用户名: 密码: 验证码:
高压输电线巡检机器人控制系统的研究与实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
架空高压输电线路的巡检是一项劳动强度大、涉及面广的作业任务。迄今为止,国内外主要依靠巡检人员携带各种检测设备沿线执行检测任务,效率低、成本高、误检率及漏检率较大,因此,高压线巡检机器人替代人工巡检是当前电力系统部门十分希望解决的问题。
     高压线巡检机器人属于具有广泛应用前景的特种机器人,旨在为高压输电线路的检测提供一套自动作业系统,代替检测人员对线路进行巡检任务,从而减轻巡检作业的劳动强度,降低检测成本,提高检测质量和效率,改善检测作业的安全性,从而提高线路的管理和维护水平。巡检机器人沿架空线路移动,利用所携带的仪器对杆塔、导线、绝缘子、线路金具及线路四周环境等进行检测,并收集相关信息,使检测人员或计算机能据此判断线路的情况。
     当前国内外对巡检机器人的研究尚未成熟,还有很多关键技术尚待解决,特别是国内的研究起步较晚,目前仍处于试验研究阶段,与实际应用还存在一定距离。本文的研究目的是研制出适应线路作业环境、可在多个档距段作业的巡检机器人,从而实现整个输电线路上真正意义的自动巡检。
     针对高压输电线路的环境特点和巡检机器人研发过程中存在的技术难点,采用了双臂的巡检机器人本体机构,该机器人由轮爪机构、手臂机构、导轨支架机构和控制箱组成,机器人本体通过手臂末端的轮爪机构悬挂在线路上,具有沿线移动和越障作业功能。机器人在沿线移动时,根据线路的情况,选择滚轮滚动方式或爬行方式,在遇到障碍物时,可通过双臂的交替运动翻越障碍物,继续行进。另外,机器人结构采用了双臂同侧悬挂的设计方案,因此在越障时可将机器人悬挂在线路外侧,增大了机器人作业空间。
     针对线上工作任务,讨论了机器人动作方式和动作步骤,并进行了运动学分析,分析结果表明,对于具体的任务,巡检机器人可采用基本动作组合的运动方式完成。在此基础上,对涉及巡检机器人线上移动条件、线上爬行条件和姿态平衡条件进行了讨论。
     巡检机器人的控制是巡检机器人研究的重要内容,所设计的巡检机器人以高压输电线的地线为作业路径,机器人的控制系统采用分级控制结构,分别包括远程管理主机、机器人本体主控机和电机及驱动。远程管理主机的作用主要是利用无线通讯装置对在野外线路上进行巡检工作的机器人进行监视和远程控制。机器人本体主控机采用PC104工业控制计算机,在远程控制方式下,它接收远程主机的控制命令,将其解释为各个电机的运动序列,并依次发送给驱动器执行。机器人在自主越障时,它根据线路库、作业规划库、动作规划库、动作库和传感器检测信息,自主进行机器人动作规划,电机按规划动作。另外,机器人本体主控机还通过图像采集卡采集机器人巡检图像,并将图像实时地传输给远程管理主机进行监视。
     电机驱动器采用位置、速度、电流闭环工作方式,能够很方便的适应位置﹑速度和电流控制方面的应用。巡检机器人要求驱动器能满足响应速度快﹑运行稳定及精度高等性能指标,其关键是通过转矩控制来满足要求。本文研究了一种基于精确计算换相时的占空比实现抑制转矩脉动的控制方法,在实验系统中,采用以英飞凌公司的XC167CS芯片组成的伺服系统证明所提出的方法对于提高系统的性能是有效的。
     研制的高压输电线路巡检机器人样机做了一系列的实验,包括独立单元模块实验,实验室内模拟环境调试实验,实际500KV高压输电线路机器人线上巡检实验。
     实验结果表明:本文所设计的巡检机器人控制系统易于操作和控制,对线路作业环境具有良好的适应能力,机器人在移动能力、越障能力上都显示出良好的性能,采用的控制方法取得了预期的效果,对线路作业环境表现出良好的适应性。整个机器人系统的性能达到了设计要求,体现出较好的实用性和市场应用前景。
It is tedious, dangerous and difficult to inspect power transmission lines. So far, most of the inspections are completed by workers. Obviously, manual inspection have many disadvantages: low efficiency, high cost, etal. Now as the development of robot technology, it is necessary to develop line-inspecting robot, which can inspect the power transmission lines automatically.
     Inspection robot for power lines is a kind of special robot which is a highly efficient robot system to complete the inspection tasks with high quality, high efficiency and low cost. The robot can not only move on the line, but also it can observe the power lines and transmit the video signal to supervision station automatically. Then, these images are converted to provide the status of power lines and relative devices from which people can detect the damages of power transmission line.
     Many researchers have introduced various design of inspection robot. However, the practical applications of them are limited and many problems of technique are required to be solved. This article research goal is to develop the robot so that automatical inspection on the entire transmission line becomes the reality.
     In this dissertation, the working environment of power transmission lines and the key technologies of inspection robot are discussed in detail. The mechanical structure of inspection robot is proposed which includes the wheel and claw mechanism, arm mechanism, guide and support mechanism and control box. The structure of the robot is designed to be capable of navigating on the lines and surmounting obstacles. The robot can choose rolling or crawling way according to line's situation. When meeting the obstacle, robot can cross obstacle, and continue to march forward. Inspection robot for power transmission lines must plan its behaviors to negotiate obstacles according to obstacle when it is crawling along the power transmission line. For this purpose, based on the structure of transmission lines, two arms are designed to be suspended on the same side of the wire which can avoid the inference of the affiliated facilities like the towers.
     The locomotion mode and steps of the robot on the power line are analyzed when robot is working on the line. Then the typical tasks are discussed and presented by kinetics analysis. The discussion results show that each step can be divided into several basic movement of the robot. And the feasibility of the mechanical configuration is validated simultaneously.
     The control system is an important part of the inspection robot system. A three-layers control system is proposed, which includes supervision and management system on the ground station、robot control、actuations directly controlled by microprocessors. The roles of the upper layer are to receive the inspection images in real-time, conduct the fault detection, monitor the operations of the robot and remotely control robot operations. Based on the embedded computer (PC104), the middle layer plays the role of analyzing, distributing and coordinating. It receives and analyses the commands from the upper layer, then distributes the tasks to individual lower level actuator controllers. Under the auto-operation mode, it makes its own decisions for planning the sequence of operations according to knowledge data base without the upper layer’s involvement. The remote ground system is installed on the ground station based on a portable computer. Embedded computer correspond with remote ground system through the wireless network. From the human-machine interface on the ground system, the operator on the ground can monitor the states of the robot and remote control the robot if necessary.
     Robot servo system is the use of motor torque generated by motor directly or indirectly to drive robot for the implementation of the various sports bodies to achieve the set or track position. In this design, three loops of control strategy are adopted, that is, torque control, speed control loop and position control loop. Robot joint is required to satisfy the measures of performance of fast response speed、running stably and high accuracy. Torque control of the motor is the main issue of the high accuracy servo drive systems. In this paper, relationship of duty cycle value, back EMF and torque is analyzed. A way based on PWM duty cycle is introduced to eliminate torque ripple. Experimental results: based on a single-chip microcomputer XC167CI, control system is presented to illustrate the effectiveness of the proposed method for the control. Finally, the general controller is applied in the inspection robot used for power transmission line,which can achieve satisfactory performances.
     A series of experiments are completed, including module unit experiments, laboratory overall system debugging and the 500KV field experiment for inspection task.
     The experiment and test results show that the inspection robot system has possessed the capabilities of navigation and inspection tasks on the power lines. The project has fulfilled the technical requirement of power transmission system and has a good application prospect.
引文
【1】. F. George, Luger[美]著,史忠植,张银奎,赵志崑译.人工智能-复杂问题求解的结构和策略[M].北京:机械工业出版社, 2004.
    【2】.庄晓东,孟庆春,高云,等.复杂环境中基于人工势场优化算法的最优路径规划[J].机器人, 2003, 25(6):531-535.
    【3】. Tanaka S, Maruyama Y, Yano K, etal. Work Automation with the Hot Line Work Robot System“Phase II”[C]. International Conference on Robotics and Automation, 1996(4):12-13.
    【4】. Higuchi M, Maeda Y, Tsutani S, etal. Development of a mobile inspection robot for power transmission lines[J]. Journal of the Robotics Society of Japan, 1991, 9(4): 457-463.
    【5】. Tsujimura T, Yabuta T, Morimitsu T. Design of a wire-suspended mobile robot capable of avoiding path obstacles[J]. IEE Proceedings Control Theory and Applications, 1996, 143(4):349-357.
    【6】. http://www.syscg.gov.cn/printpage.asp?ArticleID=639
    【7】. http://www.istis.sh.cn/list/list.aspx?id=3810
    【8】. Sawada J, Kusumoto K, Munakata T, etal. A mobile robot for inspection of power transmission lines[J]. IEEE Transations on Power Delivery, 1991, 6(1):309-315.
    【9】. Shinichi Aoshima. A Wire Mobile Robot with Multi-Unit Structure[C]. IEEE/RSJ International Workshop on Intelligent Robots and Systems. 1989:414-421.
    【10】. Serge Montambault, Nicolas Pouliot. LineScout Technology: Development of an Inspection Robot Capable of Clearing Obstacles While Operating on a Live Line[C]. IEEE 11th International Conference on Transmission & Distribution Construction, Operation and Live-Line Maintenance, 2006:1-9.
    【11】. Montambault S, Pouliot N. The HQ LineROVer: contributing to innovation in transmission line maintenance [C]. Proceedings of the 2003 IEEE 10th International Conference on Transmission and Distribution Construction, Operation and Live-line Maintenance, 2003:33-40.
    【12】. Mario F M Campos, Alexandre Q Bracaense, etal. A mobile manipulator for installation and removal of aircraft warning spheres on aerial power transmission lines[C]. Proceedings of IEEE International Conference on Robotics & Automation, 2002: 3559-3564.
    【13】. Peungsungwal S, Pungsiri B, Chamnongthai K, etal. Autonomous robot for a power transmission line inspection[C]. The 2001 IEEE International Symposium on Circuits and Systems, 2001:121-124.
    【14】. Paulo Debenest, Michele Guarnieri, Kensuke Takita, etal. Expliner–Robot for Inspection of Transmission Lines[C]. 2008 IEEE International Conference on Robotics and Automation, 2008:3978-3984.
    【15】. F Y Zhou, J D Wang, etal. Control of an Inspection Robot for 110KV Power Transmission Lines Based on Expert System Design Methods[C]. Proceedings of the 2005 IEEE Conference on Control Applications, 2005:1563-1568.
    【16】.肖晓晖,史铁林,杜娥.高压输电线路巡线作业机器人的动力学建模[J].机械与电子, 2004 (10):44-47.
    【17】.周风余,吴爱国,李贻斌等.高压架空输电线路自动巡线机器人的研制[J].电力系统自动化,2004, 28(23): 89-91.
    【18】. Xiao Xiaohui, Wu Gongping, Dynamic simulation and experimental study of inspection robot for high voltage transmission-line[J]. Journal of Central South University of Technology,2005 (6): 726-731.
    【19】.吴功平,肖晓晖,肖华.架空高压输电线路巡线机器人样机研制[J].电力系统自动化,2006,30(13): 90-93.
    【20】.吴功平,戴锦春,郭应龙等.输电导线机械破损的红外检测与故障诊断[J].仪器仪表学报,1999.20(6):571-574.
    【21】. Jaensch G, Hoffmann H, Markees A. Locating defects in high voltage transmission lines [C]. Proceedings of the 1998 IEEE 8th International Conference on Transmission & Distribution Construction, Operation & Live line Maintenance. Orlando, FL, USA, 1998:179-186.
    【22】.耿欣,周延泽.巡线机器人的爬行方案设计[J].机器人技术与应用, 2002, (4):19- 21.
    【23】. Kobayashi H, Nakamura H, Shimada T. An inspection robot for feeder cables basic structure and control[C]. Proceedings of the 1991 International Conference on Industrial Electronics, Control and Instrumentation, 1991: 992-995.
    【24】.吴功平,戴锦春,郭应龙等.具有自动越障功能的高压线巡线小车[J].水利电力机械, 1999, (1):46-49.
    【25】. Sungmoo Ryew, Hyoukryeol Choi. Double active universal joint (DAUJ): robotic joint mechanism for human-like motions[J]. IEEE Transactions on Robotics and Automation, 2001, 17(3):290– 300.
    【26】. Masahiro Sekimoto, Suguru Arimoto. A natural redundancy-resolution for 3-D multi-joint reaching under the gravity effect[J]. Journal of Robotic Systems, 2005, 22(11):607-623.
    【27】.刘其广,戈新生.一种机器人动力学的旋量-矩阵方程[J].北京机械工业学院学报. 2001, 16(3): 17-22.
    【28】. Kane T R, Ryan R R, Banerjee A K. Dynamics of a cantilever beam attached to a moving base[J]. Journal of Guidance, Control and Dynamics, 1990, 10(2):139-151.
    【29】. Huston R L,刘又午.多体系统动力学(上、下册)[M].天津大学出版社, 1991:10-200.
    【30】. Tao Sun, Qianchuan Zhao, Luh, P.B, Tomastik, R.N. Optimization of Joint Replacement Policies for Multipart Systems by a Rollout Framework[J]. IEEE Transactions on Automation Science and Engineering, 2008, 5(4):609-619.
    【31】. C A Balafoutis, R V Patel, P Misra. Efficient modeling and computation of manipulator dynamics using orthogonal catesian tensors[J]. IEEE Journal of Robotics and Automation, 1988, 4(6):665-676.
    【32】. Lerner R, Rivlin E, Shimshoni I. Landmark Selection for Task-Oriented Navigation[J]. IEEE Transactions on Robotics, 2007, 23(3):494-505.
    【33】. Oetomo D, Daney D, Merlet J P. Design Strategy of Serial Manipulators With Certified Constraint Satisfaction[J]. IEEE Transactions on Robotics, 2009, 25(1):1-11.
    【34】. Sun S S, Meng Q H. Dynamic simulation of robot manipulators using graphical programming packages[C]. IEEE Pacific RIM Conference on Communications, Computers and Signal Processing-Proceedings, 1995:521-524.
    【35】. Williams II, Robert L, Carter Brian E, etal. Wheeled omni-directional robot dynamics including slip[C]. Proceedings of the ASME Design Engineering Technical Conference, 2002:201-207.
    【36】. Fernando A. Rochinha, Rubens Sampaio. Nonlinear Dynamics and Control of Multibody Systems[J]. Journal of the Brazilian Society of Mechanical Sciences, 2000, 22(3):477-487.
    【37】. N.K.Mani, E.J.Haug, K.E.Atkinson. Application of singular value decomposition for analysis of mechanical system dynamics[J]. ASME Journal of Mechanisms, Transmissions and Automation in Design, 1985, 107:82-87.
    【38】.王志文,郭戈.移动机器人导航技术现状与展望[J].机器人, 2003, 25(5):470 - 474.
    【39】. Siyao Fu, Zize Liang, Zengguang Hou, etal. Vision based navigation for power transmission line inspection robot[C]. 7th IEEE International Conference on Cognitive Informatics, 2008:411– 417.
    【40】.高国富,罗均,谢少荣,等.智能传感器及其应用[M].北京:化学工业出版社, 2005:149-176.
    【41】. J F Perters, T C Ahn, M Borkowskii. Obstacle Classification by A Line-crawling Robot: A Rough Neurocomputing Approach[C], Proceedings of the Third International Conference on Rough Sets and Current Trends in Computing, 2002:594-601.
    【42】. Wipasuramonton P, Zhu Z.Q, Howe D. Predictive current control with current-error correction for PM brushless AC drives[J]. IEEE Transactions on Industry Applications, 2006, 42(4):1071–1079.
    【43】. Kim C G, Lee J H, Kim H W, etal. Study on maximum torque generation for sensorless controlled brushless DC motor with trapezoidal back EMF[J]. IEE Proceedings Electric Power Applications, 2005, 152(2):277–291.
    【44】. Ishak D, Zhu Z Q, Howe D. Influence of slot number and pole number in fault-tolerantbrushless dc motors having unequal tooth widths[J]. Journal of Applied Physics, 2005, 97(10):10Q509-10Q5013.
    【45】. Kang S J, Sul S K. Direct torque control of brushless dc motor with nonideal trapezoidal back-emf[J]. IEEE Transactions on Power Electronics, 1995, 10(6):796-802.
    【46】. Xi Xiao, Yongdong Li, Meng Zhang, etal. A novel control strategy for brushless DC motor drive with low torque ripples[C]. 32nd Annual Conference of IEEE Industrial Electronics Society, 2005:1660-1664.
    【47】. Ching Tsai Pan, Jenn-Horng Liaw. A robust field-weakening control strategy for surface-mounted permanent-magnet motor drives[J]. IEEE Transaction on Energy Conversion, 2005, 20(4):701–709.
    【48】. Du Jie, Sun Chenbo. The effects an the phase voltage and the phase current during the commutation interval in BLDCM[J]. The Magazine of the Power Technology, 2003, 3:5-8.
    【49】. Gulez K., Adam A A, Pastaci H. A Novel Direct Torque Control Algorithm for IPMSM With Minimum Harmonics and Torque Ripples[J]. IEEE/ASME Transactions on Mechatronics, 2007, 12(2):223–227.
    【50】. Tae Sung Kim, Sung Chan Ahn, Dong Seok Hyum. A New Current Control Algorithm for Torque Ripple Reduction of BLDCM Motors[C]. The 27th Annual Conference of the IEEE Industrial Electronics Society, 2001:1521-1527.
    【51】. Yong Liu, hu Z Q, Howe D. Commutation-Torque-Ripple Minimization in Direct-Torque-Controlled PM Brushless DC Drives[J]. IEEE Transactions on Industry Applications, 2007, 3(4):1012-1021.
    【52】. L Zhang, W L Qu. Commutation torque ripple restraint in BLDC motor over whole speed range[C]. Proc. in IEEE ICEMS, 2005:1501–1507.
    【53】. J H Song, I Choy. Commutation torque ripple reduction in brushless dc motor drives using a single dc current sensor[J]. IEEE Transactions on Power Electronics, 2004, 19(2):312–319.
    【54】. Sathyan A, Milivojevic N, Young-Joo Lee, etal. An FPGA-Based Novel Digital PWM Control Scheme for BLDC Motor Drives[J]. IEEE Transactions on Industrial Electronics, 2009, 56(8):3040–3049.
    【55】. H W Park, S J Park, Y W Lee, etal. Reference frame approach for torque ripple minimization of bldcm over wide speed range including cogging torque[C]. Proc. in IEEE ISIE, 2001:637–642.
    【56】. Y Liu, Z Q Zhu, D Howe. Direct torque control of brushless dc drives with reduced torque ripple[J]. IEEE Trans. Ind. Appl, 2005, 41(2):599–608.
    【57】. http://www.sgcc.com.cn/xwzx/mtbd/106461.shtml
    【58】. Ren Zhibin, Ruan Yi, Li Zheng, etal. Motion planning of inspection robot suspended on overhead ground wires for obstacle-navigation[C]. Control and Decision Conference,2009:1322-1326
    【59】. Xinglong Zhu, Hongguang Wang, Lijin Fang, etal. Dual Arms Running Control Method of Inspection Robot Based on Obliquitous Sensor[C]. 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2006:5273-5278
    【60】. Joon Young Park, Byung Hak Cho, Jae-Kyung Lee. Development of robot mechanism for inspection of live line suspension insulator string in 345kV power lines[C]. International Conference on Control, Automation and Systems, 2008:2062–2065.
    【61】.赵晓光,梁自泽,谭民.高压输电线路自动巡检机器人结构仿真[J].华中科技大学学报(自然科学版), 2004, 32:198-200.
    【62】.朱兴龙等.输电线巡检机器人行走动力学特性及位姿分析[J].机械工程学报, 2006, 42(12:143-150.
    【63】. Ludan Wang, Sheng Cheng, Jianwei Zhang, etal. Control of a redundantly actuated power line inspection robot based on a singular perturbation model[C]. IEEE International Conference on Robotics and Biomimetics, 2008:198–203.
    【64】.肖晓晖.高压输电线路巡线作业机器人中若干动力学问题的研究[D].中科技大学博士学位论文, 2005.
    【65】.朱兴龙,王洪光,房立金,赵明扬,周骥平.一种自主越障巡检机器人行走夹紧机构[J].机械设计, 2006,23(8):11~13.
    【66】. Ludan Wang, Lijin Fang, Hongguang Wang, etal. Development and Control of an Autonomously Obstacle-Navigation Inspection Robot for Extra-High Voltage Power Transmission Lines[C]. International Joint Conference on SICE-ICASE, 2006:5400–5405.
    【67】.丁鸿昌,王吉岱,杨前明,王琼.高压输电线路自动巡检机器人的研制与开发[J]. 现代制造技术与装备, 2006, 173(4):10~12.
    【68】. Gen Xin, Zhou Yanze. A climbing mechanism design of power transmission lines inspection robot[J]. Robot Technique and Application, 2002, 4: 19-21.
    【69】. Li Cai, Zize Liang, Zeng-guang Hou, Min Tan. Fuzzy Control of the Inspection Robot for Obstacle-Negotiation. IEEE International Conference on Networking, Sensing and Contro, 2008:117–122.
    【70】. TANG Li, FANG Lijin, WANG Hongguang. Development of an inspection robot control system for 500KV extra-high voltage power transmission lines[C]. Proceedings of the 43rd Annual Conference of the Society of Instrument and Control Engineers, 2004:1819-1824.
    【71】.陈中伟,肖华,吴功平.高压巡线机器人电磁传感器导航方法[J].传感器与微系统, 2006, 25(9):33-39.
    【72】. http://www.technical-sys.com/SensorLink.htm
    【73】.孙翠莲,王洪光,赵明扬,等.超高压线巡检机器人移动越障机构综述[J].机械设计与制造, 2006(10):161-163
    【74】.任志斌,阮毅.基于知识库的输电线路巡检机器人的越障控制[J].计算机工程与应用, 2008(3):236-239.
    【75】. R S Hartenberg, J Denavit. A kinematic notation for lower pair mechanisms based on matrices[J]. Journal of Applied Mechanics, 1995, 77:215-221.
    【76】.熊有伦.机器人学[M].北京:机械工业出版社, 1993:24-163.
    【77】.蔡自兴.机器人学[M].北京:清华大学出版社, 2000:45-130.
    【78】. Asada H, Youcef Toumi K. Analysis and design of a direct-drive arm with a five-bar-link parallel drive mechanism[J]. TASME Journal of Dynamic Systems, Measurement and Control, 1984, 106:225-230.
    【79】. Tenreiro Machado J A, Martins de Carvalho J L, Galhano, etal. Analysis of robot dynamics and compensation using classical and computed torque techniques[J]. IEEE Transactions on Education, 1993, 36(4):372-379.
    【80】.付双飞,王洪光,房立金,等.超高压输电线巡检机器人越障控制问题的研究[J].机器人, 2005, 27(4): 341-345.
    【81】.张运楚,梁自泽,谭民.架空电力线路巡线机器人的研究综述[J].机器人, 2004, 26(5):467-473.
    【82】.李恩,梁自泽,谭民.基于规则库的巡线机器人自主越障动作规划[J].机器人, 2005, 27(5):400-405.
    【83】.唐栎,房立金,王洪光,等.基于分布式专家系统的超高压输电线路巡检机器人控制系统的研究[J].机器人, 2004, 26(3):267-271.
    【84】.孙华,陈俊风,吴究.多传感器信息融合技术及其在机器人中的应用[J].传感器技术, 2003, 22(9):1-4.
    【85】.杨东勇,蒋静坪.机器人分布多传感器系统的设计[J].仪器仪表学报, 2002,6(23):130-131.
    【86】.王新喜,宫志刚,尹燕华,等.锂离子电池的研究进展[J].舰船防化, 2005,1:15-19.
    【87】. Christensen H I, Pirjanian P. Theoretical methods for planning and control in mobile robotics[C]. Proceedings of the IEEE First International Conference on Knowledge-based Intelligent Electronic Systems, 1997: 81-86.
    【88】. Jing Guo, Gongping Wu, Binhong Liu, etal. Database Environment of an Inspection Robot for Power Transmission Lines[C]. Power and Energy Engineering Conference, 2009:1–4.
    【89】.蔡自兴.一种用于机器人高层规划的专家系统[J].高技术通讯, 1995, 5(1):21-24.
    【90】. Joseph C Giarratano, Gary D Riley.专家系统的原理与编程(英文版·第四版)[M].机械工业出版社, 2005.
    【91】. Zhibin Ren, Yi Ruan. Planning and control in inspection robot for power transmissionlines. Industrial Technology[C]. 2008 IEEE International Conference on ICIT, 2008:1–5.
    【92】.王吉岱,谢永,王凤芹.高压线路巡检机器人机械本体设计[J].机械设计与制造, 2007, 8:124-126.
    【93】.李恩,梁自泽,谭民.约束条件下的巡线机器人逆运动学求解[J].控制理论与应用, 2006, 23(1):43-48.
    【94】.熊晓明,梁自泽,谭民.输电线路障碍物的自动识别系统[J].高技术通讯,2005,15(2):39-42.
    【95】.刘艳菊,戴学丰,石岩.机器人末端臂轨迹跟踪自适应控制设计[J].微计算机信息, 2006, 12(2):265-267.
    【96】. Siyao Fu, Weiming Li, Yunchu Zhang, etal. Structure-Constrained Obstacles Recognition for Power Transmission Line Inspection Robot[C]. 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2006:3363–3368.
    【97】. Sun Cuilian, Wang Hongguang, Zhao Mingyang, etal. Precision compensation of localization error in obstacle-navigation for inspection robot[C]. 2007 IEEE International Conference on Robotics and Biomimetics, 2007:213–217.
    【98】. Fengyu Zhou, Yibin Li, Caihong Lie, etal. Research on autonomous negotiation action planning for 110kV power transmission line inspection robot[C]. 2008 World Congress on Intelligent Control and Automation, 2008:7455–7459.
    【99】. Xinglong Zhu, Hongguang Wang, Lijin Fang, etal. A Novel Running and Gripping Mechanism Design Based on Centroid Adjustment[C]. Proceedings of the 2006 IEEE International Conference on Mechatronics and Automation, 2006:1471–1476.
    【100】. Xinglong Zhu, Hongguang Wang, Lijin Fang, etal. Algorithm Research of Inspection Robot for Searching for Pose of Overhead Ground Wires[C]. 2006 World Congress on Intelligent Control and Automation, 2006:7513–7517.
    【101】. Sun Cuilian, Wang Hongguang, Zhao Mingyang. Vibration Analysis of Obstacle-avoidance for EHV Power Transmission Lines Inspection Robot[C]. 2007 Annual Conference of the IEEE Industrial Electronics Society, 2007:2824–2828.
    【102】. Ludan Wang, Hongguang Wang, Lijin Fang. Obstacle-navigation control of power transmission lines inspection robot[C]. 2007 IEEE International Conference on Robotics and Biomimetics, 2007:706–711.
    【103】.阮毅,陈维钧.运动控制系统[M].北京:清华大学出版社, 2006.
    【104】.陈伯时.电力拖动自动控制系统--运动控制系统[M].北京:机械工业出版社, 2003.
    【105】. Rodriguez F, Emadi A. A Novel Digital Control Technique for Brushless DC Motor Drives[J]. IEEE Transactions on Industrial Electronics, 2007, 54(5):2365-2373.
    【106】. NAM Ki Yong, LEE Woo Taik, LEE Choon Man, etal. Reducing torque ripple of brushless DC motor by varying input voltage[J]. IEEE Transactions on Magnetics, 2006, 42(4): 1307–1310.
    【107】. Zhang Xiangjun, Chen Boshi. The different influences of four PWM modes on the commutation torque ripples in sensorless brushless DC motors control system[C]. Proceedings of the Fifth International Conference Electrical Machines and Systems, 2001:575–578.
    【108】. Jang G H, Kim M G. Optimal Commutation of a BLDC Motor by Utilizing the Symmetric Terminal Voltage[J]. IEEE Transactions on Magnetics, 2006, 42(10):3473-3475.
    【109】. LEE Kwang Woon, KIM Dae Kyong. Commutation torque ripple reduction in a position sensorless brushless DC motor drive[C]. 35 Annual IEEE Power Electronics Specialists Conference, 2004:1419-1423.
    【110】. H Zeroug, B Boukais, H Sahraoui. Analysis of torque ripple in a BDCM[J]. IEEE Transactions on Magnetics, 2002, 38(2):1293–1296.
    【111】. CARLSON Renato, Michel Lajoie-Mazenc, J C S Fagundes. Analysis of torque ripple due to phase commutation in brushless DC machines[J]. IEEE Transactions on Industry Applications, 1992, 28 (3):632–638.
    【112】. KIM Gwang Heon, KANG seog-joo, WON Jong soo. Analysis of the commutation torque ripple effect for BLDCM fed by HCRPWM-VSI[C]. Seventh Annua Applied Power Electronics Conference and Exposition Conference Proceedings, 1992:277–284.
    【113】.韦鲲.永磁无刷直流电机电磁转矩脉动抑制技术的研究[D].浙江大学博士学位论文, 2005.
    【114】.邱建琪.永磁无刷直流电动机转矩脉动抑制的控制策略研究[D].浙江大学博士学位论文, 2002.
    【115】. Ching Tsai Pan, Fang E. A Phase-Locked-Loop-Assisted Internal Model Adjustable-Speed Controller for BLDC Motors[J]. IEEE Transactions on Industrial Electronics, 2008, 55(9):3415–3425.
    【116】. Rajagopalan S, Aller J M, Restrepo J A, etal. Analytic-Wavelet-Ridge-Based Detection of Dynamic Eccentricity in Brushless Direct Current (BLDC) Motors Functioning Under Dynamic Operating Conditions[J]. IEEE Transactions on Industrial Electronics, 2007, 54(3):1410–1419.
    【117】. Dae Kyong Kim, Kwang Woon Lee, Byung Kwon. Commutation Torque Ripple Reduction in a Position Sensorless Brushless DC Motor Drive[J]. IEEE Transactions on Power Electronics, 2006, 21(6):1762–1768.
    【118】. Haifeng Lu, Lei Zhang, Wenlong Qu. A New Torque Control Method for Torque Ripple Minimization of BLDC Motors With Un-Ideal Back EMF[J]. IEEE Transactions on Power Electronics, 2008, 23(2):950–958.
    【119】.英飞凌公司. XC164-16内嵌C166SV2核的16位单片机微控制器第一卷(共2卷):系统单元[G]. 2004.
    【120】.英飞凌公司. XC164-16内嵌C166SV2核的16位单片机微控制器第二卷(共2卷):外设单元[G]. 2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700