用户名: 密码: 验证码:
管理措施对草地土壤有机碳含量的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
草地是陆地生态系统的重要组成部分,也对陆地生态系统碳循环起重要作用。本文通过搜集国内外相关文献和整理不同草地管理措施对土壤有机碳储量影响的试验数据,研究中国和外国不同草地类型不同管理措施下土壤有机碳的变化量,并运用Meta分析方法将数据进行整合,得出每一种管理措施下对不同土层深度草地土壤有机碳的影响,同时分析了试验年限和年均降水量对草地土壤有机碳的影响,为评估我国草地生态系统的碳源/碳汇功能提供依据。并得出以下结论:
     1)利用Meta分析法估算不同管理措施下土壤碳年变化为:过度放牧条件下土壤有机碳的年减少量最大,达到-2.34 tC·hm~(-2)·a~(-1),重牧为-1.52 tC·hm~(-2)·a~(-1),轻牧为-0.54 tC·hm~(-2)·a~(-1)。而补播措施草地土壤有机碳的年增加量最大,达到0.90 tC·hm~(-2)·a~(-1)。围栏、禁牧两种管理措施次之,分别为0.48 tC·hm~(-2)·a~(-1)和0.19 tC·hm~(-2)·a~(-1)。
     2)根据分析不同管理措施对我国不同草地类型土壤有机碳的年变化量中可以看出:温性草甸草原和高寒草原不同管理措施下,土壤有机碳年变化量差异均不显著;高寒草甸草原、温性草原、温性荒漠草原三种草地类型中,轻度放牧与禁牧、中牧和重牧管理下的土壤有机碳年变化量差异不显著,但过牧条件下土壤有机碳的年减少量却显著地高于轻牧和禁牧管理(p<0.05)。
     3)在搜集到的外文文献中,十二种管理措施对草地土壤有机碳的变化量影响范围分别为:改善草地种植制度(主要包括退耕还(林)草、防止火烧、改善草地植被营养等):0.05~0.8tC·hm~(-2)·a~(-1),草地转变成农田:-0.14~-1.7tC·hm~(-2)·a~(-1),一年生牧草变为永久草地:0.3~0.4 tC·hm~(-2)·a~(-1),加强永久草场的利用:-0.9~1.1tC·hm~(-2)·a~(-1),改善放牧制度:0.03~0.7 tC·hm~(-2)·a~(-1),火烧:-0.04~-0.07 tC·hm~(-2)·a~(-1),降低草地退化程度:0.02~0.5tC·hm~(-2)·a-,1重牧:-0.03~-2.04tC·hm~(-2)·a~(-1),适度放牧:0.1~1.37 tC·hm~(-2)·a~(-1),施肥:0.02~0.52tC·hm~(-2)·a~(-1),禁牧:-0.14~0.59tC·hm~(-2)·a~(-1),延长牧草使用时间:0.1~0.5tC·hm~(-2)·a~(-1)。
     4)本文对搜集到的所有数据进行Meta分析,分析了各管理措施下对不同土层有机碳的影响,以及试验年限和年均降水量对土壤有机碳的影响。草地转变成农田,有机碳减少率在年均降雨量200~500mm的地区最为明显;中、重、过牧三种放牧强度下有机碳减少率在0~20cm土层中最大;轻度放牧在10~30years间有机碳开始增长;重牧、过牧管理下有机碳减少率则在开始的0~20years比20~40years年间有所回落。从年均降水量来看,轻牧管理下降水量500~1000mm的地区有机碳增长率比降水量<500mm的地区增加了4.1%;而中、重牧管理下降雨量多的地方有机碳减少率反而有所下降,与过牧管理下降雨量越多有机碳减少率越大的结果正好相反;降雨量在100~300mm时,禁牧下的有机碳增长率最大。围栏管理下10~30cm土层深度有机碳增长率明显高于10cm以下的土层;同时,围栏管理下土壤有机碳在<10years内增长率约为10~20year年间的2.6倍。
Grassland is an important part of terrestrial ecosystem and plays an key role in carbon cycle. In this paper, based on the collection of literatures concerning China and foreign countries and experimental data on the impact of different management measures on soil organic stock change, impact of different management measures on soil organic carbon change was studied. Meanwhile, a integration of SOC under different management of China was made with Meta analysis software, as well as the different effect of each management measure on soil organic carbon in different soil depth. And the impact of the experimental duration and the average annual precipitation on soil organic carbon was analized. It was helpful to provide a basis to evaluate grassland ecosystem carbon sink and resource in China and reached the following conclusions:
     1) Meta analysis method was used to estimate the yearly changing amount of soil carbon under the regulations on the main types of grasslands in China. Concretely, the yearly reducing amount of soil organic carbon is the highest under the overgrazing regulations, which reaches -2.34tC·hm~(-2)·a~(-1)>heavy grazing(-1.52tC·hm~(-2)·a~(-1))>light grazing(-0.54tC·hm~(-2)·a~(-1))>medium grazing (-0.49tC·hm~(-2)·a~(-1)), while the yearly increasing amount of soil organic carbon was the highest under the resowing management, which reaches 0.90tC·hm~(-2)·a~(-1) followed by enclosure management (0.48 tC·hm~(-2)·a~(-1)) and forbidden grazing(0.19 tC·hm~(-2)·a~(-1)).
     2)The annual soil organic carbon change under different management shows that: the difference of SOC change was not significant in temperate grassland and alpine meadow grassland under various managements. However, the difference of SOC change among the light grazing with forbidden grazing, moderate grazing and heavy grazing was not significant in alpine meadow steppe, temperate steppe and temperate desert steppe grasslands, but the SOC stocks under over grazing management has been significantly higher than that of light grazing and forbidden grazing (p <0.05).
     3) Collecting the foreign literatures, variation ranges of SOC change for 12 kinds of management measures on the grassland were as follows: improving grassland cropping systems 0.05 ~ 0.8 tC·hm~(-2)·a~(-1), conversion grassland into cropland -0.14~-1.7tC·hm~(-2)·a~(-1), change from short duration to permanent grasslands 0.3~0.4tC·hm~(-2)·a~(-1), intensification of organic soils with permanent grassland -0.9~1.1tC·hm~(-2)·a~(-1), improving grazing system 0.03~0.7 tC·hm~(-2)·a~(-1), firing -0.04~-0.07 tC·hm~(-2)·a~(-1), reducing the degradation of grassland (including reclaiming forest or grassland from farmland, forbidding burning, improving the nutrition of vegetation on grassland)0.02~0.5tC·hm~(-2)·a~(-1), heavy grazing (including moderate grazing and forbidding grazing) -0.03~-2.04 tC·hm~(-2)·a~(-1), moderate grazing 0.1~1.37tC·hm~(-2)·a~(-1), fertilization 0.02~0.52 t C·hm~(-2)·a~(-1), forbidden grazing -0.14~0.59tC·hm~(-2)·a~(-1), increasing the duration of grassland 0.1~0.5 tC·hm~(-2)·a~(-1).
     4) In this paper, all data was collected for Meta analysis .The impact of different management ,experimental duration and annual precipitation on SOC change in different soil depth was studied. The loss of SOC under the conversion from grassland to cropland was obvious in the 200~500mm-average annual rainfall areas, but the amount of SOC decreased seriously in the soil depth of 0~20cm under moderate, heavy and over grazing intensity. Under light grazing, SOC increased gradually during 10~30years. But the loss of SOC in 20~40years under heavy and over grazing was larger during 0~20years. Judging from the annual precipitation, SOC change of 500~1000mm rainfall areas increased by 4.1% than the <500mm region under light grazing, while under the moderate and heavy grazing the loss of SOC decreased with the increasing rainfall amount. It was an opposite result for the overgrazing management. Meanwhile, the impact on SOC change under forbidden grazing was most significant in 100~300mm rainfall areas. It was significant that the increase rate of SOC was larger(10~30cm) than that (<10cm)under enclosed management and the value of SOC change during the <10years was about 2.6 times than that in 10~20years.
引文
1.安登第,何毅,韩爱萍等.不同利用方式对亚高山草甸草地土壤性质和微生物的影响.草业科学,2003,20(6):1-3.
    2.北京林业大学.土壤理化分析实验指导书.北京:中国林业出版社,2002.
    3.陈伏生,曾德慧,陈广生等.开垦对草甸土有机碳的影响.土壤通报,2004,35(4):413-419.
    4.陈佐忠,汪诗平.中国典型草原生态系统.北京:科学出版社,2000.
    5.董全民,恰加,赵新全等.高寒草甸放牧生态系统研究现状.草业科学,2007,24(11):60-65.
    6.董全民,赵新全,马玉寿等.放牧强度对高寒人工草地土壤有机质和有机碳的影响.青海畜牧兽医杂志,2007,37(1):6-8.
    7.董自红,蒋平安,程路明等.围栏对新疆山区草地土壤碳氮的影响.新疆农业大学学报, 2006,29(1):31-35.
    8.范春梅,廖超英,李培玉等.放牧对黄土高原丘陵沟壑区林草地土壤理化性状的影响.西北林学院学报,2006,21(2):1-4.
    9.方精云,郭兆迪,朴世龙等.1981-2000年中国陆地植被碳汇的估算.中国科学(D辑)地球科学,2007,37(6):804-812.
    10.付华,王彦荣,吴彩霞等.放牧对阿拉善荒漠草地土壤性状的影响.中国沙漠,2002,22(4):
    339-343.
    11.傅华,陈亚明,王彦荣等.阿拉善主要草地类型土壤有机碳特征及其影响因素.生态学报, 2004,24(3):469-476.
    12.高安社,郑淑华,赵萌莉等.不同草原类型土壤有机碳和全氮的差异.中国草地,2005,27(6):44-48.
    13.高旭升,田种存,郝学宁等.三江源区高寒草原草地不同退化程度土壤养分变化.青海大学学报(自然科学版),2006,24(5):37-40.
    14.高雪峰,韩国栋,张功等.荒漠草原不同放牧强度下土壤酶活性及养分含量的动态研究.草业科学,2007,24(2):10-13.
    15.高亚军,黄东迈,朱培立等.水旱轮作地区免耕的肥力效应.耕作与栽培,2000,5:2-4.
    16.耿元波,董云社,齐玉春.草地生态系统碳循环研究评述.地理科学进展,2004,23(3):74-81.
    17.耿远波,章申,董云社等.草原土壤的碳氮含量及其与温室气体通量的相关性.地理学报,2001,56(1):44-53.
    18.关世音,常金宝,贾树海等.草原暗栗钙土退化过程中的土壤性状及其变化规律的研究.中国草地,1997,3:39-43.
    19.关世英,张伟华,常金保等.草原土壤养分含量与气象因子相互关系的研究.中国草地,1999,3:68-70.
    20.黄耀,周广胜,吴金水等.中国陆地生态系统碳收支模型.北京:科学出版社,2008.
    21.贾树海,崔学明,李绍良等.牧压梯度上土壤物化性质的变化.见:中国科学院内蒙古草原生态系统定位研究站编.草原生态系统研究(第五集),北京:科学出版社,1996.
    22.蒋德明,贺山峰,曹成有等.翻耙补播对科尔沁碱化草地土壤理化性质和生物活性的影响.中国草地学报,2006,28(4) :18-23.
    23.解宪丽,孙波,周慧珍等.中国土壤有机碳密度和储量的估算与空间分布分析.土壤学报,2004,41(1):35-44.
    24.瞿王龙,裴世芳,周志刚等.放牧与围栏对阿拉善荒漠草地土壤有机碳和植被特征的影响.甘肃林业科技,2004,29(6):4-6.
    25.雷相东,彭长辉,田大伦等.整合分析(Meta-analysis)方法及其在全球变化中的应用研究.科学通报,2006,51(22):2587-2597.
    26.李克让,王绍强,曹明奎.中国植被和土壤碳贮量.中国科学(D辑),2003,33(1):72-80.
    27.李丽霞,郝明德,彭令发.长期施肥人工草地土壤养分的剖面变化.水土保持研究,2003,10(1):50-52.
    28.李凌浩,陈佐忠.草地生态系统碳循环及其对全球变化的响应I碳循环的分室模型、碳输入与贮量.植物学通报,1998,(2):14-22.
    29.李凌浩,刘先华,陈佐忠.内蒙古锡林河流域羊草草原生态系统碳素循环研究.植物学报,1998,10:955-961.
    30.李凌浩.土地利用变化对草原生态系统土壤碳贮量的影响.植物生态学报,1998,22(4):300-302.
    31.李明峰,董云社,齐玉春等.温带草原土地利用变化对土壤碳氮含量的影响.中国草地,2005,27(1):1-6.
    32.李香真,陈佐忠.不同放牧率对草原植物与土壤C、N、P含量的影响.草地学报,1998,6(2):90-98.
    33.李香真,张淑敏.内蒙古草原暗栗钙土中氮的形态及放牧的影响.草业学报,2002,11(2):15-21.
    34.李香真.放牧对暗栗钙土磷的储量和形态的影响.草业学报,2001,10(2):28-32.
    35.李晓兵,陈云浩,张云霞等.气候变化对中国北方荒漠草原植被的影响.地球科学进展, 2002,17(2):254-261.
    36.李永宏.放牧空间梯度上和恢复演替时间梯度上羊草草原的群落特征及其对应性.草原生态系统研究,1992(4):1-8.
    37.李永强.草原撂荒地演替过程中植被动态及土壤特性的研究[博士学位论文] .内蒙古:内蒙古农业大学,2003.
    38.李玉强,赵哈林,赵学勇等.不同强度放牧后自然恢复的沙质草地土壤呼吸、碳平衡与碳储量.草业学报,2006,15(5):25-31.
    39.李月梅,曹广民,王跃思.开垦对海北高寒草甸土壤有机碳的影响.生态学杂志,2006,25(8):911-915.
    40.李月梅,王跃思,曹广民等.开垦对高寒草甸土壤有机碳影响的初步研究.地理科学进展,2005,24(6):59-66.
    41.李志丹.川西北高寒草甸草地放牧退化演替研究[博士学位论文] .四川:四川农业大学,2004.
    42.廖国藩,贾幼陵.中国草地资源.北京:中国科学技术出版社,1996.
    43.林慧龙,王军,徐震等.草地农业生态系统中的碳循环研究动态.草业科,2005,22(4) :59-62.
    44.刘兵,吴宁,罗鹏等.草场管理措施及退化程度对土壤养分含量变化的影响.中国生态农业学报,2007,15(4):45-48.
    45.刘兵.草场管理措施和草场退化对高寒草地土壤养分元素分布的影响[硕士学位论文] .四川:中国科学院成都生物研究所,2005.
    46.刘纪远,王绍强,陈镜明等.1990-2000年中国土壤碳氮蓄积量与土地利用变化.地理学报,2004,59(4):483-496.
    47.刘纪远,于贵瑞,王绍强等.陆地生态系统碳循环及其机理研究的地球信息科学方法初探.地理研究,2003,22(4):397-405.
    48.刘忠宽,汪诗平,陈佐忠等.不同放牧强度草原休牧后土壤养分和植物群落变化特征.生态学报,2006,26(6):2048-2056.
    49.路远.天祝高寒草甸主要类型的植物量动态及其在24年前的变化[硕士学位论文].甘肃:甘肃农业大学,2006.
    50.吕达仁,陈佐忠,陈家宜等.内蒙古半干旱草原土壤-植被-大气相互作用.北京:气象出版社,2005.
    51.吕新苗,郑度.气候变化对长江源地区高寒草甸生态系统的影响.长江流域资源与环境,2006,15(5):63-67.
    52.马文红,韩梅,林鑫等.内蒙古温带草地植被的碳储量.干旱区资源与环境,2006,20(4):192-195.
    53.牛海山,李香真,陈佐忠.放牧率对土壤饱和导水率及其空间变异的影响.草地学报,1999,
    7(3):211-216.
    54.裴海昆.不同放牧强度对土壤养分及质地的影响.青海大学学报(自然科学版),2004,22(4):29-31.
    55.裴世芳,傅华,陈亚明等.放牧和围栏下霸王灌丛对土壤肥力的影响.中国沙漠,2004,24(6):763-767.
    56.彭少麟,唐小焱.Meta分析及其在生态学上的应用.生态学杂志,1998,17(5):74-79.
    57.平立凤,窦森,张晋京等.草原及开垦后土壤有机质性质研究.应用生态学报,2004,15(5):824-826.
    58.蒲小鹏,徐长林,刘晓静.放牧利用对金露梅灌丛土壤理化性质的影响[硕士学位论文].甘肃农业大学学报,2004(1):39-41.
    59.《气候变化国家评估报告》编写委员会.气候变化国家评估报告.北京:科学出版社,2007.
    60.齐玉春,董云社,耿玉波等.我国草地生态系统碳循环研究进展.地理科学进展,2003,22(4):342-353.
    61.全国土壤普查办公室.中国土种志(第一卷).北京:中国农业出版社,1993.
    62.全国土壤普查办公室.中国土种志(第二卷).北京:中国农业出版社,1994.
    63.全国土壤普查办公室.中国土种志(第三卷).北京:中国农业出版社,1994.
    64.全国土壤普查办公室.中国土种志(第四卷).北京:中国农业出版社,1995.
    65.全国土壤普查办公室.中国土种志(第五卷).北京:中国农业出版社,1995.
    66.全国土壤普查办公室.中国土种志(第六卷).北京:中国农业出版社,1996.
    67.戎郁萍,韩建国,王培等.放牧强度对草地土壤理化性质的影响.中国草地,2001,23(4):41-47.
    68.尚占环,丁玲玲,龙瑞军等.江河源区退化高寒草地土壤微生物与地上植被及土壤环境的关系.草业学报,2007,16(1):34-40.
    69.盛学斌,赵玉萍.草场生物量对土壤有机碳的影响并.土壤通报,1997,28(6):244-255.
    70.苏永中,赵哈林,李玉霖.放牧干扰后自然恢复的退化沙质草地土壤性状的空间分布.生态学报,2004,41(3):369-374.
    71.苏永中,赵哈林,文海燕.退化沙质草地开垦和封育对土壤理化性状的影响.水土保持学报,2002,16(4):5-8.
    72.苏永中,赵哈林,张铜会等.不同强度放牧后自然恢复的沙质草地土壤性状特性.中国沙漠,2002,22(4):333-338.
    73.苏永中,赵哈林.持续放牧和围栏对科尔沁退化沙地草地碳截存的影响.环境科学,2003,24(4):23-28.
    74.孙庚,吴宁,罗鹏.不同管理措施对川西北草地土壤氮和碳特征的影响.植物生态学报,2005,29(2):304-310.
    75.孙卫国,王艳荣,赵利清等.在典型草原放牧退化过程中土壤环境质量的变化研究.内蒙古大学学报(自然科学版),2006,37(3):304-307.
    76.滕星.放牧绵羊采食与践踏对松嫩羊草草地的影响[硕士学位论文].吉林:东北师范大学,2004.
    77.田洪艳,郭平,周道玮.草原开垦对草原土壤及植被的扰动生态学作用.干旱区研究,2001,18(3):67-71.
    78.王明君,韩国栋,赵萌莉等.草甸草原不同放牧强度对土壤有机碳含量的影响.草业科学,2007,24(10):6-10.
    79.王启兰,王长庭,杜岩功等.放牧对高寒嵩草草甸土壤微生物量碳的影响及其与土壤环境的关系.草业学报,2008,17(2):39-46.
    80.王仁忠.放牧干扰对松嫩平原羊草草地的影响.东北师大学报自然科学版,1996,(4):77-82.
    81.王如松,方精云,冯宗炜主编.现代生态学的热点问题研究.北京:中国科技出版社,1996.
    82.王绍强,周成虎,李克让等.中国土壤有机碳库及空间分布特征分析.地理学报,2000,55(5):533-544.
    83.王绍强,周成虎,罗承文.中国陆地自然植被碳量空间分步特征探讨.地理科学进展,1999,18(3):238-244.
    84.王绍强,周成虎.中国陆地土壤有机碳库的估算.地理研究,1999,18(4):349-356.
    85.王文颖,王启基,王刚.高寒草甸土地退化及其恢复重建对土壤碳氮含量的影响.生态环境,2006,15(2):362-366.
    86.王岩春,干有民,李志丹.亚高山退化草甸土壤性状分析及评价因子的选择.安徽农业科学,2006,34(13):3120-3123.
    87.王艳芬,陈佐忠,Tieszen L.T..人类活动对锡林郭勒地区主要草原土壤有机碳分布的影响.植物生态学报,1998,22(6):545-551.
    88.王玉辉,何兴元,周广胜.放牧强度对羊草草原的影响.草地学报,2002,10(1):45-49.
    89.王哲锋,高波,李小刚.利用方式对干旱草地土壤碳水化合物含量及团聚体稳定性的影响.甘肃农业大学学报,2006,41(3):91-95.
    90.王哲锋.干旱农牧交错带耕种和围栏放牧对草地土壤有机碳库和土壤结构稳定性的影响[硕士学位论文].甘肃:甘肃农业大学,2006.
    91.卫智军,乌日图,达布希拉图等.荒漠草原不同放牧制度对土壤理化性质的影响.中国草地,2005,27(5):6-10.
    92.文海燕,傅华,赵哈林.退化沙质草地开垦和围栏过程中的土壤颗粒分形特征.应用生态学报,2006,17(1):55-59.
    93.文海燕,赵哈林,傅华.开垦和封育年限对退化沙质草地土壤性状的影响.草业学报,2005, 14(1):31-37.
    94.武云天,Schoenau J,李凤民等.耕作对黄土高原和北美大草原三种典型农业土壤有机碳的影响.应用生态学报,2003,14(12):2213-2218.
    95.肖洪浪,赵雪,赵文智.河北坝缘简育干润均腐土耕种中的退化研究.土壤学报,1998,35(1):129-212.
    96.许中旗,闵庆文,王英舜等.人为干扰对典型草原生态系统土壤养分状况的影响.水土保持学报,2006(5):38-42.
    97.杨景成,韩兴国,黄建辉等.土地利用变化对陆地生态系统碳储量的影响.应用生态学报,2003,14(8):1385-1390.
    98.杨景成,韩兴国,黄建辉等.土壤有机质对农田管理措施的动态响应.生态学报,2003,23(4):787-796
    99.杨汝荣.我国西部草地退化原因及可持续发展分析.草业科学,2002,19(1):23-27.
    100.于东升,史学正,孙维侠等.基于1∶100万土壤数据库的中国土壤有机碳密度及储量研究.应用生态学报,2005,16(12):2279-2283.
    101.展争艳,李小刚,张德罡等.利用方式对高寒牧区土壤有机碳含量及土壤结构性质的影响.土壤学报,2005,42(5):777-782.
    102.张建平,刘淑珍,周麟等.西藏那曲地区主要草地土壤退化分析.土壤侵蚀与水土保持学报,1998,4(3):6-11.
    103.张铜会,赵哈林,六黑俊哉等.连续放牧对沙质草地植被盖度、土壤性质及其空间分布的影响.干旱区资源与环境,2003,17(4):117-121.
    104.张铜会,赵哈林,六黑俊哉等.沙质草地连续放牧后某些土壤性质的变化.中国草地,2003,25(1):9-12.
    105.张伟华,关世英,李跃进.不同牧压强度对草原土壤水分、养分及其地上生物量的影响.干旱区资源与环境,2000,14(4):61-64.
    106.张伟华,关世英,李跃进等.不同恢复措施对退化草地土壤水分和养分的影响.内蒙古农业大学学报,2000,21(4):31-35.
    107.张新时.内蒙古草原陷入发展困境.瞭望新闻周刊,2005:23-58.
    108.张蕴薇,韩建国,李志强.放牧强度对土壤物理性质的影响.草地学报,2002,10(1):74-78.
    109.张贞明,韩天虎.几种高寒灌丛地上植物量的估测模型.草业科学,2008,25(1):10-13.
    110.赵彩霞,郑大玮,何文清等.不同围栏年限冷蒿草原群落特征与土壤特性变化的研究.草业科学,2006,23(12):89-92.
    111.赵哈林,大黑俊哉,周瑞莲等.人类活动与气候变化对科尔沁沙质草地植被的影响.地球科学进展,2008,23(4):408-414.
    112.赵哈林,张铜会,赵学勇等.放牧对沙质草地生态系统组分的影响.应用生态学报,2004,15(3):420-424.
    113.赵吉.不同放牧率对冷蒿草小禾草草原土壤微生物量和生物量的影响.草地学报,1999,7(3):223-227.
    114.赵锦海.祁连山东段不同退化程度高寒草地土壤有机碳储量的研究[硕士学位论文].甘肃:甘肃农业大学,2006.
    115.郑凤英,陆宏芳,彭少麒.整合分析在生态学应用中的优势及存在的问题.生态环境, 2005,14(3):417-421.
    116.郑凤英,彭少麟.植物生理生态学指标对大气CO2浓度倍增响应的整合分析.植物学报, 2001,43(11):1101-1109
    117.中国科学院地理科学与资源研究所.地球系统科学数据共享网-草业开发与生态建设专题库[EB/OL]. http://159.226.111.21/grass/default.asp,2007-11-15.
    118.中国科学院南京土壤研究所.土壤数据库[EB/OL]. http://www.issas.ac.cn/sjzy/sjzy_trsjk.htm,2007-11-15.
    119.中国农业科学院资源区划所.中国草地科学网[EB/OL]. http://www.grass-science.cn,2007-12-15.
    120.周道玮,姜世成,郭平等.草原火烧后土壤养份含量的变化.东北师大学报自然科学版,1999,1(3):108-111
    121.周华坤,赵新全,周立等.青藏高原高寒草甸的植被退化与土壤退化特征研究.草业学报,2005,14(3):31-40.
    122.周莉,李保国,周广胜.土壤有机碳的主导影响因子及其研究进展.地球科学进展,2005,20(1):99-105.
    123.周丽艳,王明玖,韩国栋.不同强度放牧对贝加尔针茅草原群落和土壤理化性质的影响.干旱区资源与环境,2005,19(7):182-187.
    124.朱连奇,许立民.草地改良对土壤有机碳的影响—以福建省建瓯市牛坑龙草地生态系统试验站为例.河南大学学报(自然科学版),2004,34(2):64-68.
    125. Allard A., Soussana J.F., Falcimagne R., et al. The role of grazing management for the net biome productivity and greenhouse gas budget (CO2, N2O and CH4) of semi-natural grassland. Agriculture, Ecosystems and Environment, 2007, 121:47–58.
    126. Allen H.L., Albrecht S.L., Boote K., et al. Soil Organic Carbon and Nitrogen Accumulation in Plots of Rhizoma Perennial Peanut and Bahiagrass Grown in Elevated Carbon Dioxide and Temperature. Journal of Environmental Quality, 2006, 35: 1405-1412.
    127. Ardo J., Olssonw L.. Assessment of soil organic carbon in semi-arid Sudan using GIS and the CENTURY model. Journal of Arid Environments, 2003, 54: 633-651.
    128. Armqvost G., Wooster D.C.. Meta - analysis: Synthesizing research finding in ecology and evolution. Trends in Ecology and Evolution, 1995, 10: 236-240.
    129. Batjes N.H..Management Options for Reducing CO2 concentrations in the Atmosphere by Increasing Carbon Sequestration in the Soil. Dutch National Research Programme on Global Air Pollution and Climate Change&Technical Paper 30. Wageningen:International Soil Reference and Information Centre, 1999.
    130. Bayramin I., Basaran M., Erpul G., et al. Comparison of soil organic carbon content, hydraulic conductivity, and particle size fractions between a grassland and a nearby black pine plantation of 40 years in two surface depths. Environ Geol, 2008, 8: 1254-1261.
    131. Bronson K.F., Zobeck T.M., Chua T.T., et al. Carbon and Nitrogen Pools of Southern High Plains Cropland and Grassland Soils. Soil Science Society of America, 2004, 68: 1695–1704.
    132. Chadwick O.A., Kelly E.F., Merritts D.M., et al. Carbon dioxide consumption during soil development. Biogeochemistry, 1994, 24: 115-127.
    133. Chaneton E.J., Perelman S.B., Omacini M., et al. Grazing environmental heterogeneity, and alien plant invasions in temperate Pampa grasslands. Biological Invasion, 2002, 4: 7-24.
    134. Christopher J.K., Kristofor R.B., John M.N., et al. Measurements and Modeling of Carbon and Nitrogen Cycling in Agroecosystems of Southern Wisconsin: Potential for SOC Sequestration during the Next 50 Years. Ecosystems, 2001, 4: 237-258.
    135. Claassens S., Jansen P.J., Rensburg V., et al. Soil Microbial Community Structure of Coal Mine Discard Under Rehabilitation. Water, Air, and Soil Pollution, 2006, 174: 355-366.
    136. Conant R.T., Paustian K..Grassland Management Activity Data:Current Sources and Future Needs. Environmental Management, 2004, 33: 467-473.
    137. Curtis P.S..A meta-analysis of leaf gas exchange and nitrogen in trees grown under elevated carbon dioxide. Plant Cell Environ,1996, 19: 127-137
    138. D’Acqui L.P., Santi C.A., Maselli F.. Use of Ecosystem Information to Improve Soil Organic Carbon Mapping of a Mediterranean Island. Journal of Environmental Quality, 2007, 36: 262-271.
    139. Dahlgren R.A., Singer M.J., Huang X.. Oak tree and grazing impacts on soil properties and nutrients in a California oak woodland. Biogeochemistry, 1997, 39: 45-64.
    140. Dai X., Boutton T.W., Haile M., et al. Soil Carbon and Nitrogen Storage in Response to Firein a Temperate Mixed-Grass Savanna.Journal of Environmental Quality, 2006, 35: 1620-1628.
    141. Dawson L.A., Grayston S.J., Murray P.J., et al. Influence of pasture management (nitrogen and lime addition and insecticide treatment) on soil organisms and pasture root system dynamics in the field. Plant and Soil, 2003, 255: 121-130.
    142. Dendoncker N., Wesemael B., Smith P., et al. Assessing scale effects on modelled soil organic carbon contents as a result of land use change in Belgium. Soil Use and Management, 2008, 24: 8-18.
    143. Derner J.D., Boutton T.W., Briske D.D.. Grazing and ecosystem carbon storage in the North American Great Plains. Plant and Soil, 2006, 280: 77-90.
    144. Eduardo P., Carlos C.. Combining soil C and N spatial variability and modeling approaches for measuring and monitoring soil carbon sequestration.Environmental Management, 2004, 33: 274-288.
    145. Eric V.W.. Lack’s clutch size hypothesis: An examination of the evidence using meta - analysis. Ecology , 1992 ,73 (5): 1699-1705.
    146. Eswaran H., Vanden B.E., Reich P.. Organic C in soils of the world. Journal of Soil Science Society of America, 1993, 57: 192-194.
    147. Evrendileka F., Celikb I., Kilic S.. Changes in soil organic carbon and other physical soil properties along adjacent Mediterranean forest, grassland, and cropland ecosystems in Turkey. Journal of Arid Environments, 2004, 5: 743-752.
    148. Fabrizzi K.P., Moro′n A., Garc?′a F.O.. Soil Carbon and Nitrogen Organic Fractions in Degraded vs. Non-Degraded Mollisols in Argentina. Soil Science Society of America, 2003, 67: 1831-1841.
    149. Falloon P., Smith P.. Simulating SOC changes in long-term experiments with RothC and CENTURY:model evaluation for a regional scale application.Soil Use and Management, 2002, 18: 101-111.
    150. Fang C.M., Moncrieff J.B.. The variation of soil microbial respiration with depth in relation to soil carbon composition. Plant and Soil, 2005, 268: 243-253.
    151. Feng Q. Liu W., Zhang Y. et al.Effect of climatic changes and human activity on soil carbon in desertified regions of China. Tellus, 2006, 58B: 117-128.
    152. Foereid B., Barthram G.T., Marriott C.A.. The CENTURY model failed to simulate soil organic matter development in an acidic grassland. Nutrient Cycling in Agroecosystems, 2007, 78: 143-153.
    153. Frank A.B., Liebig M.A., Tanaka D.L.. Management effects on soil CO2 efflux in northern semiarid grassland and cropland. Soil&Tillage Research, 2006, 89: 78-85.
    154. Freibauer A., Roubsevell D.A., Smith P., et al. Carbon sequestration in agricultural soils of Europe.Geoderma, 2004, 122: 1-23.
    155. Ganjegunte G.K., Vance G.F., Preston C.M., et al. Soil Organic Carbon Composition in a Northern Mixed-Grass Prairie: Effects of Grazing. Soil Science Society of America, 2005, 69:1746-1756.
    156. Gardi C., Sconosciuto F.. Evaluation of carbon stock variation in Northern Italian soils over the last 70 years. Sustain Sci, 2007, 2: 237-243.
    157. Glass G.V.. Primary, secondary, and Meta-analysis of research. Educ Res, 1976, 5: 3-8.
    158. Guo L.B., Gifford R.M.. Soil organic stocks and land use change:a Meta-analysis.Globe Change Boil, 2002, 8: 345-360.
    159. Han G.D., HAO X.Y., Zhao M.L., et al. Effect of grazing intensity on carbon and nitrogen in soil and vegetation in a meadow steppe in Inner Mongolia. Agriculture, Ecosystems and Environment, 2008, 125: 21-32.
    160. Harris W.N., Moretto A.S., Distel R.O., et al. Fire and grazing in grasslands of the Argentine Caldenal:Effects on plant and soil carbon and nitrogen. Acta Oecological, 2007, 32: 207-214.
    161. Helfrich M., Flessa H., Mikutta R., et al. Comparison of chemical fractionation methods for isolating stable soil organic carbon pools. European Journal of Soil Science, 2007, 58: 1316-1329.
    162. Houghton R.A. Change in the storge of terrestrial carbon since 1985. In: soils and globe change. Boca Raton: CRC Lewis Publishers, 1995, 45-65.
    163. Houghton R.A.. Changes in terrestrial carbon over the last 135 years. Heiman M. NATO ASI Series I :The Global Carbon Cycle.Vol 15. Berlin Heidelberg ,1993, 139-157.
    164. IPCC. Woring GroupⅡ,Climate Change Impacts, Adaptation and vulnerability. Intergovernmental Pnel on Climate Change. Cambridge, UK: Cambridge University Press, 2007
    165. Jarvinen A.. A meta -analytic study of the effects of female age on laying - date and clutch - size in the Great Tit Parus Mayor and the Pied Flycatcher Ficedula hypoleuca. Ibis, 1991, 133: 62-67.
    166. Jastrow J.D., Miller R.M., Matamala R., et al. Elevated atmospheric carbon dioxide increases soil carbon. Glob Change Biol, 2005, 11: 2057-2064.
    167. Johnson D.W., Curtis P.S.. Effects of forest management on soil C and N storage: Meta analysis. For Ecol Manag, 2001, 140: 227-238
    168. Jones S.K., Rees R.M., Kosmas D., et al. Carbon sequestration in a temperate grassland; management and climatic controls. Soil Use and Management, 2006, 22: 132–142..
    169. Kay D., Jesse A.B.. Meta-analysis:states of the science.Epidemiological reviews, 1992, 14: 154-176.
    170. Klumpp K., Soussana J.F., Falcimagne R.. Effects of past and current disturbance on carbon cycling in grassland mesocosms. Agriculture, Ecosystems and Environment, 2007, 121: 59–73.
    171. Kooten G.C., Eagle A.J., Manley J. How costly are carbon offsets:A meta-analysis of carbon forest sinks. Environ Sci Pol, 2004, 7: 239-251.
    172. Lal R., Kimble J., Follett R..Land use and soil C pool in terrestrial ecosystem. In:Management of carbon sequestration in soil. Boca Raton: CRC Press, 1998, 1-10.
    173. Lal R.. Soil Carbon Sequestration Impacts on Global Climate Change and Food Security. Science, 2004, 304: 1623-1627.
    174. Lal R.. Soil management and restoration for carbon sequestration to mitigate the accelerated greenhouse effect. Proggress of Environment Sciences, 1999, 1: 307-326.
    175. Leifeld J., Fuhrer J.. The temperature response of CO2 production from bulk soils and soil fractions is related to soil organic matter quality. Biogeochemistry, 2005, 75: 433-453.
    176. Lettens S., Orshoven J., Wesemael B., et al. Soil organic carbon changes in landscape units of Belgium between 1960 and 2000 with reference to 1990. Global Change Biology, 2005, 11: 2128-2140.
    177. Lettens S., Vos B.D., Quataert P., et al. Variable carbon recovery of Walkley-Black analysis and implications for national soil organic carbon accounting. European Journal of Soil Science, 2007, 58: 1244-1253.
    178. Li X.Z., Chen Z.Z.. Influnence of stocking rates on C, N , P contents in plant-soil system. Acta Agrestia Sinica, 1998, 6:90-98.
    179. Luo Y.Q., Hui D.F., Zhang D.Q.. Elevated CO2 stimulates net accumulationsof carbon and nitrogen in land eosystems: a Meta-analysis. Ecology, 2006, 87: 53-63.
    180. Maan C.. Meta-analysis in the breech. Scicnce, 1990, 249: 476-480.
    181. Maia S.M., Xavier F.A., Oliveira T.S., et al. Organic carbon pools in a Luvisol under agroforestry and conventional farming systems in the semi-arid region of Ceara′, Brazil. Agroforestry System, 2007, 71: 127-138.
    182. Malhi S.S., Wang Z.H., Schnitzer M., et al. Nitrogen fertilization effects on quality of organic matter in a grassland soil. Nutrient Cycling in Agroecosystems, 2005, 73: 191-199.
    183. Manley J., Kooten G.C., Moeltner K,, et al. Creating carbon offsetsin agriculture through no-till cultivation: a Meta-analysis of costs and carbon benefits. Climate Change, 2005, 68: 41-65
    184. Markham J.H., Grime J.P., Buckland S.. Reciprocal interactions between plants and soil in an upland grassland. The Ecological Society of Japan, 2008, 8: 485-490.
    185. McCarron J.K., Knapp A.K., Blair J.M.. Soil C and N responses to woody plant expansion in a mesic grassland. Plant and Soil, 2003, 257: 183-192.
    186. Mikhailova E.A., Bryant R.B., Vassenev I.I., et al.Cultivation Effects on Soil Carbon and Nitrogen Contents Depth in the Russian Chernozem. Soil Science Society of America, 2000, 64: 738-745.
    187. Ni J. Carbon storage in grasslands of China.Journal of Arid Environments, 2002, 50: 205-218.
    188. Northup B.K., Brown J.R., Ash A.J.. Grazing impacts on spatial distribution of soil and herbaceous characteristics in an Australian tropical woodland. Agroforestry System, 2005, 65: 137-150.
    189. Ogle S.M., Breidt F.J., Paustian K. Agricultural management impacts on soil organic carbonstorage under moist and dry climatic conditions of temperate and tropical regions. Biogeochemistry, 2005, 72: 87-121.
    190. Ogle S.M., Conant R.T., Paustian K. Deriving Grassland Management Factors for a Carbon Accounting Method Developed by the Intergovernmental Panel on Climate Change. Environmental Management, 2004, 33: 474-484.
    191. Ogle S.M., Ojima D., Reiners W.A.. Modeling the impact of exotic annual brome grasses on soil organic carbon storage in a northern mixed-grass prairie. Biological Invasions, 2004, 6: 365-377.
    192. Ojima D.S., Dirks B.O., Gleovn E.P., et al. Assessment of C budget for grasslands and drylands of the world . Water, Air and Soil Pollution, 1993, 70: 95-109.
    193. Parton W.J., Scutlock J.M., Ojima D.S., et al. Impact of climate change on grassland production and soil carbon worldwide. Global Change Biology, 1995, 1: 13-22.
    194. Patra A.K., Roux X.L., Grayston S.J., et al. Unraveling the effects of management regime and plant species on soil organic carbon and microbial phospholipids fatty acid profiles in grassland soils. Bioresour Technology,2007, 7..
    195. Patrick L.B., Fraser L.H., Kershner M.W.. Large-scale manipulation of plant litter and fertilizer in a managed successional temperate grassland. Plant Ecol, 2008, 197: 183-195.
    196. Phiri S., Barrios E., Rao I.M., et al.Changes in soil organic matter and phosphorus fractions under planted fallows and a crop rotation system on a Colombian volcanic-ash soil. Plant and Soil, 2001, 231: 211–223.
    197. Post W.M., Mann L.K.. Changes in soil organic carbon and nitrogen as a result of cultivation. In: Soils and the Greenhouse Effect. New York: John Wiley & Sons, 1990, 401-406.
    198. Power I.L., Thorrold B.S., Balks M.R.. Soil properties and nitrogen availability in silvopastoral plantings of Acacia melanoxylon in North Island, New Zealand. Agroforestry Systems, 2003, 57: 225-237.
    199. Qi Y.C., Dong Y.S., Liu J.Y., et al. Effect of the conversion of grassland to spring wheat field on the CO2 emission characteristics in Inner Mongolia, China. Soil & Tillage Research, 2007, 94: 310-320.
    200. Qian Y.L., Bandaranayake W., Parton W.J., et al. Long-Term Effects of Clipping and Nitrogen Management in Turfgrass on Soil Organic Carbon and Nitrogen Dynamics: The CENTURY Model Simulation. Journal of Environmental Quality, 2003, 32: 1694-1700.
    201. Reicosky D.C.. Tillage-induced CO2 emission from soil. Nutrient Cycling in Agroecosystems, 1997, 49: 273-285.
    202. Scurlock J.M., Hall D.O. The globe carbon sink: a grassland perspective. Global Change Biology, 1998, 4: 229-233.
    203. Sharrow S.H., Ismail S.. Carbon and nitrogen storage in agroforests, tree plantations, and pastures in western Oregon, USA. Agroforestry Systems, 2004, 60: 123-130.
    204. Sherrod L.A., Peterson G.A., Westfall D.G., et al. Soil Organic Carbon Pools After 12 Years inNo-Till Dryland. Agroecosystems Soil Science Society of America, 2005, 69: 1600-1608.
    205. Solomon D., Lehmann J., Kinyangi J., et al. Long-term impacts of anthropogenic perturbations on dynamics and speciation of organic carbon in tropical forest and subtropical grassland ecosystems. Global Change Biology, 2007, 13: 511-530.
    206. Soussana J.F., Loiseau P., Vuichard N., et al. Carbon cycling and sequestration opportunities in temperate grasslands. Soil Use and Management, 2004, 20: 219-230.
    207. Stinson G., Freedman B.. Potential for carbon sequestration in Canadian forests and agroecosystems. Mitigation and Adaptation Strategies for Global Change, 2001, 6: 1-23.
    208. Su Y.Z., Li Y.l., Cui J.Y., et al. Influences of continuous grazing and livestock exclusion on soil properties in a degraded sandy grassland, Inner Mongolia, northern China. Catena, 2005, 59: 267–278.
    209. Tonhsca A., Byrne D.N.. The effect of crop diversification on herbivorous insects: A Meta-analysis approach. Ecological Entomology, 1994, 19: 239-244.
    210. Tscherning K., Barrios E., Lascanol C., et al. Effects of sample post harvest treatment on aerobic decomposition and anaerobic in-vitro digestion of tropical legumes with contrasting quality. Plant and Soil, 2005, 269: 159-170.
    211. Vinther F.P., Hansen E.M., Eriksen J.. Leaching of soil organic carbon and nitrogen in sandy soils after cultivating grass-clover swards. Biol Fertil Soils, 2006, 43: 12-19.
    212. Wang J.k., Solomon D., Lehmann J., et al. Soil organic sulfur forms and dynamics in the Great Plains of North America as influenced by long-term cultivation and climate. Geoderma, 2006, 133: 160–172.
    213. Watson R.T., Noble I.R., Bolin B., et al. Land use, Land use change, and Forestry. UK, Cambridge University Press, 2000.
    214. Zinn Y.L, Lal R., Resck D.V.. Changes in soil organic carbon stocks under agriculture in Brazil. Soil Till Res, 2005, 84, 1: 28-40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700