用户名: 密码: 验证码:
蛋白质单层膜调控下碳酸钙的仿生矿化和生长机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物矿化研究的一个重要方面是模拟生物矿化过程,详细了解生物矿化中模板诱导结晶有关的有机-无机界面相互作用,其目的是研究自然现象如骨、牙和贝壳的形成原理和机制,帮助科学家和工程师应用仿生手段来发展新型材料,如复合材料和用于医学、化学、光学和电子学的涂层材料。虽然在这些方面取得了一些进展,但在界面控制晶体生长的取向、相态和形貌的能力仍是有限的。究其原因,我们认为生物矿化是一个非常复杂的过程,并不是一种简单因素控制生物矿化的形成,用数学语言来讲,生物矿化过程是多元函数,受多个变量的影响,难于全面的掌控;另外,在对模拟生物矿化过程中,所用的来替代基质大分子的模型分子和生物矿化的基质生物大分子相差甚远。
     近几年,利用单层膜诱导无机矿物生长的方法模拟生物矿化研究成为一个热门课题。为了研究有机-无机界面作用,调控模板诱导晶体的成核和生长,需要一个简单的界面模型。在这个思想指导下,铺展在空气-液体界面上巧妙设计的不溶性两亲分子的Langmuir单层膜提供了一个平面二维模板,可以用来模拟生物体内有机基质形成的二维表面,控制晶体优先在单层膜和溶液界面上成核和生长。然而,大量研究所采用的基质模型分子除了在功能集团的种类等方面和生物基质大分子相似外,在很多方面和生物矿化过程中的基质生物大分子相差甚远,从而使得我们所得到的很多研究结论不一定和生物矿化的真实过程相一致,另外,借用生物矿化原理,利用蛋白质和无机材料之间的分子识别机制仿生制备功能材料已经成为生物矿化研究领域中的一个重要方向,因此深入理解蛋白质或多肽-无机材料之间的识别和控制机制是一个势在必行的研究课题。
     基于以上问题和我们小组在该领域的研究基础,在本论文中,我们通过合理选择和巧妙设计,利用三种蛋白质作为成膜材料,采用LB方法,在气-液界面形成三种稳定的蛋白质分子膜。在对蛋白质单层膜的性质研究基础之上,以它们为基质蛋白生物矿化模型,研究了气-液界面蛋白质单层膜对碳酸钙矿化结晶过程的调控作用及它们之间的识别和控制机制。
     主要研究内容如下:
     1、选用模拟生物矿化常用的牛血清白蛋白为成膜材料,利用LB技术,将牛血清白蛋白在气-液界面形成稳定的单层膜。在深入研究牛血清白蛋白单层膜基础上,利用牛血清白蛋白Langmuir膜为模板,研究牛血清白蛋白单层膜控制下碳酸钙的矿化结晶过程,探究矿化时间和亚相浓度对碳酸钙矿化结晶途径、表面形貌、晶体结构和取向的影响。同时,我们对这些结构的形成机理进行了实验研究和理论分析。结果显示:亚相浓度对碳酸钙的形貌有重要的影响,在较低浓度条件下一直形成的是半球形碳酸钙颗粒,而在较高浓度条件下形成的碳酸钙的形貌随矿化结晶时间的延长经历了一个不断演变的过程,从球形到纺锤形,再到蝴蝶结形,最后形成哑铃型的碳酸钙晶体。对矿化过程的分析表明,在各个浓度条件下碳酸钙都经历了一个从无定形态到晶态的转变过程。说明蛋白质单层膜控制下碳酸钙的生长是一个多步晶化机制。为进一步证明我们的结论,我们选用了人血清白蛋白单层膜作为参照,证实了我们的结论。
     2、酶蛋白作为生物活动的重要参与者,势必参与生物矿化过程。在前面研究可溶性牛血清白蛋白作用基础上,我们选用可溶性酶蛋白-胃蛋白酶-为单层膜成膜材料。利用LB技术,在详细研究胃蛋白酶单层膜基础之上,利用胃蛋白酶Langmuir膜为模板,碳酸氢钙过饱和溶液为亚相,研究了胃蛋白酶单层膜控制下碳酸钙的矿化结晶过程,深入探究了不同矿化结晶时间对碳酸钙矿化结晶途径、表面形貌、晶体结构和取向的影响。同时,我们对这些结构的形成机理进行了实验研究和理论分析。结果显示:酶蛋白单层膜对碳酸钙晶体的形貌有重要的控制作用,形成的碳酸钙晶体的形貌随时间的推进经历一个十分有趣的发展变化过程。具体如下:首先形成了半球形碳酸钙,而后形成了半球形碳酸钙的球形聚集体,之后球形颗粒聚集体转变成准六角片状聚集体。该聚集体在发展成为准六角片状颗粒,随时间的推进准六角片状颗粒演变成具有六瓣状花形结构。对碳酸钙矿化结晶方式的分析表明,胃蛋白酶控制下的碳酸钙经历从无定形态到多晶,再到单晶,最后为多晶的演变过程,是一个多步晶化过程。
     3、作为上面研究的深入,为进一步研究不同可溶性蛋白作用,探究不溶性基质蛋白质的作用,我们选用和上面所用蛋白质性质不同的纤维蛋白-Ⅰ-型胶原蛋白-为单层膜成膜材料,采用LB技术方法,在详细研究Ⅰ-型胶原蛋白单层膜基础上,利用Ⅰ-型胶原蛋白Langmuir膜为模板,碳酸氢钙过饱和溶液为亚相,研究了Ⅰ-型胶原蛋白单层膜控制下碳酸钙的矿化结晶过程,深入探究了不同矿化结晶时间对碳酸钙矿化结晶途径、表面形貌、晶体结构和取向的影响。同时,我们对这些结构的形成机理进行了实验研究和理论分析。结果显示:Ⅰ-型胶原蛋白单层膜对碳酸钙晶体的形貌有重要的控制作用,在Ⅰ-型胶原蛋白单层膜的控制下纳米碳酸钙在胶原纤维表面聚集、融合和结晶,最后形成沿胶原纤维长轴方向的棒状碳酸钙单晶。具体如下:首先溶液中亚稳态的纳米碳酸钙在Ⅰ-型胶原纤维表面富集,大量的富集导致纳米颗粒融合,而后形成胶原纤维长轴方向的棒状碳酸钙。对碳酸钙矿化结晶方式的分析表明,Ⅰ-型胶原蛋白胃蛋白酶控制下的碳酸钙经历从无定形态到多晶,再到单晶的演变过程,是一个标准的多步晶化过程。详细的分析表明碳酸钙对胶原纤维维度和形状的“copying”是生物矿化过程形貌控制的一个主要方法。
Nature has ingeniously succeeded in producing an impressive variety of inorganic functional structures with designed shape and size on specific sites through a biologically controlled mineralization process. In biological environments, the deposition of inorganic crystalline materials and the formation of organic-inorganic hybrid materials are facilitated by biomacromolecules (proteins, polysaccharides etc.) which are classified as "control" and "template" macromolecules. These macromolecules are considered to play a focal role in the biomineral fabrication through controlling crystal morphology, orientation, shape and habit. Current knowledge predicts that the nucleation of biominerals takes place on the cell surface or on extracellular matrix (ECM) mainly composed of biomacromolecules.
     Inspired by the fabrication mechanism of these materials, many methods have been established to study and mimic the biomineralization process with the aim to synthesizing superstructures that mimic natural biominerals and to gaining an insight into the biomineralization mechanism. Among these methods, Langmuir monolayer has been often used as a tool to mimic biological membrane systems such as cell membrane, and it usually serves as a model system for simulating and studying biomacromolecules and biomacromolecule-controlled mineralization at the air-water interface. At the same time, Langmuir monolayer usully involves the interfacial molecular recognition at organic-inorganic interface. This makes it feasible for Langmuir monolayer to be employed as a synthetic model of biomacromolecules so as to better understand the interface nature of organic-mineral interface and what occurs at the interface between organic molecules and inorganic materials. For example, Mann and co-workers have examined the effect of small molecule models on the growth of calcite crystal. However, small molecules are significantly different from biomacromolecules in many aspects. Therefore, in recent years, interest has been grown in mimicking biological self assembly with peptides or proteins designed in vitro. Typicaly, self-assembled two-dimensional layers of proteins at the air-water interface, the so-called Langmuir monolayers, are of particular interest for the fabrication of biomaterials and have a number of potential applications. And in particular, Langmuir monolayers, as substrates in biological mineralization, play important roles in relation to controlling the size, orientation, and morphology of inorganic crystals and directed crystal growth at the surface of protein layer. Unfortunately, due to the complexity in chemical composition and structure of the matrix protein in biomineralization process and complex interactions between them, the specific role of matrix protein at the air-water interface still remains unclear.
     In this dissertation, three proteins, bovine serum albumin, pepsin, type-Ⅰcollagen, have been used as templates for controlling the inorganic materials to crystallize under Langmuir monolayers. The main work included three sections as followed:
     1. A new superstructure of spindle-like calcite crystals consisting of nanocrystals has been synthesized via a transformation process under the Langmuir monolayer of bovine serum albumin (BSA) at room temperature. The superstructures are composed of hundreds of well-stacked calcite nanoneedles consisting of oriented and aggregated nanocrystals transformed from amorphous phase. The evidence of the phase transformation process has been observed in detail by measuring the structure of the products at different reaction stages. It has been found that the products are evolved from amorphous particles to spindle-like particles which crystallize into superstructures. The mineralization process and the interaction between the inorganic and bioorganic components are discussed in relation to relevant protein-mediated nucleation models of biomineralization. Hopefully, the present research is to help understanding the protein-directed formation of complex and highly-ordered structures as well as biomineralization mechanism.
     2. Crystalline flower-shaped superstructures of calcium carbonate, synthesized at the air-water interface through pepsin Langmuir monolayer at room temperature, are shown to be assembled by amorphous calcium carbonate nanoparticles, and evolved from monodisperse nanoparticles to the aggregations of nanoparticle and to flower-shaped superstructures. The phases, morphologies, and structure of the products acquired at the interface were characterized by X-ray diffractometry, scanning electron microscopy, transmission electron microscopy, selected area electron diffraction, and high resolution electron microscopy and atom force microscopy. The results suggest that pepsin Langmuir monolayer is responsible for the morphologies and structures of calcium carbonate minerals by first stabilizing their nanosized amorphous precursors, which then transform into amorphous aggregates via nonoriented aggregation of nanoparticles. This provides a novel and facile way for the study of biomineralization mechanisms and crystal growth modification. Moreover, the observed results may be of relevance for a better understanding of the role of proteins in the process of mineralization.
     3. Controlled deposition of rod-like single crystal calcite can be obtained by "copying" the symmetry and dimensionalities of collagen fiber, The calcite crystallites are found on the surface of the collagen fiber with consistent orientation along the longitudinal axis of collagen fiber; the results indicate that the combination of the ordered surface structure on the collagen fiber is the key factor in the oriented nucleation and growth process of the mineral. The mineralized collagen will combine the good mechanical properties of the collagen fiber and the biocompatibility of calcium carbonate and may be assembled into ideal biomaterials as bone implants.
引文
[1](a) H. A. Lowenstam, S. Weimer, On Biomineralization, Oxford University Press: Oxford,1989; (b)H.A. Lowenstam,Science 1981,211,1126-1131.
    [2]S. Mann, Biomineralization:Principles and Concepts in Bioinorganic Materials Chemistry, Oxford University Press:Oxford,2001.
    [3]K. Simkiss, Biomineralization:Cell Biology and Mineral Deposition, Academic Press:San Diego, CA,1989.
    [4]F. Z. Cui, Biomineralization, Tsinghua University Press:Beijing,2007.
    [5]J. M. Ouyang, The Matrix Modulation of Biomineralization and Their Biomimetic Applications, Chemical Industry Press:Beijing,2006.
    [6]戴永定著,生物矿物学,北京:石油工业出版社,1994.
    [7](a) E. Bauerlein. Handbook of Biomineralization, Wiley VCH Verlag GmbH, Weinheim Germany 2007; (b) E. Bauerlein. Biomineralization. Wiley-VCH Verlag GmbH, Weinheim Germany,2000.
    [8]D. Faivre, D. Schiiler, Chem. Rev.2008,108,4875-4898.
    [9]M. Hildebrand, Chem. Rev.2008,108,4855-4874.
    [10]L. C. Palmer, C. J. Newcomb, S. R. Kaltz, E. D. Spoerke, S. I. Stupp, Chem. Rev. 2008,108,4754-4783.
    [11]S. Mann, R. J. P. Williams, J. chem. Soc., Dalton Trans.1983,311-316.
    [12](a) S. Mann, Nature 1988,332,119-124. (b) Z. H. Xue, C. Wu, Z. L. Du, J. Henan. University,2003,33,21-25.
    [13]徐筱杰,超分子建筑-从分子到材料,第三章,分子识别原理及机制,北京,科学技术文献出版社,2000,p53-71.
    [14]N. A. J. M. Sommerdijk, G. de With, Chem. Rev.2008,108,4499-4550.
    [15]L. M. J. Letellier, S. R. Vogel, J Phys Chem.1997,101B,6665-6669.
    [16]M. A. Crenshaw, Biomineralization,1972,6-11.
    [17]仲维卓,华素坤,晶体生长形态学,北京:科学出版社,1999,p114-123.
    [18]H. Lin, J. Cryst. Growth 1998,192,250-256.
    [19]C. A. W. Andrew, Biomaterials 1998,19,1309-1316.
    [20]R. K. Tang, C. Y. Jiang, Z. H. Tai, J. Chem. Soc., Dalton Trans.1997,4037-4041.
    [21]S. Weiner, W. Traub, Phil Trans R Soc Lond B,1997,304,425-434.
    [22]N. J. Reeves, J. S. Evans, J Phys Chem.1997,101B,6665-6669.
    [23]李斌,张希,白玉白,徐如人.高等化学学报,2000,21,185-186.
    [24]J. M. Ouyang, D. Z. Chen, J. P. Zhong, Mol. Cryst Liq Cryst.2004,420,91-96.
    [25]S. Weiner, J. Mahamid, Y. Politi, Y. R. Ma, L. Addadi, Front. Mater. Sci. China 2009,3,104-108.
    [26]L. B. Gower, Chem. Rev.2008,108,4551-4627
    [27]X. R. Xu, A. H. Cai, R. Liu, H. H. Pan, R. K. Tang, Prog. Chem,2008,20,54-59.
    [28]F. Marin, G. Luquet, B. Marie, D. Medakovic, Current Topics in Developmental Biology,2008,80,209-276.
    [29]C. Zhang, R. Q. Zhang, Marine Biotech.2006,8,572-586.
    [30]F. Marin, G. Luquet, C. R. Paleevol,2004,3,469-492.
    [31]G. Falini. S. Albeck, S. Weiner, L. Addadi, Science 1996,271,67-69.
    [32]J. Aizenberg, Biomineralization:Formation, diversity, evolution and application (I. Kobayashi, H. Ozawa, eds.), Tokai Univerisity Press:Tokai,2004,209-214.
    [33]L. Addadi, S. Weiner, M. Geva, Z. Kardiol. 2001,90:Suppl 3,92-98.
    [34]姜国良,陈丽,刘云.海洋科学,2002,26,16-18.
    [35]H. Nagasawa, Thalassas,2004,20,15-24.
    [36]T. Samata, Thalassas,2004,20,25-44.
    [37]谢安建,沈玉华,茆建强.光谱学与光谱分析,2001,2,,347-349.
    [38]谢安建,沈玉华,张胜义等.无机化学学报,2001,17,603-607.
    [39]J. Singer, Ann. Rev. Biochem.1974,43,805-810.
    [40]J. Singer, G. Nicolson, Science,1972,175,20-723.
    [41]戴永定,沈继英.动物学杂志,1995,30,55-58.
    [42]A. Bosker, L. Spevak, M. Tan, S. B. Doty, W. T. Butler, Calcif Tissue Int,2000,67, 472-478.
    [43]薛中会,张兴堂,陈艳辉等.无机化学学报,2004,20,1426-1428.
    [44]薛中会,戴树玺,张兴堂等.无机化学学报,2006,22,1049-1053.
    [45]C. Combes, C. Rey, M. Freche, J. Mater. Sci. Mater. Med.1999,10,153-160.
    [46]I. Weissbuch, L. Addadi, M. Lahav, L. Leiserowitz, Science 1991,253,637-645.
    [47]L. Addadi, S. Weiner, M. Geva, Z Kardiol.2001,90,92-98.
    [48]I. Weissbuch, F. Frolow, L. Addadi, M. Lahav. Science,1991,53,637-645.
    [49]C. Combes, C. Rey, Biomaterials,2002,23,2817-2823.
    [50]A. Berman, L. Addadi, S. Weiner, Nature 1988,311(11),546-548.
    [51]崔福斋,冯庆玲.生物材料学,北京:科学出版社,1996,34-45.
    [52]B. A. Gotliv, L. Addadi, S. Weiner, Chembiochem,2003,4,522-529.
    [53]A. Mersmann, Marcel, Dekker Inc.:New York,1994,120-124.
    [54]J. W. Mullin, Crystallization 2nd ed. Butterworths:London,1972.
    [55]陈惠黎,李茂深,朱运松.生物大分子的结构与功能,上海医科大学出版社:上海,1999.
    [56]Y. W. Fan, F. Z. Cui, J. Ge, Singl. Mol,2001,2,121-124.
    [57]Y. H. Shen, W. J. Yue, A. J. Xie, Z. Q. Lin, F. Z. Huang, Colloids. Surf. A 2004, 234,35-41.
    [58]E. I. Ochiai,无机生物化学导论,罗新锦,张乃正译,北京:化学工业出版社,1987.
    [59]K. Simkiss, K. Wilbur, Biomineralization:Cell Biology and Mineral Deposition Academic Press:San Diego,1989.
    [60]K. M. McGrath, Adv. Mater.2001,13,989-992.
    [61](a) J. Aizenberg, A. Tkachenko, S. Weiner, et al. Nature,2001,412,819-822. (b) Z. H. Xue et al., J. Xuchang Uinversity,2008,27,107-111.
    [62]E. M. Landau, R. Popovitz-Biro, M. Levanon, Mol. Cryst. Liq. Cryst.1986,134, 323-335.
    [63]S. Mann, B. R. Heywood, S. Rajam, J. D. Birchall, Science,1988,334,692-695.
    [64]S. Mann, B. R. Heywood, S. Rajam, J. D. Birchall, Proc. R. Soc. Lond A 1989,423, 457-471.
    [65]S. Mann, B. R. Heywood, S. Rajam, J. B. A. Walker, R. J. Davey, J. D. Birchall, Adv. Mater.1990,2,257-261.
    [66]N. P. Hughes, D. Heard, C. C. Perry, R. J. P. Williams, J. Phys. D:Appl. Phys.1991, 24,146-153.
    [67]S. Rajam, B. R. Heywood, J. B. A. Walker, S. Mann, J. Chem. Soc. Faraday Trans. 1991,87,727-734.
    [68]B. R. Heywood, S. Rajam, S. Mann, J. Chem. Soc. Faraday Trans.1991,87, 735-743.
    [69]J. B. A. Walker, B. R. Heywood, S. Mann, J. Mater. Chem.1991,1,889-890.
    [70]S. Mann, B. R. Heywood, S. Rajam, J. B. A. Walker, J. Phys. D:Appl. Phys.1991, 24,154-164.
    [71]B. R. Heywood, S. Mann, J. Am. Chem. Soc.1992,114,4681-4686.
    [72]B. R. Heywood, S. Mann, Langmuir 1992,8,1492-1498.
    [73]X. K. Zhao, J. Yang, L. D. McCormick, J. H. Fendler, J. Phys. Chem.1992,96, 9933-9939.
    [74]S. Mann, D. D. Archibald, J. M. Didymus, T. Douglas, B. R. Heywood, F. C. Meldrum, N. J. Reeves, Science 261,1286-1292.
    [75]T. Douglas, S. Mann, Mater. Sci. Eng. C,1994,1,193-199.
    [76]B. R. Heywood, Chem. Mater.1994,6,311-318.
    [77]J. K. Pike, H. Byrd, D. R. Talham, Thin Solid Films,1994,243,510-514.
    [78]H. B. Lu, C.L. Ma, H. Cui L. F. Zhou, R. Z. Wang, F. Z. Cui, J. Cryst. Growth, 1995,155,120-125
    [79]Z. H. Xue, S. X. Dai. X. T. Zhang, Y. C. Li, Y. B. Huang, Z. L. Du, Chinese J. Inorg. Chem.2006,22,1049-1054.
    [80]Z. H. Xue, X. T. Zhang, Y. H. Chen, S. X. Dai, Y. C. Li, Y. B. Huang, T. J. Li, Z. L. Du, Chinese J. Inorg. Chem.2004,20,1426-1428.
    [81]Z. H. Xue, B. B. Hu, X. L. Jia, H. W. Wang, Z. L. Du, Mater. Chem. Phys.2009, 114,47-52.
    [82]Z. H. Xue, S. X. Dai, B. B. Hu, Z. L. Du, Mater. Sci. Eng. C 2009,29,1998-2002.
    [83]B. B. Hu, Z. H. Xue, H. W. Wang, L. Cai, H. Y. Xiong, X. H. Jiang, Z. L. Du, J. Mater. Chem.2009,19,2373-2379.
    [84]A. Berman, D. J. Ahn, A. Lio, M. Salmeron, A. Reichert, D. Charych, Science 1995, 269,515-522.
    [85]D. Ahn, A. Berman, D. Charych, J. Phys. Chem.1996,100,12455-12461.
    [86]F. Z. Cui, L. F. Zhou, H. Cui, C. L. Ma, H. B. Lu, H. D. Li, J. Cryst. Growth 1996, 169,557-562.
    [87]G. K. Hunter, Curr Opin Solid State Mater Sci 1996,1,430-435.
    [88]P. Calvert, P. Rieke, Chem. Mater.1996,8,1715-1727.
    [89]J. Lahiri, G. F. Xu, D. M. Dabbs, N. Yao,I. A. Aksay, J. T. Groves, J. Am. Chem. Soc.1997,119,5449-5450.
    [90]A. L. Litvin, S. Valiyaveettil, D. L. Kaplan, S. Mann, Adv. Mater.1991,9, 124-127.
    [91]C. L. Ma, H. B. Lu, R. Z. Wang, L. F. Zhou, F. Z. Cui, F. Qian, J. Cryst. Growth 1997,173,141-149.
    [92]M. J. Lochhead, S. R. Letellier, V. Vogel, J. Phys. Chem. B 1997,101, 10821-10827.
    [93]R. K. Tang, C. Y. Jiang, Z. H. Tai, J. Chem. Soc., Dalton Trans.1997, 4037-4041.
    [94]G. F. Xu, N. Yao, I. A. Aksay, J. T. Groves, J. Am. Chem. Soc.1998,120, 11977-11985.
    [95]S. J. Cooper, R. B. Sessions, S. D. Lubetkin, J. Am. Chem. Soc.1998,120, 2090-2098.
    [96]S. J. Cooper, R. B. Sessions, S. D. Lubetkin, Langmuir 1997,13,7165-7172.
    [97]L. G. Zhang, J. F. Liu, Z. Y. Pan, Z. H. Zu, Supramol. Sci.1998,5,577-581.
    [98]H. Lin, H. Sakamoto, W. S. Seo, K. Kuwabara, K. Koumoto, J. Cryst. Growth 1998, 192,250-256.
    [99]S. R. Letellier, M. J. Lochhead, A. A. Campbell, V. Vogel, Biochimica et Biophysica Acta 1998,1380,31-45.
    [100]S. Whipps, S. R. Khan, F. J. Palko, R. Backov, D. R. Talham, J. Cryst. Growth 1998,192,243-249.
    [101]A. Berman, D. Charych, J. Cryst. Growth 1999,198/199,796-801.
    [102]U. N. Roy, K. Mallik, L. M. Kukreja, Appl. Phys. A 1998,67,259-261.
    [103]U.N. Roy, A. Ingalel, L.M. Kukreja, S. Mishral, V. Ganesan, K.C. Rustagi, Appl. Phys. A 1999,69,385-388.
    [104]A. Milekhin, M. Friedrich, D. R. T. Zahn, L. Sveshnikova, S. Repinsky, Appl. Phys. A 1999,69,97-100.
    [105]B. Li, Y. Liu, N. Lu, J. H. Yu, Y. B. Bai, W. Q. Pang, R. R. Xu, Langmuir 1999, 15,4837-4841.
    [106]M. Seidl, M. Schurr, A. Brugger, E. Volz, H. Voit, Appl. Phys. A 1999,68,81-85.
    [107]P. J. J. A. Buijnsters, J. J. J. M. Donners, S. J. Hill, B. R. Heywood, R. J. M. Nolte, B. Zwanenburg, N. A. J. M. Sommerdijk, Langmuir 2001,17,3623-3628
    [108]R. Backov, C. M. Lee, S. R. Khan, C. Mingotaud, G. E. Fanucci, D. R. Talham, Langmuir 2000,16,6013-6019.
    [109]L. H. Lu, H. N. Cui, W. Li, H. J. Zhang, S. Q. Xi, Chem. Mater.2001,13, 325-328.
    [110]I. Kuzmenko, H. Rapaport, K. Kjaer, J. Als-Nielsen, I. Weissbuch, M. Lahav, L. Leiserowitz, Chem. Rev.2001,101,1659-1696.
    [111]G. Hemakanthi, A. Dhathathreyan, B. U. Nair, T. Ramasami, D. Mobius, T. Schaffer, Colloids Surf. A 2001,181,115-121.
    [112]D. Rautaray, S. R. Sainkar, N. R. Pavaskar, M. Sastry, CrystEngComm,2002,4, 626-630.
    [113]E. DiMasi, V. M. Patel, M. Sivakumar, M. J. Olszta, Y. P. Yang, and L. B. Gower, Langmuir 2002,18,8902-8909.
    [114]D. Volkmer, M. Fricke, C. Agenab, J. Mattay, CrystEngComm,2002,4,288-295.
    [115]D. Volkmer, M. Fricke, D. Vollhardt, S. Siegel, J. Chem. Soc., Dalton Trans., 2002,4547-4554.
    [116]D. M. Duffy, J. H. Harding, J. Mater. Chem.2002,12,3419-3425.
    [117]J. Kmetko, C. Yu, G. Evmenenko, S. Kewalramani, P. Dutta, Phys. Rev. Lett. 2002,89,186102(1)-186102 (4).
    [118]J. M. Ouyang, S. P. Deng, Dalton.Trans.2003,2846-2851.
    [119]D. Volkmer. M. Fricke, Z. Anorg. Allg. Chem.2003,629,2381-2390.
    [120]E. Loste, E. Diaz-Marti, A. Zarbakhsh, F. C. Meldrum, Langmuir 2003,19, 2830-2837.
    [121]E. DiMasi, M. J. Olszta, V. M. Patel, L. B. Gower, CrystEngComm 2003,5, 346-350.
    [122]Y. J. Zhang, P. He, X. D. Xu, J. H. Li, Thin Solid Films 2004,468,273-279.
    [123]A. Berman, N. Belman, Y. Golan, Langmuir 2003,19,10962-10966.
    [124]H. K. Park, I. Lee, K. Kim, Chem. Commun.2004,24-25.
    [125]Y. Zhang, R. G. Jin, L. Zhang, M. H. Liu, New J. Chem.2004,28,614-617.
    [126](a) D. M. Duffy, J. H. Harding, Langmuir 2004,20,7637-7642; (b) D. M. Duffy, J. H. Harding, Langmuir 2004,20,7630-7636.
    [127]K. Sato, Y. Kumagai, K. Watari, J. Tanaka, Langmuir 2004,20,2979-2981.
    [128]D. Volkmer, M. Fricke, C. Agen, J. Mattay, J. Mater. Chem.2004,14,2249-259.
    [129]L. J. Zhang, H. G. Liu, X. S. Feng, D. J. Qian, L. Zhang, X. L. Yu, Q. L. Feng, Thin Solid Films 2004,458,287-291.
    [130]J. M. Ouyang, S. P. Deng, J. P. Zhong, B. Tieke, S. H. Yu, J. Cryst. Growth 2004, 270,646-654.
    [131]J. H. Harding, D. M. Duffy, J. Mater. Chem.2006,16,1105-1112.
    [132]D. Volkmer, M. Fricke, M. Gleiche, L. F. Chi, Mater. Sci. Eng. C 2005,25, 161-167.
    [133]S. Hacke, D. Mobius, V. T. Lieu, Appl. Surf. Sci.2005,246,362-366.
    [134]S. P. Deng, J. M. Ouyang, Colloids Surf. A 2005,257/258,47-50.
    [135]S. Kewalramani, G. Evmenenko, C. J. Yu, K. Kim, J. Kmetko, P. Dutta, Surf. Sci. 2005,591, L286-L291.
    [136]L. J. Zhang, H. G. Liu, R.J. Zhang, L. Zhang, D. J. Qian,Y. D. Mu, X. L. Yu, X. S. Feng, Colloids Surf A 2005,257/258,307-312.
    [137]D. Volkmer, N. Mayr, M. Fricke, Dalton Trans.2006,4889-4895.
    [138]M. Fricke, D. Volkmer, C. E. Krill, M. Kellermann, A. Hirsch, Cryst. Growth Des. 2006,6,1120-1123.
    [139]E. DiMasi, S. Y. Kwak, F. F. Amos, M. J. Olszta, D. Lush, L. B. Gower, Phys. Rev. Lett.2006,97,045503(1)-045503(4).
    [140]D. R. Talham, R. Backov, I. O. Benitez, D. M. Sharbaugh, S. Whipps, S. R. Khan, Langmuir 2006,22,2450-2456
    [141]S. Cavalli, D. C. Popescu, E. E. Tellers, M. R. J. Vos, B. P. Pichon, M. Overhand, H. Rapaport, N.A. J. M. Sommerdijk, A. Kros, Angew. Chem. Int. Ed.2006,45, 739-744.
    [142]H. Muller, R. Zentel, A. Janshoff, M. Janke, Langmuir 2006,22,11034-11040.
    [143]D. C. Popescu, M. M. J. Smulders, B. P. Pichon, N. Chebotareva, S. Y. Kwak, O. L. J. van Asselen, R. P. Sijbesma, E. DiMasi, N. A. J. M. Sommerdijk, J. Am. Chem. Soc.2007,129,14058-14067.
    [144]E. DiMasi, S. Y. Kwak, B. P. Pichon, N. A. J. M. Sommerdijk, CrystEngComm, 2007,9,1192-1204.
    [145]B. P. Pichon, S. Cantin, M. M. J. Smulders, M. R. J. Vos, N. Chebotareva, D. C. Popescu, O. van Asselen, F. Perrot, R. Sijbesma, N. A. J. M. Sommerdijk, Langmuir 2007,23,12655-12662
    [146]Y. M. Liu, S. P. Deng, H. Zheng, J. M. Ouyang, Chin. Chem. Lett.2007,18, 345-348.
    [147]M. Maas, H. Rehage, H. Nebel, M. Epple, Colloid Polym. Sci.2007,285, 1301-1311
    [148]S. Kewalramani, J. Kmetko, G. Dommett, K. Kim, G. Evmenenko, H. Mo, P. Dutta, Thin Solid Films 2007,515,5627-5630.
    [149]S. Segman-Magidovich, H. Grisaru, T. Gitli, Y. Levi-Kalisman, H. Rapaport, Adv. Mater.2008,20,2156-2161.
    [150]B. P. Pichon, P. H. H. Bomans, P. M. Frederik, N. A. J. M. Sommerdijk, J. Am. Chem. Soc.2008,130,4034-4040.
    [151]Y. J. Chen, J. W. Xiao, Z. N. Wang, S. H. Yang, Langmuir 2009,25,1054-1059.
    [152]E. M. Pouget, P. H. H. Bomans, J. A. C. M. Goos, P. M. Frederik, G. de With, N. A. J. M. Sommerdijk, Science 2009,323,1455-1458.
    [153]J. W. Xiao, Z. N. Wang, Y. C. Tang, S. H. Yang, Langmuir DOI: 10.1021/la903641k.
    [1]S. Mann, Biomineralization, Oxford University Press:U.K.,2001.
    [2]H. Ringsdorg, B. Schlarb, J. Vengzmer, Angew. Chem. Int. Ed.1988,27,113-118.
    [3](a)J.H.Fendler,江龙等译,尖端材料的膜模拟,北京:科学出版社,1999;(b)华坚,蛋白质在气/水界面的物理化学性质和单层膜成形,四川大学博士论文,2003.
    [4]J. R. Brown, Fed. Proc. Fed. Am. Soc. Exp. Biol.1975,34,591-595.
    [5]T. D. Gurkov, S. C. Russev, K. D. Danov, I. B. Ivanov, B. Campbell, Langmuir 2003,19,7362-369.
    [6]J. Sanchez-Gonzalez, J. Ruiz-Garcia, M.J. Galvez-Ruiz, J. Colloids Interface. Sci. 2003,267,286-290.
    [7]J. R. Lu, T. J. Su, R. K. Thomas,1999,213,426-430.
    [8]M. Z. Dogan, J. Glazer, Nature 1952,170,417-418.
    [9]M. Blank, J. Lucassen, M. V. D. Tempel, J. Colloid. Interface. Sci.,1970,33, 94-100.
    [10]F. Boury, T. Ivanova, I. Panaiotov, J. E. Proust, Langmuir 1995,11,599-606.
    [11]J. Llopis, A. Albert, A. Biochem. Biophys.1959,81.146-158.
    [12]K. S. Birdl, A. Nikolov, J. Phys. Chem.1979,53,365-367.
    [13]T. M. Herrington, S. S. Sahi, Colloids Surf.1988,32,289-295.
    [14]A. Eaglesham, T. M. Herrington, J. Penfold, Colloids Surf.1992,65,9-16.
    [15]M. R. R. Nino, J. M. R. Patino, Ind. Eng. Chem. Res.2002,41,1489-1495
    [16]X. Y. Wen, E. I. Franses, Colloids Surf. A 2001,190,319-332.
    [17]S. Ghosh, H. B. Bull, Biochimica et Biophysica Acta,1963,66,150-157.
    [18]N. Watanabe, T. Shirakawa, M. Iwahashi, K. Ohbu, T. Seimiya, Colloid Polym. Sci. 1986,264,903-908.
    [19]J. Sanchez-Gonzalez, M.A. Cabrerizo-Vilchez, M.J. Galvez-Ruiz, Colloids Surf. B 2001,21,19-27.
    [20]D. Cho, G. Narsimhan, E. I. Franses, Langmuir 1997,13,4710-4715.
    [21]J. Sanchez-Gonzalez, M.A. Cabrerizo-Vilchez, M.J. Galvez-Ruiz, Colloids Surf. B 1999,12,123-132.
    [22]Y. Kitano, Bull. Chem. Soc. Jpn.1962,32,1973-1980.
    [23]J. Tang, P. Sepulveda, J. Marciniszyn, Proc. Nat. Acad.&i. USA,1973,70, 3437-3441.
    [24]S. Cavalli, D. C. Popescu, E. E. Tellers,M. R. J. Vos, B. P. Pichon, M.Overhand, H. Rapaport, N. A. J. M. Sommerdijk,A. Kros, Angew. Chem. Int. Ed.2006,45, 739-744.
    [25]B. P. Pichon, S. Cantin, M. M. J. Smulders, M. R. J. Vos, N. Chebotareva, D. C. Popescu, O. van Asselen, F. Perrot, R. Sijbesma, N. A. J. M. Sommerdijk, Langmuir 2007,23,12655-12662
    [26]J. Israelachvili, Intermolecular and Surface Forces, Ⅱ edition, Academic Press Inc: London,1991.
    [27]P. Pal, T. Kamilya, M. Mahato, G. B. Talapatra, Colloids Surf. B 2009,73, 122-132.
    [28]J. Xicohtencatl-Cortes, J. Mas-Oliva, R. Castillo, J. Phys. Chem. B 2004,108, 7307-7312.
    [29]L. Dziri, K. Puppala, R. M. Leblenc, J. Colloid Interface. Sci.1997,194,37-42.
    [30]F. J. MacRitchie, Colloid Interface Sci.1985,105,119-125.
    [31]G. K. Chudinova, O. N. Pokrovskaya, A. P. Savitskii, Russ. Chem. Bull.1995,44, 1958-1967.
    [32]F. Z. Cui, Biomineralization, Tsinghua University Press:Beijing,2007, p114-118.
    [33]A. S. Fadeev, G. P. Yampolskaya, S. M. Levachev, S. Yu. Zaitsev, Biochemistry (Moscow) Supplement Series A:Membrane and Cell Biology,2008,2,62-72.
    [34]A. S. Fadeev, G. P. Yampolskaya, V. M. Rudoy, S. M. Levachev, V. N. Izmailova, Colloid J.,2003,65,500-507.
    [35]S. C. Ellis, K. G. A. Pankhurst, Biochem. J.1952,52,88-92.
    [36]Y. F. Jiao, Q. L. Feng, X. M. Li, Mater. Sci. Eng., C 2006,26,648-652.
    [37]F. H. Shen, Q. L. Feng, C. M. Wang, J. Cryst. Growth 2002,242,239-244.
    [38]S. Weiner, W. Traub,1986,206,262-266.
    [39]J. F. Rathman, P. Sun, Faraday Discuss.2005,129,193-203.
    [40]A. S. Deshpande, E. Beniash, Cryst Growth Dis.2008,8,3084-3090.
    [41]F. Z. Cui, Y. Li, J. Ge, Mater. Sci. Eng. R 2007,57,1-27.
    [42]F. Z. Cui, Y. Wang, Q. Cai, W. Zhang, J. Mater. Chem.2008,18,3835-3840
    [43]沈同,王镜岩主编,生物化学,北京,高等教育出版社,1990.
    [44]J. Vincent, Structural biomaterial. Princeton University Press,1990.
    [45]永井裕编著,胶原蛋白实验方法上海:上海中医学院出版社,1992.
    [46]V. Vttani, Micron,2001,32,251-260.
    [47]D. L. Christiansen, F. H. Silver, Cell. Mater.1993,3,177-188.
    [46]N. C. Lumenthal, V. Cosma, E. Gomes, Calcif. Tissue. Int.1991,48,440-442.
    [1]H. A. Lowenstam, S. Weiner, On Biomineralization, Oxford University Press:New York,1989.
    [2]L. Addadi, Weiner, S. Angew. Chem. Int.1992,31,153-169.
    [3]J. H. Zhan, H. P. Lin, C. Y. Mou, Adv. Mater.2003,15,621-623.
    [4]J. Aizenberg, G. Lambert, L. Addadi, S. Weiner, Adv. Mater.1996,8,222-225.
    [5]S. Mann, Biomineralization, Oxford University Press:U.K.,2001.
    [6]J. Aizenberg, A. J. Black, G. M. Whitesides, Nature 1999,398,495-498.
    [7]S. B. Mukkamala, A. K. Powell, Chem. Commun.2004,8.918-919.
    [8]L. A. Estroff, A. D. Hamilton, Chem. Mater.2001,13,3227-3235.
    [9]A. M. Belcher, X. H. Wu, R. J. Christensen, P. K. Hansma, G. D. Stucky, D. E. Morse, Nature.1996,381,56-58.
    [10]R. Kniep, S. Busch, Angew. Chem. Int. Ed. Engl.1996,35,2624-2626.
    [11]Z. R. R. Tian, J. A. Voigt, J. Liu, B. McKenzie, M. J. McDermott, M. A. Rodriguez, H. Konishi, H. F. Xu, Nat. Mater.2003,2,821-826.
    [12]I. W. Kim, R. E. Robertson, R. Zand, Cryst. Growth Des.2005,5(2),513-522.
    [13]A. Sugawara, T. Kato, Chem. Commun.2000,6,487-488.
    [14]I. Lee, S. W. Han, S. J. Lee, H. J. Choi, K. Kim, Adv. Mater.2002,14,1640-1643.
    [15]K. Naka, Y. Tanaka, Y. Chujo, Y. Ito, Chem. Commun.1999,19,1931-1932.
    [16]D. Volkmer, M. Harms, L. Gower, A. Ziegler, Angew. Chem., Int. Ed.2005,44, 639-644.
    [17]S. Mann, B, R. Heywood, S. Rajam, J. D. Berchall, Nature 1988,334,692-694.
    [18]J. N. Cha, G. D. Stucky, D. E. Morse, T. J. Deming, Nature.2000,403,289-292.
    [19]G. F. Xu, W. X. Wang, J. T. Groves, M. H. Hecht, PNAS. USA 2001,98, 3652-3657.
    [20]A. Eaglesham, T. M. Herrington, J. Colloid. Surf.1992,65,9-16.
    [21]F. Sicheri, D. S. C. Yang, Nature 1995,375,427-431.
    [22]J. Sanchez-Gonzalez, M.A. Cabrerizo-Vilchez, M. J. Galvez-Ruiz, Colloid. Surf. B 2001,21,19-27.
    [23]F. MacRitchie, J. Colloid Interface Sci.1997,61,223-226.
    [24]F. MacRitchie, Chemistry at Interface, Academic Press, San Diego, CA,1990, p150-155.
    [25]J. Sanchez-Gonzale, J. Ruiz-Garcia, M. J. Galvez-Ruiz, J. Colloid. Interf Sci.2003, 267,286-293.
    [26]J. Sanchez-Gonzalez, M. A. Cabrerizo-Vilchez, M. J. Galvez-Ruiz, Colloid. Surf. B 1999,12,123-138.
    [27]N. N. Mamedova, N. A. Kotov, A. L. Rogach, J. Studer, Nano Lett.2001,1, 281-286.
    [28]Y. W. Fan, F. Z. Cui, J. Ge, Single Mol.2001,2,121-124.
    [29]S. V. Dorozhkin, E. I. Dorozhkina, Colloids Surf. A 2003,215,191-199.
    [30]J. F. Liu, H. D. Jiang, X. Y. Liu, J. Phys. Chem. B,2006,110,9085-9089.
    [31]J. G. Liang, X. P. Ai, Z. K. He, H. Y. Xie, D. W. Pang, Mater. Lett.2005,59, 2778-2781.
    [32]Z. H. Xue, S. X. Dai, X. T. Zhang, Y. C. Li, Y. B. Z. L. Huang, Du, Chin. J. Inorg. Chem.2006,22,1049-1054.
    [33]Y. Kitano, Bull. Chem. Soc. Jpn.1962,35,1973-1980.
    [34]L. B. Gower, Chem. Rev.2008,108,4551-4627.
    [35]B. R. Heywood, S. Rajam, S. Mann, J. Chem. Soc. Faraday Trans.1991,87, 735-743.
    [36]T. D. Gurkov, S. C. Russev, K. D. Danov, I. B. Ivanov, B. Campbell, Langmuir 2003,19,7362-7369.
    [37]Y. J. Jiang, D. Yang, L. Zhang, Y. Jiang, Y. F. Zhang, J. Li, Z. Y. Jiang, Ind. Eng. Chem. Res.2008,47,1876-1882.
    [38]R.A. Metzler, I.W. Kim, K. Delak, J. S. Evans, D. Zhou, E. F. Beniash, M. Wilt, J. W. Abrecht, J. H. Chiou, S. N. Guo, P. U. Coppersmith, P. A. Gilbert, Langmuir 2008,24,2680-2687.
    [39]Z. H. Xue, B. B. Hu, X. L. Jia, H. W. Wang, Z. L. Du, Mater. Chem. Phys.2009, 114,47-52.
    [40]E. M. Pouget, P. H. H. Bomans, J. A. C. M. Goos, P. M. Frederik, G. de. With, N. A. J. M. Sommerdijk, Science 2009,323,1455-1458.
    [41]L. Fernandez-Diaz, A. Putnis, M. Prieto, C. V. Putnis, J. Sediment. Res.1996.66, 482-491.
    [42]S. Raz, P. C. Hamilton, F. H. Wilt, S. Weiner, L. Addadi, Adv. Funct. Mater.2003, 13,480-486.
    [43]Z. P. Zhang, H. P. Sun, X. Q. Shao, D. F. Li, H. D. Yu, M. Y. Han, Adv. Mater. 2005,17,42-47.
    [44]G. Fu, S. Valiyaveettil, B. Wopenka, D. E. Morse, Biomacromolecules,2005,6, 1289-1298.
    [45]W. Ostwald, Z. Phys. Chem.1879,22,289-330.
    [46]S. H. Yu, H. Colfen, M. Antonietti, J. Phys. Chem. B,2003,107,7396-7405.
    [47]W. F. Berg, Proc. Roy. Soc. A 1938,164,79-95.
    [48]J. R. Lu, T. J. Su, R. K. Thomas, J. Colloid Interf. Sci.1999,213,426-437.
    [49]J. H. Xiang, H. Q. Cao, J. H. Warner, A. A. R. Watt, Cryst. Growth Des.2008,8, 4583-4588.
    [50]Y. Yao, W. Y. Dong, S. M. Zhu, X. H. Yu, D. Y. Yan, Langmuir 2009. DOI: 10.1021/la901913d
    [51]H. Colfen, L. M. Qi, Chem. Eur. J.2001,7,106-116.
    [52]T. Peters, Adv. Protein Chem.1985,37,161-245.
    [53]J. R. Lu, T. J. Su, J. Penfold, Langmuir 1999,15,6975-6983.
    [54]D. Carter, J. X. Ho, Advances in Protein Chemistry. Academic Press:New York, 1994, p153-203.
    [55]T. Peters, Advances in Protein Chemistry, Academic Press:New York,1985, p161-245.
    [56]S. Mann Nature 1988,332,119-124.
    [57]M. J. Lochhead, S. R. Letellier, V. Vogel, J. Phys. Chem. B,1997,101, 10821-10827.
    [58]B. A. Gotliv, L. Addadi, S. Weiner, ChemBiochem,2003,4,522-529.
    [59]E. D. Masi, S.Y.Kwak, B. P. Pichon, CrystEngComm,2007,9,1192-1204.
    [60]R. I. Jonathan, Y. J. Han, M. W. Trevor, Chem. Soc.2007,129,10370-10381.
    [61]Y. J. Han, J. Aizenberg, Angew. Chem. Int. Ed.2003,42,3668-3670.
    [62](a) Y. Zhang, R. Xiao, L. lin, Marine Sciences 2004,28,33-37. (b) X. L. Jia, Z. H. Xue, B. B. Hu, S. X. Dai, X. T. Zhang, Z. L. Du, Chinese. J. Inorg. Chem.2008,24,1615-1620.
    [63]G. K. Chudinova,O. N. Pokrovskaya, A. P. Savitskii, Russ. Chem. Bull.1995,44, 1958.
    [64]F. Schutn. Chem. Mater.2001,13,3184-3195.
    [65]C. Cheng, Z. Z. Shao, F. Vollrath, Adv. Funct. Mater.2008,18,1-8.
    [1]H. A. Lowenstam, Weiner, S. On Biomineralization, Oxford University Press:New York,1989.
    [2]F. Z. Cui, Biomineralization, Tsinghua University Press:Beijing,2007.
    [3]E. Dalas, P. Klepetsanis, P. G. Koutsoukos, Langmuir 1999,15,8322-8327.
    [4]A. W. Xu, Y. R. Ma, H. Colfen, J. Mater. Chem.2007,17,415-449.
    [5]E. M. Pouget, P. H. H. Bomans, J. A. C. M. Goos, P. M. Frederik, G. de. With, N. A. J. M. Sommerdijk, Science 2009,323,1455-1458.
    [6]M. Maas, H. Rehage, H. Nebel, M. Epple, Langmuir 2009,25,2258-2263.
    [7]C. Cheng, Z. Z. Shao, F. Vollrath,Adv. Funct. Mater.2008,18,2172-2179.
    [8]J. Aizenberg, D. A. Muller, J. L. Grazul, D. R. Hamann, Science 2003,299, 1205-1208.
    [9]J. Aizenberg, J. Hanson, T. F. Koetzle, S. Weiner, L. Addadi, J. Am. Chem. Soc. 1997,119,881-886.
    [10]N. B. J. Hetherington, A. N. Kulak, K. Sheard, F. C. Meldrum, Langmuir 2006,22, 1955-1958.
    [11]G. Fu, S. Valiyaveettil, B. Wopenka, D. E. Morse, Biomacromolecules 2005,6, 1289-1298.
    [12]K. A. Parayil, V. Subramanian, L. Rajamani, D. S. J. R. Seetharama, K. Manjunatha, V. Suresh, Angew. Chem. Int. Ed.2005,44,5476-5479.
    [13]I. Sarashina, K. Endo, American Mineralogist,1998,83,1510-1515.
    [14]C. Sollner, M. Burghammer, E. Busch-Nentwich, J. Berger, H. Schwarz, C. Riekel, T. Nicolson, Science 2003,302,282-286.
    [15]X. Q. An, C. B. Cao,J.Phys. Chem. C,2008,112,15844-15849.
    [16]Z. G. Yan, G. Jing, N. P. Gong, C. Z. Li, Y. J. Zhou, L. P. Xie, R. Q. Zhang, Biomacromolecules 2007,8,3597-3601.
    [17]S. F. Chen, S. H. Yu, T. X. Wang, J. Jian, H. Colfen, B. Hu, B. Yu, Adv. Mater.2005, 17,1461-1465.
    [18]H. Colfen, L. M. Qi, Chem. Eur. J.2001,7,106-116.
    [19]C. H. Lu, L. M. Qi, Langmuir 2004,20,7378-7380.
    [20]J. Tang, P. Sepulveda, J. Marciniszyn, Proc. Nat. Acad.&i. USA,1973,70, 3437-3439.
    [21]I. Langmuir, V. J. Schaefer, Langmuir 1938,60,1351-1360.
    [22]E. Gorter, J Gen Physiol.1935,18,421-426.
    [23]P. Pal, T. Kamilya, M. Mahato, G. B. Talapatra, Colloids Surf., B 2009,73, 722-131.
    [24]Y. Kitano, Bull. Chem. Soc. Jpn.1962,35,1973-1980.
    [25]J. Israelachvili, Intermolecular and Surface Forces,Ⅱ edition, Academic Press Inc., London,1991.
    [26]J. Xicohtencatl-Cortes, J. Mas-Oliva, R. Castillo, J. Phys. Chem. B 2004,108, 7307-7315.
    [27]L. Dziri, K. Puppala, R. M. Leblenc, J. Colloid Interface Sci. 1997,194,37-43.
    [28]F. J. MacRitchie, Colloid Interface Sci.1985,105,119-123.
    [29]G. K. Chudinova, O. N. Pokrovskaya, A. P. Savitskii, Russ. Chem. Bull.1995,44, 1958-1962.
    [30]S. Rajam, B. R. Heywood, J. B. A. Walker, S. Mann, J. Chem. Soc. Faraday. Trans.,1991,87,727-734.
    [31]T. H. Zhang, X. Y. Liu, J. Am. Chem. Soc.2007,129,13520-13526.
    [32]E. M. Pouget, P. H. H. Bomans, J. A. C. M. Goos, P. M. Frederik, G. D. With, N. A. J. M. Sommerdijk, Science 2009,323,1455-1458.
    [33]B. P. Pichon, P. H. H. Bomans, P. M. Frederik, N. A. J. M. Sommerdijk. J. Am. Chem. Soc.2008,130,4034-4040.
    [34]W. F. Berg, Proc. Roy. Soc. A 1938.164,79-95.
    [35]S. Mann, B. R. Heywood, S. Rajam, J. D. Birchall, Nature 1988,334,692-695.
    [36]J. Rudloff, H. Colfen, Langmuir 2004,20,991-996.
    [37]S. Cavalli, D. C. Popescu, E. E. Tellers, M. R. J. Vos, B. P. Pichon, M. Overhand, H. Rapaport, N. A. J. M. Sommerdijk, A. Kros, Angew. Chem. Int. Ed.2006,45, 739-744.
    [38]F. Marin, G. Luquet, B. Marie, D. Medakovic, Curr. Top. Develop Biol.2008,80, 209-276.
    [39]S. Weiner, W. Traub and S. B. Parker, Phil. Trans. R. Soc. Lond. B 1984,304, 425-434.
    [40]C. Zhang, R. Q. Zhang, Mar. Biotechnol.2006,8,572-586.
    [41]S. Sudo, T. Fujikawa, T. Nagakura, T. Ohkubo, K. Sakaguchi, M. Tanaka, K. Nakashima, Nature 1997,387,563-564.
    [42]F. Marin, P. Corstjens, B. de Gaulejac, E. de Vrind-De Jong, P. Westbroek, J. Biol. Chem,2000,275,20667-20675.
    [43]F. Schutri. Chem. Mater.2001,13,3184-3195.
    [44]C. Cheng, Z. Z. Shao, F. Vollrath, Adv. Funct. Mater.2008,18,1-8.
    [1]S. Mann, Biomineralization, Oxford University Press, New York,2001.
    [2]P.M. Dove, J.J. De Yoreo, S. Weiner, Eds. Biomineralization, Mineralogical Society of America:Washington, DC 54,2004, p57-60.
    [3]H.A. Lowenstam, S. Weiner, On Biomineralzation, Oxford University Press, Oxford, 1989.
    [4]R.A. Metzler et al., Langmuir 2008,24,2680-2687.
    [5]F. Z. Cui, Biomineralization, Tsinghua University Press:Beijing,2007.
    [6]J. M. Ouyang, The Matrix Modulation of Biomineralization and Their Biomimetic Applications; Chemical Industry Press:Beijing,2006.
    [7]S. Mann, G. A. Ozin, Nature 1996,382,313-318.
    [8]S. Weiner, I. Sagi, L. Addadi, Science 2005,309,1027.
    [9]Y. Levi-Kalisman, L. Addadi, S. Weiner, J. Struct. Biol.2001,135,8-17.
    [10]L. Addadi, S. Weiner, Proc. Natl. Acad. Sci. USA,1985,82,4110-4114.
    [11]S. Raz, P. C. Hamilton, F. H. Wilt, S. Weiner, L. Addadi, Adv. Functional Mat.2003, 13,480-486.
    [12]B. Gotliv, N. Kessler, J. L. Sumerel, D.E. Morse, N. Tuross, L. Addadi, S. Weiner, Chem. Biochem.2004,6,304-314.
    [13]B. R. Cao, C. B. Mao, Langmuir 2007,23,10701-10705.
    [14]L. J. Wang, J. Phys. Chem. C 2008,112,5892-5899.
    [15]D.J. Norris, Nature 2007,446,146-147.
    [16]M. J. Glimcher, Anat. Rec.1989,224,139-153.
    [17]X. Q. An, C. B. Cao, J. Phys. Chem. C 2008,112,15844-15849.
    [18]E. L. Mayes, F. Vollrath, S. Mann, Adv. Mater.1998,10,801-805.
    [19]A. Takeuchi, C. Ohtsuki, T. Miyazaki, M. Kamitakahara, S-ichi. Ogata, M. Yamazaki, Y. Furutani, H. Kinoshita, M, Tanihara, J. R. Soc. Interf.2005,2, 373-378.
    [20]M. Lepere, C. Chevallard, G. Brezesinski, M. Goldmann, P. Guenoun, Angew. Chem. Int. Ed.2009,48,5005-5009.
    [21]Q. Dong, H. L. Su, J. Q. Xu, D. Zhang, R. B. Wang, Mater. Lett.2007,61, 2714-2717
    [22]Q. Dong, H. L. Su, D.Zhang, N. Zhu, X. Q. Guo, Scripta Materialia 2006,55 799-802.
    [23]M. M. Tomczak, M. K. Gupta, L. F. Drummy, S. M. Rozenzhak, R. R. Naik, Acta Biomaterialia 2009,5,876-882.
    [24]S. C. Holmstrom, P. J. S. King, M. G. Ryadnov, M. F. Butler, S. Mann, D. N. Woolfson, Langmuir 2008,24,11778-11783
    [25]D. Gottlieb, S. A. Morin, S. Jin, R. T. Raines, J. Mater. Chem.2008,18, 3865-3870.
    [26]K. Subburaman, N. Pernodet, S.-Y. Kwak, E. DiMasi, S. Ge, V. Zeitsev, X. Ba, N. L. Yang, M. Rafailovich, Proc. Natl. Acad. Sci. USA 2006,103,14672-14677.
    [27]T. Kato, T. Amamiya. Chem. Lett.1999,199-200.
    [28]Y. F. Jiao, Q. L. Feng, X. M. Li, Mate. Sci.& Eng C 2006,26,648-652
    [29]F. H. Shen, Q. L. Feng, C. M. Wang, J. Cryst. Growth 2002,242,239-244.
    [30]L. Yang, F. Ye, R. M. Xing, B. F. Zhang, Q. S. Ren, Supramol. Chem.,2008,20, 761-763
    [31]G. Falini, Int. J. Inorg. Mater.2000,2,455-461.
    [31]G. Falini, S. Fermani, M. Gazzano, A. Ripamonti, Cliem. Eui. J.1997,3, 1807-1814.
    [32]C. Cheng, Z. Z. Shao, F. Vollrath, Adv. Funct. Mater.2008,18,2172-2179.
    [33]C. Cheng, Y. H. Yang, X. Chen, Z. Z. Shao, Chem. Commun.2008,5511-5513.
    [34]B. R. Cao, C. B. Mao, Langmuir 2007,23,10701-10705.
    [35]A. S. Deshpande, E, Beniash, Cryst. Growth Des.2008,8,3084-3090.
    [36]D. Eglin, G. Mosser, M-M. Giraud-Guille, J. Livage, T. Coradin, Soft. Matter. 2005,1,129-131.
    [37]A. S. Fadeev, S. M. Levachev, G. P. Yampolskaya, V. M. Rudoy, V. N. Izmailova, Coll. J. Rus. Acad. Sci,1999,61,520-528.
    [38]A. S. Fadeev, G. P. Yampolskaya, S. M. Levachev, S. Yu. Zaitsev, Biochem Suppl. Series A:Memb. Cell. Bio.2008,2,62-72.
    [39]G. G. Fuller, Langmuir-Blodgett films of oriented collagen films as cell culture substrates The 81st ACS Colloid & Surface Science Symposium, June 24-27, 2007.
    [40]S. C. Ellisand, K. G. A. Pankhurst, Monolayers of Collagen. Springer Press,1995.
    [41]J. Adam, The Physics and Chemistry of Surfaces,3rd ed., Oxford Press,1941, p27-44.
    [42]Y. Kitano, Bull. Chem. Soc. Jpn.1962,35,1973-1980.
    [43]N. A. J. M. Sommerdijk, G. de. With, Chem. Rev.2008,108,4499-4550.
    [44]L. B. Gower, Chem. Rev.2008,108,4551-4627.
    [45]F. M. Michel, J. MacDonald, J. Feng, B. L. Phillips, L. Ehm, C. Tarabrella, J. B. Parise, R. J. Reeder, Chem. Mater.2008,20,4720-4728.
    [46]A. Rich, F. H. Crick, J. Mol. Biol.1961,3,483-506.
    [47]R.D. Fraser, T.P. MacRae, A. Miller, E. Suzuki, J. Mol. Biol.1983,167,497-521.
    [48]L. J. Dai, X. G. Cheng, L. B. Gower, Chem. Mater.2008,20,6917-6928.
    [49]H. Nebel, M. Neumann, C. Mayer, M. Epple, Inorg. Chem.2008,47,7874-7879.
    [50]R. S. K. Lam, J. M. Charnock, A. Lenniec, F. C. Meldrum, CrystEngComm 2007,9, 1226-1236.
    [51]L. Addadi, S. Raz, S. Weiner. Adv. Mater.2003,15,959-970.
    [52]N. Koga, Y. Nakagoe, H. Tanaka, Thermochimica. Acta.1998,318,239-244.
    [53]X. R. Xu, J.T. Han, D. H. Kim, K. Cho, J. Phys. Chem. B 2006,110,2764-2770
    [54]F. Z. Cui, Y. Li, J. Ge, Mate. Sci.& Eng. R 2007,57,1-27.
    [55]S. R Hall, Proc. R. Soc. A 2009,465,335-366
    [56]D. Eglin, G. Mosser, M. M. Giraud-Guille, J. Livage, T. Coradin, Soft. Matter. 2005,1,129-131.
    [57]N. A. J. M. Sommerdijk, E. N. M. van Leeuwen, M. R. J. Vos, J. A. Jansen, CrystEngComm 2007,9,1209-1214.
    [58]S. Weiner, J. Mahamid, Y. Politi, Y. R. Ma, Lia Addadi, Front. Mater. Sci. China 2009,3,104-108.
    [59]J. Pecher, P. Guenoun, C.e Chevallard, Cryst. Growth Des.2009,9,1306-1311.
    [60]Y. J. Chen, J. W. Xiao, Z. N. Wang, S. H. Yang, Langmuir 2009,25,1054-1059.
    [61]E. DiMasi, Langmuir 2002,18,8902-8909.
    [62]E. DiMasi, S. Y. Kwak, F. F. Amos, M. J. Olszta, D. Lush, L. B. Gower, Phys. Rev. Lett.2006,97,045503(1)-045503-4.
    [63]E. M. Pouget, P. H. H. Bomans, J. A. C. M. Goos, P. M. Frederik, G. D. With, N. A. J. M. Sommerdijk, Science 2009,323,1455-1458.
    [64]B. P. Pichon, P. H. H. Bomans, P. M. Frederik, N. A. J. M. Sommerdijk, J. Am. Chem. Soc.2008,130,4034-4040.
    [65]J. C. Brown, R. Timpl, Int. Arch. Allergy Immunol.1995,107,484-490.
    [66]L. Marin-Garcia, B. A. Frontana-Uribe, J. P. Reyes-Grajeda, V. Stojanoff, H. J. Serrano-Posada, A. Moreno, Cryst. Growth Des.2008,8,1340-1345.
    [67]Y. J. Jiang, D. Yang, L. Zhang, Y. Jiang, Y. F. Zhang, J. Li, Z. Y. Jiang, Ind. Eng. Chem. Res.2008,47,1876-1882.
    [68]D. Gebauer, A. Verch, H. G. Borner, H. Colfen, Cryst. Growth Des.2009,9, 2398-2403.
    [69]E. Baer, A. Hiltner, H.D. Keith, Science 1987,235,1015-1022.
    [70]D. Braga, Angew. Chem. Int. Ed.2003,42,5544-5546.
    [71]X. X. Rong, A. H. Cai, R. Liu, H. H. Pan, R. K. Tang, Prog Chem.2008,20,54-59.
    [72]E. Loste, F. C. Meldrum, Chem. Commun.,2001,901-902.
    [73]J. H. Bradt, M. Mertig, A. Teresiak, W. Pompe, Chem. Mater.1999,11, 2694-2701.
    [74]D. Pontoni, J. Bolze, N. Dingenouts, T. Narayanan, M. Ballauff, J. Phys. Chem. B 2003,107,5123-5125.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700