守功能域(CDD)搜索,发现在11~965aa之间是一个典型的大Ppc结构域,搜索蛋白质的活性位点,发现46个功能位点,分为7种模式。麻疯树PEPC1的结构特征与大部分PEPC的结构类似,功能位点略有差异。
     (3)利用克隆获得的麻疯树管家基因actin作为参照。对麻疯树pepc1基因进行了时空表达模式研究,发现在开花到果实成熟过程中,在前4个阶段pepc1基因的表达量是增加的,在后5个阶段表达量明显下降,在叶中表达量不太高。
     (4)根据植物表达载体pCAMBIA2300-35S、pBI121的多克隆位点特征和麻疯树pepc1基因序列特征,分别构建了pepc1基因的正义表达载体pCAMBIA-KSpepc和反义表达载体pBI-BXpepc。采用农杆菌介导法将正义、反义pepc1基因转化烟草,经卡那霉素筛选、PCR和PCR-Southern鉴定,结果获得了3株转正义pepc1基因的烟草和10株转反义pepc1基因的烟草。在对转麻疯树pepc1基因烟草的实时荧光定量PCR结果中发现,转正义pepc1基因的烟草,烟草内源pepc基因表达量变化不大,外源pepc1增加。10株转反义pepc1基因的烟草,有7株烟草内源pepc基因和外源pepc1基因都降低。
     (5)通过对转基因烟草叶片PEPCase酶活性、蛋白质含量、总脂及脂肪酸含量等指标的测定,结果表明转正义pepc1基因的3株PEPCase酶活性、蛋白质含量均比野生型对照高,这3株植株中有1株总脂含量较对照高,其余两株较对照低。转反义pepc1基因的10株植株有9株酶活性比对照低,这9株中有5株其蛋白质含量比对照低,其中4株的总脂含量比对照高。转基因烟草的脂肪酸组份发生了一定的变化,但各成分含量主次变化不大。通过对蛋白质/总脂比率与野生型对照相比较,最终获得2株转正义pepc1基因和4株转反义pepc1基因的烟草与预期结果一致,其外源的麻疯树pepc1基因参与了油脂合成的调控。
Jatropha curcas L. is widely distributed in tropic and subtropic. In China, it is existed or cultivated or semi-wide in tropic and dry-hot valley region. Jatropha curcas L. has an huge development potential as an oil tree substituting fossil fuels in future, because of its high oil content in seeds. But sutibale lands for planting is so limited, and improving oil content in seeds is one of breeding goals. PEPCase is reported involved in oil synthesis payway. Therefore, down-regulated expression of pepc may enhance oil content in seeds antisense approach.
     In this study, pepcl was cloned an a member of pepc gene family using RT-PCR and RACE techniques from development seeds of Jatropha curcas L.. Its amino acid sequence was analyzed. Expression vectors with sense and antisense of gene were contructed. These vectors were introduced into Agrobacteria and used to transform to tobacco. Transgenic taboccos were confirmed by Southern blot, real-time PCR, and further characterized by determining the activity of PEPC, content of protein and fatty acid. The expression patterns were analyzed in different tissues and different stages in developing seeds. Those results reflected expression of pepcl in level of transtription and translation. The main results are as followed:
     1. The 3'-fragment of pepc from Jatropha curcas L. development seeds was isolated via RT-PCR, and 5'-fragment was amplified by RACE. The cDNA length of pepc is 3124 bp. The open read frame (ORF) contains 2898 bp,965 amino acids.
     2. The molecular weight of PEPC is 110.6 kD with the the acidic amino acid account for 14.6%, alkali amino acid 13.5% of the total, and pⅠat 6.18. The single peptide chain was not stabily because of its low stability coefficient. The amino acid secondary structure is coil mainly, a-helical andβ-strand in occasion. The hydrophilic protein has not transmembrane region and signal peptide. The protein belongs to PEPC1 in pepc gene family, and the gene named pepcl. The homology of PEPC 1 of Jatropha curcas L. and Ricinus communis is the highest, and higher with tobacco.A typical large Ppc functional domain span 11-965aa was also found using the CDD program an NCBI. In addition,46 activity sites were found belonged to 7 types by searching in website at http://cn.expasy.org/prosite/.
     3. The housekeeping gene of Jatropha curcas L., actin was cloned. The temporal and spatial expression patterns of pepcl Jatropha curcas L. were studied using real-time PCR. During different stages from flower to mature fruit, the pepcl expression shows increasing in first four stages, and decreasing in late five stages. The expression level of pepcl is low in leaves.
     4. The sense expression vector pCAMBIA-KSpepc and antisense expression pBI-BXpepc were constructed based on the character of pepcl sequence. The sense pepcl and antisense pepcl gene were transformed into tobacco by Agrobacterium-mediated method. Three plants with sense pepcl and ten plants with antisense pepcl were obtained after kanamycin selection, PCR and PCR-Southern analysis. The transgenic tobacco plants were analyzed by real-time PCR. The expression level of pepc of tobacco endogenous changed little, but up-regulated of Jatropha curcas L. in sense pepcl plant. Of the ten antisense pepcl plants, seven plants have the expression level of both tobacco pepc and Jatropha curcas L. pepcl down-regulated.
     5. The activity of PEPCase, contents of total protein and fat were determined from leaves of transgene tobacco. Three sense pepcl tobacco plants were found higher than wild type. Two of the three transgenic plants were lower than wild type in fat content. In ten antisense pepcl gene plants, nine plants were lower than wild type in activity of PEPCase, but five plants decreased in total protein content and four plants increased in fat content. The fatty acid composition of transgene plants were found changed little. Therefore, two sense pepcl gene tobacco and four antisense pepcl tobacco lines were obtained with expected result.
引文
布坎南B B,格鲁依森姆W,琼斯R L.植物生物化学与分子生物学.科学出版社,2004,369-372
    蔡小宁,陈茜,杨平等.磷酸烯醇式丙酮酸羧化酶的生物信息学分析.安徽农业科学,2008,36(3):914-916
    财音青格乐,李明春,蔡易等.大豆种子特异性启动子的分离及结构分析.中国农业科学,2005,38(3):454-461
    陈国胜.植物转基因沉默的机制及克服方法.河北农业科学,2008,12(3):75-76
    陈健妙,刘联,刘兆普等.三种麻疯树种子油脂理化特性比较.应用生态学报,2009,20(12):2884-2890
    陈金洪,高敏,黄记生.麻疯树茎段离体培养及快速繁殖研究.广西农业科学,2006,37(3):221-223
    陈锦清,黄锐之,郎春秀等.油菜PEP基因的克隆及PEP反义基因的构建.浙江大学学报(农业与生命科学版),1999a,25(4):365-367
    陈锦清,郎春秀,胡张华等.反义PEP基因调控油菜籽粒蛋白质/油脂含量比率的研究.农业生物技术学报,1999b,7(4):316-320
    陈绪清,张晓东,梁荣奇等.玉米C4型pepc基因的克隆及其在小麦的转基因研究.科学通报,2004,49(19):1976-1982
    邓君萍,颜双春,候佩等.不同抗生素种类及浓度对麻疯树培养的影响.应用与环境生物学报,2005,11(2):156-159
    邓志军,程红焱,宋松泉.麻疯树种子的研究进展.云南植物研究,2005,27(6):605-612
    丁在松,赵明,荆玉祥等.玉米ppc基因过表达对转基因水稻光合速率的影响.作物学报,2007,33(5):717-722
    范妙华,李纪元,范正琪等.千年桐SAD基因克隆与分析及其丝状真菌表达载体构建.西北植物学报,2008,28(1):18-22
    苟圆,华坚.麻疯树资源的开发利用现状及前景.资源开发与市场,2007,23(6):519-522
    候李君,施定基,蔡泽富等.蓝藻正反义pepcA基因导入对大肠杆菌中脂类合成的调控.中国生物工程杂志,2008,28(5):52-58
    黄冰艳,张新友,苗莉娟等.花生FAD2基因RNAi载体转化及转基因籽粒脂肪酸分析.中国油料作物学报,2008,30(3):290-293
    黄明星,魏琴,徐莺等.麻疯树逆境蛋白(curcin2)基因在烟草中的表达.中国生物工程杂志,2007,27(4):94-98
    焦德茂,黄雪清,李霞等.转PEPC基因水稻的光合CO2同化和叶绿素荧光特性.科学通报,2001,5:416418
    郎春秀,胡张华,刘智宏等.油菜农杆菌转基因体系的建立及转PEP反义基因油菜的获得.浙江农业学报,1999,11(2):55-58
    郎春秀,王建民,胡张华等.反义PEP转基因油菜超油1号的品系特性和栽培要点.浙江农业科学,2006,4:411-413
    李华,陈丽,唐琳等.西南部分地区麻疯树种子油的理化性质及脂肪酸组成分析.应用与环境生物学报,2006,12(5):643-646
    李美茹,李洪清,吴国江等.影响农杆菌介导的麻疯树基因转化因素的研究.分子细胞生物学报,2006,39(1):83-89
    李维莉,杨辉,林南英等.可再生能源麻疯树种子油化学成分研究.云南大学学报(自然科学版),2001,22:324
    李霞,焦德茂,戴传超等.转育PEPC基因的杂交水稻的光合生理特性.作物学报,2001,27(2):137-143
    李霞,焦德茂,戴传超.转PEPC基因水稻对光氧化逆境的响应.作物学报,2005,31(4):408-413
    李振华,郭予琦,麻德平等.能源植物小桐子的研发现状及展望.河南农业科学,2007,7:10-12
    梁慧,彭彤,颜钫等.不同产地麻疯树种仁的含油量及脱油种仁的佛波酯含量.应用与环境生物学报,2009,15(4):546-548
    林娟,唐琳,陈放.麻疯树的组织培养及植株再生.植物生理学通讯,2002,39(3):252
    林莎,高帆,罗洪等.麻疯树Jc-Tctpl基因的同源性分析及时空表达模式鉴定.中国生物化学与分子生物学报,2008,24(8):727-734
    刘伯斌,卢孟柱,陈介南等.麻疯树基因转化研究进展.林业实用技术,2009,5:30-32
    刘任重,Liu Q, Green A.棉花油酸脱饱和酶基因ghFAD2-1倒位重复构建的遗传转化研究.山东农业科学,2001,6:18-20
    刘杰,李黔柱,尹航等.麻疯树植物资源的研究与开发利用进展.贵州大学学报(自然科学版),2006,23(2):105-110
    龙丽坤.大豆PEP羧化酶反义基因的克隆和载体构建.吉林农业大学,硕士学位论文,2003:8
    陆伟达,魏琴,唐琳等.麻疯树愈伤组织的诱导及快速繁殖.应用与环境生物学报,2003,9(2):127-130
    秦虹,宋松泉,龙春林等.小桐子的组织培养和植株再生.云南植物研究,2006,28(6):649-652
    秦小波,高继海,徐莺等.麻疯树curcin启动子的分离及其在转基因烟草中的功能分析.植物学通报,2008,25(4):407-414
    任琛,候佩,邓骛远等.麻疯树花药愈伤组织诱导的初步研究.四川大学学报(自然科学版),2006,43(3):717-719
    佘珠花,刘大川,刘金波等.麻疯树籽油理化特性和脂肪酸组成分析.中国油脂,2005b,30(5):30-31
    佘珠花,刘大川.溶剂萃取脱酸前后麻疯树籽油脂肪酸组成分析.粮食与油脂,2005a,7:30-31
    汪承刚,谢好,李长春等.甘蓝型油菜三种种子储藏蛋白和丙酮酸羧化酶基因片段的克隆及hnRNA表达载体的构建.中国油料作物学报,2006,28(3):245-250
    王德正,迟伟,王守海等.转C_4光合基因水稻特征特性及其在两系杂交稻育种中的应用.作物学报,2004a,30(3):248-252
    王德正,焦德茂,吴爽等.转玉米pepc基因的杂交水稻亲本的选育.中国农业科学,2002,35(10):1165-1170
    王德正,王守海,吴爽等.玉米pepc基因在杂交转育的转基因水稻后代中的传递和表达特征.遗传学报,2004b,31(2),195-201
    王伏林,吴关庭,郎春秀等.植物中的乙酰辅酶A羧化酶(AACase).植物生理学通讯,2006,42(1):10-14
    汪阳东,李春秀,齐力旺等.中间锦鸡儿fad2基因片段克隆、反义表达载体构建及遗传转化初步研究.林业科学研究,2007a,20(1):6-9
    汪阳东,齐力旺,李春秀等.中间锦鸡儿油酸脱氢酶基因的克隆与反义表达.江西农业大学学报,2007b,29(2):241-245
    王小行,彭峰,牛冬云等.麻疯树脂酶全长基因克隆、表达及其蛋白质结构预测.植物学通报,2006,23(6):634-641
    王治涛,高帆,张淑文等.麻疯树胚乳cDNA文库的构建与分析.四川大学学报(自然科学版),2007,44(1):173-175
    王忠华,夏英武.DNA甲基化与植物转基因沉默研究进展.生物工程进展,2001,21(3):23-25
    魏琴,张新申,黄明星等.麻疯树逆境蛋白(curcin2)基因的原核表达.四川大学学报(自然科学版),2006,43(1):206-211
    吴关庭,郎春秀,胡张华等.应用反义PEP基因表达技术提高稻米脂肪含量.植物生理与分子生物学学报,2006,32(3):339-344
    吴开金,万泉,林冠烽等.不同地区麻疯树籽油的理化性质及脂肪酸组成.福建林学院学报,2008,28(4):361-364
    肖玲,卢长明.以油菜脂肪酸延长酶基因fael为标靶RNAi载体的构建.中国油料作物学报,2004,26(4):6-11
    谢禄山,谭晓风.乙酰辅酶A羧化酶基因研究综述.中南林学院学报,2005,25(4):89-95
    熊兴华,官春云,李恂等.油菜种子特异表达napin基因启动子的克隆及序列分析.生物技术,2003,13(3):4-5
    杨郁文,倪万潮,张保龙等.不同来源麻疯树种子的含油量和脂肪酸组成分析.江苏农业科学,2009,5:312-313
    尹吴.转C4植物光合关键基因PEPC杨树的初步分析.南京林业大学,硕士学位论文,2009:1-69
    于曙明,孙建昌,陈波涛.贵州的麻疯树资源及其开发利用研究.西部林业科学,2006,35(3):14-17
    余帅勇,丁贵杰.能源植物麻疯树研究进展.贵州林业科技,2009,37(1):49-54
    张桂芳.稗草C关键酶(PEPC、PPDK)基因的克隆及PEPC基因对水稻和烟草的遗传转化.博士学位论文,中国农业大学,2005:
    张桂芳,赵明,丁在松等.稗草磷酸烯醇式丙酮酸羧化酶(PEPCase)基因的克隆与分析.作物学报,2005,31(10):1365-1369
    张方,迟伟,金成哲等.高粱C4型磷酸烯醇式丙酮酸羧化酶基因的分子克隆及其转基因水稻的培育.科学通报,2003,48(14):1542-1546
    张建福,孙亚萍,马宏敏等.转甘蔗pepc基因籼稻恢复系N175的遗传学分析.分子植物育种,2009,4:666—670
    张银波,江木兰,胡小加.油菜PEPase基因的克隆及其对应RNAi载体的构建.2005,27(1):1-4
    张勇,付绍红,张汝全等.甘蓝型油菜PEPC基因保守序列的克隆和种子特异性ihpRNA表达载体的构建.分子植物育种,2008,6(4):775-780
    张志刚,白德朗,陈烈臣等.甘蓝型油菜pep基因片段的克隆和种子特异性反义表达载体的构建.湖南农业大学学报(自然科学版),2005,31(3):249-252
    赵桂兰,陈锦清,尹爱萍等.获得转反义PEP基因超高油大豆新材料.分子植物育种,2005,3(6):792-796
    Anderson J V, Lutz S M, Gengenbach B G, et al. Genomic sequence for a nuclear gene encoding acetyl-coenzyme A carboxylase (accession no. L42814) in soybean (PGR95-055). Plant Physiol,1995,109(1):338
    Andrew M. The partitioning of nitrate assimilation between root and shoot of higher plants. Plant Cell Environ, 1986,9(7):511-519
    Arondol V, Lemieux B, Hwang I, et al. Map-based cloning of gene controlling omega-3 fatty acid desaturation in Abidopsis. Science,1992,258(5086):1353-1355
    Banerji R, Chowdhury R, Misra G, et al. Jatropha seed oils for energy. Biomass,1985,8(4):277-282
    Banilas G, Moressis A, Nikoloudakis N, et al. Spatial and temporal expressions of two distinct oleate desaturases from olive (Olea europaea L.). Plant Sci,2006,168(2):547-555
    Barrett P B, Halwood T L. Characterization of fatty acid elongase enzymes from germinating pea seeds. Phytochemistry,1998,48(8):1295-1304
    Bemhard J E, Max T F, Martin U G. The phosphoenolpyruvate carboxylase gene of Corynebacterium glutamicum:Molecular cloning, nucleotide sequence, and expression. Mol Gen Genet,1989,218(2): 330-339
    Besnard G, Pingon G, Hont A D, et al. Characterisation of the phosphoenolpyruvate carboxylase gene family in sugarcane (Saccharum spp.). Theoretical and Applied Genetics,2003,107(3):470-478
    Bleibaum J L, Genez A, Fayet-Faber J, et al. Modifications in palmitic acid levels via genetic engineering of β-ketoacyl-ACP synthase. In Abstracts of the National Plant Lipid Symposium. Minneapolis, MN,1993
    Broun P, Somerville C. Accumulation of ricinoleic, lesquerolic and densipolic acids in seeds of transgenic Arabidopsis plants that express a fatty acyl hydroxylase cDNA from castor bean. Plant Physiol,1997, 113(3):933-942
    Chen J PBD. Molecular cloning of a cDNA encoding 3-ketoacyl-acyl carrier protein synthase III from leek. Gene,1996,182(1-2):45-52
    Chung C H, Kim J L, Lee Y C, et al. Cloning and characterization of a seed-specific ω-3 fatty acid desaturase cDNA from perilla frutescens. Plant Cell Physiol,1999,40(1):114-118
    Clough R C, Matthis A L, Barnum S R, et al. Purification and characterization of 3-ketoacyl-acyl carrier protein synthase-III from spinach:a condensing enzyme utilizing acetyl-coenzyme-A to initate fatty acid synthesis. J Biol Chem,1992,267(29):20992-20998
    Cotelle V, Pierre J N, Vavasseur A. Potential strong regulation of guard cell phosphoenolpyruate carboxylase through phosphorylation. J Exp Bot,1999,50(335):777-783
    Cousins A B, Adam N R, Wall G W, et al. Development of C4 photosynthesis in sorghum leaves grown under free-air CO2 enrichment (FACE). Journal of Experimental Botany,2003,54(389):1969-1975
    Cusham J C, Meyer G, Michalowski C B, et al. Salt stress leads to differential expression of two isogenes of phosphoenolpyruvate carbxylase during crassulacean acid metabolism induction in the common ice plant. The Plant Cell,1989,1(7),715-725
    Davis M S, Solbiati J, Cronan J E. Overproduction of acetyl-CoA carboxylase activity increases the rate of fatty acid biosynthesis in Escherichia coli. J Bio Chem,2000,275(37):28593-28598
    Dabies H M, Anderson L, Fan C, et al. Developmental induction, purfication, and further characterization of 12:0-ACP thioesterase from immature cotyledons of Umbellularia californica. Arch Biochem Biophys,1991,290(1):37-45
    Deborah S K, Thomas R H, Annette W, et al. Lysophosphatidic acid acyltransferase from coconut endosperm mediates the insertion of laurate an the sn-2 position of triacylglycerols in lauric rapeseed oil and can increase total laurate levels. Plant Physiol,1999,120(3):739-746
    Dehesh K, Heeyoung T, Patricia E, et al. Overexpression of 3-ketoacyl-acyl-carrier protein synthase Ⅲs in plants reduced of lipid synthesis. Plant Physiol,2001,125(2):1103-1114
    Dehesh K, Jones A, Kuntzon D S, et al. Production of high levels of 8:0 and 10:0 fatty acid in transfenic canola by overexpression of Ch FatB2, a thioesterase cDNA from Cuphea bookeriana. Plant J,1996, 9(2):167-172
    Ding Z S. Cloning of C4 phosphoenolpyruvate carboxylase gene from millet (Setaria italica) and sugarcane(Sacharum officinarum) and improvement of photosynthetic efficiency in their transgenic rice. PhD Dissertation, Chinese Academy of Sciences,2004
    Dormann P, Voelker T A, Ohlrogge J B. Cloning and expression in Escherichia coli of novel thioesterase from Arabidopsis thaliana specific for long chain acyl-acyl carrier proteins. Acta Biochem Biophs, 1995,316(1):612-618
    Dyer J M, Chapital D C, Kuan J C W, et al. Molecular analysis of a bifunctional fatty acid conjugase/ desaturase from tung, implications for the evolution of plant fatty acid diversity. Plant Physiol,2002, 130(4):2027-2038
    Egli M A, Lutz S M, Somers D A, et al. A maize acetyl-coenzyme A carboxylase cDNA sequence. Plant Physiol,1995,108(3):1299-1300
    Foidl N, Foidl G, SanchezM, et al. Jatropha curcas L. as a source for the production of biofuel in Nicaragua. Bioresour Technol,1996,58(1):77-82
    Gandhi V M, Cherian K M, Mulky M J. Toxicological studies on ratanjyot oil. Food Chem Toxicol,1995, 33(1):39-42
    Gennidakis S, Rao S, Greenham K, et al. Bacterial-and plant-type phosphoenolpyruvate carboxylase polypeptides interact in the hetero-oligomeric Class-2 PEPC complex of developing castor oil seeds Plant J.2007,52 (5),839-849
    Uhrig R G, She Y, Leach C A, et al. Regulatory monoubiquitination of phosphoenolpyruvate carboxylase in germinating castor oil seeds. J Biol Chem,2008,283(44):29650-29657
    Grayburn W S, Collins C G, Hildebrand D F, et al. Fatty acid alteration by a delta 9 desaturase in transgenic tobacco tissue. Biotechnology,1992,10(6):675-678
    Hansen L, von Wettstein-Knowles P. The barley genes Acll and Acl3 encoding acyl carrier proteins and are located on different chromosomes. Mol Gen Genet,1991,229(3):467-478
    Hawkins D J, Kridl J C. Characterization of acyl-ACP thioesterases of mangosteen (Garcinia mangostana) seed and high levels of stearate production in transgenic canola. Plant J,1998,13(6):743-752
    Hellyer A, Leadlay P F, Slabas A R. Induction, purification and characterization of Acyl-ACP thioesterase from developing seeds of oil seed rape (Brassica napus). Plant Mol Biol,1992,20(5):160-162
    Heppard E, Kinney A, Stecca K, et al. Development and growth temperature regulation of two different microsomal ω-6 desaturase genes in soybeans. Plant Physiol,1996,110(1):311-319
    Hiromori A, Tadashi B, Hiroaki S, et al. Nucleotide sequence of stearoyl-acyl carrier protein desaturase cDNA from developing seeds of rice. Plant Physiol,1995,108(2):845-846
    Hisatake S, Tetsuya M, Tsutomu K, et al. Molecular cloning of the phosphoenolpyruvate carboxylase gene, ppc, of Escherichia coll Gene,1984,31(1-3):279-283
    Hitz W D, Yadav N S, Reifer R S, et al. In:Kader J Cand Mazliak Peds. Plant lipid metabolism. Netherland:Kluwer, Dordrecht,1995,506-509
    Hlorsek-Radojoin A, Post-Beitternmiller D, Ohlrogge D. Expression of constitutive and tissue specific acyl carrier protein isoforms in Arabidopsis. Plant Physiol,1992,98(1):206-214
    Hobbs H D, Chaofu L, Hills M. Cloning of a cDNA encoding acyltransferase from Arabidopsis thaliana and its functional expression. Febs Lett,1999,452(3):145-149
    Horiguchi G, Iwakawa H, Kodama H, et al. Expression of a gene for plastid ω-3 fatty acid desaturase and changes in lipid and fatty acid compositions in light and dark-grown wheat leaves. Physiologia Plantarum,1996,96(2):275-283
    James D W, Lin E, Keller J, et al. Directed tagging of the Arabidopsis FATTY ACID ELONGATION (FAE1) gene with maize transposon adivator. Plant Cell,1995,7(3):309-319
    Jin U H, Lee J W, Chung Y S, et al. Characterization and temporal expression of omega-6 fatty acid desaturase cDNA from sesame (Sesamum indicum L.) seeds. Plant Science,2001,161(5):935-941
    Jones A, Davies H M, Voelker T A. Palmitoyl-acyl carrier protein(ACP) thioesterase and the evolutionary origin of plant acyl-ACP thioesterases. Plant Cell,1995,7(3):359-371
    Jung S, Powell G, Moore K, et al. The high oleate trait in the cultivated peanut [Arachis hypogaea L.]. Molecular basis and genetics of the trait. Molecular and Generas Genetics,2000,263(5):806-811
    Katagiri F, Kodaki T, Fujita N, et al. Nucleotide sequence of the phosphorenolpyruvate carboxylase gene of the cyanobacterium Anacystis nidulans. Gene,1985,38(1-3):265-269
    Kater M M, Koningstein G M, Nijkamp H J, et al. cDNA cloning and expression of Brassica napus enoyl-acyl carrier protein reductase in Escherichia coli. Plant Mol Biol,1991,17(4):895-909
    Koizumi N, Sato F, Terano Y, et al. Sequence analysis of cDNA encoding phosphoenolpyruvate carboxylase from cultured tobacco cells. Plant Mol. Biol,1991,17 (3),535-539
    Knutzon D S, Blcihanm T L, Selsen T, et al. Isolation and characterization of two safflower, oleoyl-acyl carrier protein thioesterase cDNA clone. Plant Physiol,1992,100(4):1751-1758
    Knutzon D S, Lardizabal K D, Nelsen J S, et al. Cloning of a coconut endosperm cDNA encoding a 1-acyl-sn-glycerol-3-phosphate acyltransferase that accepts medium-chain-length substrates. Plant Physiol,1995,109(3):999-1006
    Knutzon D S, Scherer D E, Schreckengost W E. Nucleotide sequence of a complementary DNA clone encoding stearoyl-acyl carrier protein desaturase from castor bean, Ricinus communis. Plant Physiol, 1991,96(1):344-345
    Knutzon D S, Thompson G A, Radke S E, et al. Modification of Brassica seed oil by antisense expression of a stearoyl-acyl carrier protein desaturase gene. Proc Natl Acad Sci USA,1992,89(7):2624-2628
    Ku M S B, Agarie S, Nomura M, et al. High-level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants. Nature Biotechnol,1999,17(1):76-80
    Ku M S B, Cho D, Ranade U, et al. Photosynthetic performance of transgenic rice plants overexpressing maize C4 photosynthesis enzyme. Studies in Plant Science,2000,7:193-204
    Lassner M W, Lardizabal K, Metz J G. A jojoba β-ketoacyl-CoA synthase cDNA complements the canola fatty acid elongation mutation in transgenic plants. Plant Cell,1996,8(2):281-292
    Lassner M W, Levering C K, Davies H W, et al. Lysophosphatidic acid acyltransferase from meadoufoam mediates insertion of erucic acid at the sn-2 position of triacylglycerol in transgenic rapeseed oil. Plant Physiol,1995,109(4):1389-1394
    Lepiniec L, Philippe H, Keryer E, et al. Sorghum phosphoenolpyruvate carboxylase gene family:structure, function and molecular evolution. Plant Molecular Biology,1993,21(3):487-502
    Li M R, Li H Q, Jiang H W, et al. Establishment of an Agrobacteriuim-mediated cotyledon disc transformation method for Jatropha curcas. Plant Cell Tiss Organ Cult,2008,92(2):173-181
    Lin J, Chen Y, Xu Y, et al. Cloning and expression of curcin, a ribosome-inactivating protein from the seeds of Jatropha curcas. Acta Bot Sin,2003,45(7):858-863
    Liu Q, Suringer P, Singh S, et al. High-stearic and high-oleic cottonseed oils produced by hairpin RNA-mediated post transcriptional plant. Physiology,2002,129(4):1732-1743
    Luinenburg I, John R, Coleman. Identification, characterization and sequence analysis of the gene encoding phosphoenolpyruvate carboxylase in Anabaena sp. PCC 7120. Journal of General Microbiology,1992,138(4):685-691
    Luo T, Ma D, Xu Y, et al. Cloning and characterization of a stearoyl-ACP deasturase gene from Jatropha curcas. Journal of Shanghai University,2007,11(2):182-188
    Mackintosh RW, Hardie D G, Slahas A R. A new assay procedure to study the induction of β-ketoacyl-ACP synthase Ⅰ and Ⅱ, and the complete purification of 3-ketoacyl-ACP synthase I from developing seeds of oil seed rape (Brassica napus). Biochim Biophts Acta,1989,1002(1):114-124
    Merkelbach S, Jonanna G, Martin D, et al. Cloning, sequence analysis and expression of a cDNA encoding active phosphoenolpyruvate carboxylase of the C3 plant Solanum tuberosum. Plant Molecular Biology,1993,23(4):881-888
    Millar A A, Kunst L. Very-long-chain fatty acid biosynthesis is controlled through the expression and specificity of the condensing enzyme. Plant J,1997,12(1):121-131
    Moing A, Rothan C, Svanella L, et al. Role of phosphoenolpyruvate carboxylase in organic acid accumulation during peach fruit development. Physiol Plant,2000,108(1):1-10
    Nishida I, Beppu T, Matsuo T, et al. Nucleotide sequence of a cDNA clone encoding a prescursor to stearoyl-[acyl-carrier-protein] desaturase from spinach, Spinacia oleracea. Plant Mol Bio,1992,19(4): 711-713
    Ohlrogge J B, Browse J, Somerville C R. The genetics of plant lipids. Biochim Biophts Acta,1991, 1082(1):1-26
    Okuley J, Ughtner J, Feldmann K, et al. Arabidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis. Plant Cell,1994,6(1):147-158
    Openshaw K A. Review of Jatropha curcas:an oil plant unfulfilled promise. Biomass Bioenergy,2000, 19(1):1-15
    Pierrette B N. Expression in yeast and tobacco of plant cDNAs encoding acylCoA:diacylglycerol acyltransferase. Eur J Biochem,2000,267(1):85-96
    Pirtle I L, Kongcharoensuntorn W, Nampaisansuk M, et al. Molecular cloning and functional expression of the gene for a cotton Delta-12 fatty acid desaturase(FAD2). Biochim Biophy,2001,522(2):122-129
    Podkowinski J, Sroga G E, Haselkorn R, et al. Structure of a gene encoding a cytosolic acetyl-CoA carboxylase of hexaploid wheat. Proc Natl Acad Sci USA,1996,93(5):1870-1874
    Pollard M R, Andercon L, Fan C, et al. A specific acyl-ACP thioesterase implicated in medium-chain fatty acid production in immature cotyledons of Umbellularia californica. Arch Biochem Biochem Biophy, 1991,1:284(2):306-312
    Richard J H, Nancy S, Christopher K, et al. The enoyl [acyl-carrier-protein] reductase fabl and fabL from Bacillus subtillis. J Biol Chem,2000,275(51):40128-40133
    Richard L, Hudpeth, John W G. Structure and expression of the maize gene encoding the phosphoenolpyruvate carboxylase is enzyme involved in C4 photosynthesis. Plant Molecular Biology, 1989,12(5):579-589
    Roesler K R, Shorrosh B S, Ohlrogge J B. Structure and expression of an Arabidopsis acetyl-coenzyme A carboxylase gene. Plant Physiol,1994,105(2):611-617
    Roesler K, Shintani D, Savage L, et al. Targetion of the Arabidopsis homoneric acetyl-coenzyme carboxylase to plastids of rapeseeds. Plant Physiol,1997(1),113:75-81
    Rosendah E, Vance C P, Pederson W B. Products of dark CO2 fixation in pea root nodules support bacteroid metabolism. Plant Physiol,1990,93(1):12-19
    Sardana J, Batra. In vitro plantlet formation and micropropagation of Jatropha curcas(L.). Advances Plant Sci.1998,11(2):167-169
    Sasaki Y, Nagano Y. Plant acetyl-CoA carboxylase:structure, biosynthesis, regulation, and gene manipulation for plant breeding. Biosci Biotechnol Biochem,2004,68(6):1175-1184
    Schaffer A R, Sheen J. Maize C4 photosynthesis involves diferential regulation of phosphoenolpyruvate carboxylase genes, Plant J,1992,2(2):221-232
    Scheffler J A, Sharpe A G, Schmidt H, et al. Desaturase multigene families of Brassica napus arose through genome duplication. Theor Appl Genet,1997,94(5):583-591
    Scherer D E, Knauf VC. Isolation of a cDNA clone for the acyl carrier protein-I of spinach. Plant Mol Biol, 1987,9(2):127-134
    Schulte W, Schell J, Topfer R. A gene encoding acetyl-coenzyme A carboxylase from Brassica napus. Plant Physiol,1994,106(2):793-794
    Sellwood C, Slabast A R, Rawsthorne S. Effects of manipulating expression of acetyl-CoA carboxylase I in Brassica napus L. embryos. BioChemical Society Transactions,2000,28(6):598-600
    Shintani D K, Ohlrogge J B. The characterization of a mitochondrial acyl carrier protein isoform isolated from Arabidopsis thaliana. Plant Physiol,1994,104(4):1221-1229
    Shorrosh B S, Dixon R A, Ohlrogge J B. Molecular cloning, characterization, and elicitation of acetyl-CoA carboxylase from alfalfa. Proc Natl Acad Sci USA,1994,91(10):4323-4327
    Siggaard-Andersen M, Kauppinen S, von Wettstein-Knowles P. Primary structure of a cerulenin binding 3-ketoacyl [acyl carrier protein] synthase from barley chloroplasts. Proc Natl Acad Sci USA,1991, 88(10):4114-4118
    Slabas A R, Fawcett T. The biochemistry and molecular biology of plant lipid biosynthesis. Plant Mol Biol, 1992a,19(1):169-191
    Slabas A R, Chase D, Nishida I, et al. The genetics of plant lipids. Biochem J,1992b,283(2):321-326
    Stoutjesdijk P A, Hurlestone C, Singh S P, et al. High-oleic Australian Brassica napus and B. juncea varieties produced by co-suppression of endog-enous Delta 12-desaturases. Biochem Soc Trans.2000, 28(6):938-940
    Sugimoto T, Tanaka K. Phosphoenolpyruvate carboxylase level in Soybean seed highly correlates to its contents of protein and lipid. Agric Biol Chem,1989,53(3):885-887
    Sugimoto T, Tsutomu K, Kato T, et al. cDNA sequence and expression of a phosphoenolpyruvate carboxylase gene from soybean. Plant Molecular Biology,1992,20(4):743-747
    Tai H, Post-Beittenmiller D, Jaworski J G. Cloning of a cDNA encoding 3-ketoacyl-acyl carrier protein synthase III from Arabidopsis. Plant Phys,1994,106(2):801-802
    Thompson G A, Scherer D E, Aken S F, et al. Primary structures of the precursors and mature forms of stearoyl-acyl carrier protein desaturase form safflower embryos and requirement of ferredoxin for enzyme activity. Proc Natl Acad'Sci USA,1991,88(6):2578-2582
    Todd T, PostBeittenmiller D, Jaworski J G. KCS1 encodes a fatty acid clongase 3 ketoacyl-CoA synthase affecting wax biosynthesis in Arabidopsis thaliana. Plant J,1999,17(2):119-130
    Vodjani F, Kim W, Wilkins T A. Phosphoenolpyruvate carboxylase cDNA from developing cotton (Gossypium hirsutum) fibers. Plant Physiol,1997,115(1):315
    Voelker T, Hayes T R, Turner J C. Genetic engineering of a quantitative trait:Metabolic and genetic parameters influencing the accumulation of laurate in rapeseed. Plant J,1996,9(2):229-241
    Vandeloof J, Someville C. Plasmid ω-3 fatty acid desaturase cDNA from Ricinus communis. Plant Physiol, 1994,105(1):443-444
    Wei Q, Huang M X, Xu Y, et al. Expression of a ribosome inactivating protein (curcin2) in Jatropha curcas is induced by stress. J Biosci,2005,30(3):101-107
    Wei Q, Lu W D, Liao Y, et al.. Plant regeneration from epicotyl explant of Jatropha curcas. Journal of Plant Physiology and Molecular Biology,2004,30(4):475-478
    Westhoff P, Gowik U. Evolution of C4 phosphoenolpyruvate carboxylase. genes and protein:a case study with the genus Flaveria. Annals of Botany,2004,93(1):13-23
    Yadav N S, Wierzbicki A, Aergerter M, et al. Cloning of higher plant omega-3 fatty acid desaturase. Plant Physiol,1993,103(2):467-476
    Yanai Y, Okumura S, Shimada H. Structure of Brassica napus phosphoenolpyruvate carboxy(?)ase genes: missing introns causing polymorphisms among gene family members. Biosci Biotechnol Biochem, 1994,58 (5),950-953
    Zheng Z, Qun X, Melanie D, et al. Arabidopsis AtGPAT1, a member of the membrane-bound glycerol-3-phosphate acyltransferase gene family, is essential for tapetum differentiationg and male fertility. Plant Cell,2003,15(8):1872-1887
    Zou J, Katavic V, Giblin E M, et al. Modification seed oil content and acyl composition in the Brassicaceae by expression of yeast sn-2 acyl transferase gene. Plant Cell,1997,9(6):909-923

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700