用户名: 密码: 验证码:
高温采煤工作面热害机制及风流特性的热—流理论研究与数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤炭是我国的主体能源,在我国一次能源生产和消费结构中的比重分别占76%和69%,但是我国52%以上的煤炭资源埋深达超过1000m,采深大于800m深的矿井,热害问题不解决,就不能正常生产。我国煤炭资源开采已转向深部,而且约92%的煤炭生产是井工开采,随着采掘深度的不断增大与煤矿机械化程度的提高,矿井热害日益严重,对煤矿安全高效生产产生严重影响,成为煤炭行业亟待解决的重大课题。
     要进行深部煤炭资源开采,必须解决高温高湿的热环境问题,但是这方面研究仍然属于起步阶段,没有形成公认的理论体系,实施工程降温也无有效的理论与技术指导。本论文通过现场实测、热力学和流体动力学理论分析以及CFD数值模拟等手段,系统研究了煤矿回采工作面的主要热源及散热机理、回采面风温预测、回采面高温区温度场、流场分布特征和入口风流热力学状态对回采面热环境的影响,以及工作面喷淋雾化降温优化分析等关键问题,研究结果对高温矿井热害治理具有一定的指导意义。论文的主要成果与创新点如下:
     (1)运用工程热力学与传热学理论分析了回采工作面热源类型、散热机理及分布特征。计算结果表明围岩散热、机电设备散热和氧化散热为回采面的主要热源,其中围岩散热量和机电设备散热量一般约占回采面总放热量的70%以上。
     (2)以渗流力学与传热学理论为基础,将采空区散热分为采空区漏风散热、边界对流与氧化散热三部分,提出了求解回采面采空区散热量的解析表达式,为巷道风温预测提供了理论依据。
     (3)建立了回采面风流与温度耦合场分析的数值求解模型,提出了适用于巷道管流流动的单交错网格数值算法。该方法在求解精度上高于同位网格离散解法,在程序编制和计算时间上优于交错网格。
     (4)回采面计算流体动力学分析表明,工作面进风、回风隅角处流场形成涡旋,从而增大了风流与热源对流换热时间,并且由于工作面散热量大,回风隅角成为回采面的局部高温区,是热害治理的关键区域。入口风速对回采面热环境影响较大。随着入口风速的增大,工作面高温区域的范围逐渐缩小,温度呈近似线性规律降低。但存在某一临界风速,当风速大小超过临界值时,风速加大对回采面温度场的影响趋弱。
     (5)利用多相流理论对回采面雾化降温效果进行数值模拟。结果表明,输冷量不变时,喷射角与初始粒径过大会对回采面降温起到抑制作用,雾滴初速度应存在一临界值,当初速度高于临界值时,降温效率逐渐趋于稳定。回采面出口风温随回采面入口处风流相对湿度的增大呈幂函数规律升高。
     (6)在不增加回采面通风量与制冷量的前提下,对工作面雾化降温进行了优化分析,通过改变雾化液滴的初始热力学参数(速度、液滴大小、喷射角),可使回风隅角温度降低5%左右。
Coal is the main energy sources in our country.The proportion of production and consumption of primary energy in our country is about 76% and 69%.But more than 52% coal resource is in the depth of more than 1000m.Regular production could not be proceeded,while heat damage exists,if the depth is more than 800m.The exploitation of coal resource has turning to deep interior in our country,and about 92% of the production is in mine well.With the decreasing of the reserves of fleet coal bed and the increasing of the mechanization degree, heat damage becomes more and more serious.and influents the safety and high effeciency of coal production more and more heavily.Heat damage has become a significant issue needs to be solved.
     The hot environment with hign temperature and high humidity should be solved,in order to explore coal mine in deep interior.But the study on this area is still in the primary stage.There is no recognized theory system and effective instruction of technology and theory.Parameter measurement in coal mine,energetics and hydrokinetics analysis and CFD simulation are used to investigate the main heat sources,the mechanism of heat emanating, temperature forecasting of robbing working face,The characteristic of the flow field and the temperature field of robbing working face, and the optimization design of the cooling efficiency.The research results have guidance meaning for coal mine heat damage control. The main conclusions and innovate points of the study are as follows:
     (1) The mechanism of heat emanating and the distribution of heat sources were analyzed by thermodynamics and heat transfer theory.The results shows that heat from wall rock,machines and oxidation are the main heat sources in robbing working face.The amount of heat from wall rock and machines is more than 70% of all of the heat sources.
     (2) Heat from gob area was treated as three parts:heat from air leak,convection at the boundary and heat from oxidation.Resolution expression was represented for calculating the amount of heat emanating at robbing working face more precisely,based on seep mechanics and heat transfer theory.
     (3) The numerical solution model which coupled the flow field and the temperature field of robbing working face,and a single stagger grid arithmetic which is suitable for pipe flow as laneway were represented.The arithmetic is better than collocated grid method at precision and better than stagger grid method at programming and calculating time.
     (4) The CFD simulation results shows that,eddies were formed at the inlet corner and the outlet corner,so that the convection heat transfer time between air and the heat sources increased.The outlet corner came to be a local high temperature region,because of the large amount of heat emanated from the working face. The hot environment of robbing working face is heavily influenced by the inlet velocity.With the increase of the inlet velocity,the area of high temperature region in robbing working face reduced,and the temperature reduced linearity.There is a critical velocity of air.If the velocity is higher than the critical value, the heat environment could not be effectively improved by increasing inlet velocity.
     (5) The atomization cooling effect was forecased by multiphase theory.The simulation results shows that,if the quantity of cold water is steady,too big spray angle and diameter of the fogdrop would restrain the cooling efficiency.There is a critical value of the initial velocity of fogdrop.If the initial velocity is higher than the critical value,the cooling efficiency tends to be steady.The temperature of outlet increased in a power function with the accretion of the humidity of the airflow at inlet.
     (6) The initial thermodynamic parameters of fogdrop(velocity,diameter and spray angle) of the cooling project at robbing working face were optimized.After optimizing,the temperature of the outlet corner reduced about 5%.
引文
[1]煤炭工业部.《煤矿安全规程》[S].北京:煤炭工业出版社,1986.
    [2]岑衍强,侯祺棕.矿内热环境工程[D].武汉:武汉工业大学出版社,1989.
    [3] Bullard E.C.Terrestrial Heat flow[D].Geophysical Monograph No.8 American Geophysical Union.1965.
    [4]吴先瑞等.德国矿井降温技术考察[J].江苏煤炭,1992(4),8-12.
    [5] Heise.F.U.K.Drekopt:Glückauf.Bd.59 Bd.60 1923.
    [6] C.W.Biccard Jeppe:The estimation of ventilation aer temperatures in deep mines,Journal of the Chemical,Metallurgccal and Mining Society of South Africa,1939.
    [7] C.Van Heerden:A Problem of Unsteady Heat Flow in Connection with the Cooling of Collieries,Preceedings of the General Discussion on heat flow.Inst.Mech.Eng.1951.
    [8]平松良雄.关于坑内气流的温度变化.日本矿业会志.67卷758号,1951.
    [9] K?ningH.Mathematische Unteruchungenüber das Grubenklima Bergbau Archiv.13.1952.
    [10]天野勋三.关于坑道周边的岩盘温度.日本矿业会志.68卷744号,1952.
    [11]щерБаНЪА.Н. :ОсноВыТеориииМеТолыТепловыАРасЧетоврудНИЧноЯовоэдухаМ.углетехиэдат.1953.
    [12]平松良雄.关于气流冷却坑内的研究.日本矿业会志.71卷803号,1955.
    [13]周世宁.用电子计算机对两种测定煤层透气性系数方法的检验[J].中国矿业学院学报.1984,2(3):46-50.
    [14] Tevrucht M L E and Griffiths P R.Energy&Fuel.1989,3:522.
    [15] Keleman S R and Giddings D G.Fuel.1997(76):1034.
    [16]Воропаев.А.ф. :управденИетендовыМРежитотЯглУъокихжатах.М.ГомоРтехиэдат.1961.
    [17] R.Notrot and C. Sadee:abkühlung homogenen isotropen Gesteins umeine Zylindrische strecke durch wetter von Konstanter Temperatur.Glückauf-Forschungshefte,vol.27,1966.
    [18] Die warmeleitfahigkeit von karbongestein und ihr Einfluβauf Grübenklima.Bergbau-Archiv Jg.25.H.1.1964.
    [19] A.F.C.Sherrat:Calculation of thermal constants of Rocks from Temperature Data.Colliery Guardian.Vol.214.No.5539.No.5540.1967.
    [20] Starfield.A.M. and Dickson.A.J:J.S.Afr.Inst.Min.Metall,68.1967.
    [21] A.H.舍尔巴尼.矿井降温指南[M].北京:煤炭工业出版社,1982,45-95.
    [22]平松良雄.通气学.内田老鹤圃新社[M].1974.
    [23]А.Н.ЩерБанъ.О.А.КРТнев;В.Я.журавленко:рvоводстворетулированиютеплогорежитащахт,МосКва《недра》,1977.
    [24] J.Voβ:Klimavorausberechnung für Abbaubettiebe, GIückarf. Jg.107,1971.
    [25] J.Voβ:Klimavorausberechnung für Snnderbewetterte Grubenbaue und tunnel.Glückauf. Jg.32 H. 3,1971.
    [26] J.Voβ:Control of mine climate in Deep coal mines.International Mine Ventilation Congress.Johannesburg.1975
    [27] Uchino,K.Study on the prediction of the airflow temperature in underground coal mines[D].Fukuoka:Kyushu University,1974.
    [28] J.Mepqaid:Possible techniques for the control of Heat and Humidity in Underground workings.The 16th International Conference of safety in Mines Research.Washington.D.C.1975.
    [29] Vost.K.R.Variation in air temperature in a across-Section of an underground airway.J.S.Afr.Insi.Min.motall.1976(12):34-69.
    [30] A.N.Shcherban,etal:Aerodynamic and Thermal Conditions at the faces of Blind Mine Workings.The International conference on Safety in Mines Resarch,Paper No.E.17.Oct.Varna Bulgaria.1977.
    [31]黄瀚文.矿井风温预测的探讨[J].煤矿安全,1980,8(1):7-16.
    [32] Middleton J V G,Muller A A.A surface ice plant for provision of ice for the cooling of service water in an OFS gold mine[A].Proceeding of the International Conference on Gold,Gold Mining Technology[C].South Africa:Johan nesbrug,1986.
    [33]内野健一等.关于坑道周边岩盘中的温度分布及从岩盘放散的热量.日本矿业会志.96卷1104号,1980.
    [34]内野健一等.关于基点温度变动场合通气温度计算的研究.日本矿业会志.98卷1131号,1982
    [35]内野健一等.湿润坑道的通气温度及湿度的变化.日本矿业会志.96卷1137号.1980.
    [36] Starfield A.M.bleloch A.L.:A new method for the computation of heat and masture in a partly wet airway.Jjj.S.African Inst.Min metal.1983.
    [37]天野勋三等.利用微机的坑内通气设计系统的开发.日本矿业会志.102卷1185号,1986.
    [38] Uchino K,Inoue M.New practical method for calculation of air temperature and humidity along wet roadway-The influence of moisture on the underground environment in mines(2nd Report)[J].Journal of the Mining and Metallurgical Institute of Japan,1986,102(6):353-357.
    [39] Uchino K,Inoue M.Improved practical method for calculation of air temperature and humidity along wet roadway-The influence of moisture on the underground environment inmines(3rd Report)[J].Journal of the Mining and Materials Processing Institute of Japan,1990,106(1):7-12.
    [40]严荣林,侯贤文.矿井空调技术.北京:煤炭工业出版社,2004.
    [41] Y.J.Wang et al.Application of GPM Procedures in Mine Ventilation,Prceed Rigs of the US First Mine Ventilation Symposium.1982.
    [42] Y.J.Wang.Developments In Mine Ventilation Network Theory And Analysis,and US Ventilation Symposium,1992.
    [43] Xu Z.Y.et al.Study on optimum ventilation networks using nonlinear programming techniques,Proceedings 5th USM in Ventilation Symposium, Morgantown,MV,USA. 1991:440-444.
    [44] McPherson M J.Subsurface ventilation and environmental engineering[M].London:Chapman & Hall,1993.
    [45] Nakayana,S.,Uchino,K. and Inoue M.Analysis of ventilation air flow at heading face by computational fluid dynamics[J].Shigen-To-Sozai,1995,111(4):225-230.
    [46] Tomita,S.Full_scale model experiment on the airflow at a driving face with forcing auxiliary ventilation[D].Fukuoka:Kyushu University,1995.
    [47] Sasaki K,Miyakoshi H,Mashibak,et al.Analytical system for ventilation simulators with skyline modal pressure method and practical estimate system for underground mine air-conditioning[A].26th Proceedings of the Application of Computers and Operations Research in the Mineral Industry[C].Pennsylvania:The Society of Mining Metallurgy and Explosion Inc,1996,393-399.
    [48] Ross,A J,Tuck,M A.Stokes,M R & Lowndes,I S.Computer simulation of climate conditions in rapid development drivages[A].Rava V.Proc.6th Int.Mine Ventilation Congr[C].Littleton:Society for Mining,Metallurgy,and Exploration,Inc.,1997:283-288.
    [49] Moloney,K.W.,Lowndes,I.S.,Stockes,M.R. and Hargrave,G.Studies on alternative methods of ventilation using computational fluid dynamics,scale and full scale gallery tests[A].Proceedings of the 6th International Mine Ventilation Congress[C],Pittsburgh,1997:497-503.
    [50] Kertikou V.Air temperature and humidity in dead-end headings with auxiliary ventilation[A].Rava V.Proc.6th Int.Mine Ventilation Congr[C].Pittsburgh:Society for Mining,Metallurgy,and Exploration,Inc.1997:269-275.
    [51] Shonder J A,Beck J V.Field test of a new method for determining soil formation thermal conductivity and boreholeresistance[J].ASHR AE Transactions,2000,106(1):843-850.
    [52]煤炭科学研究总院抚顺分院等.矿井风温预测的统计研究[R].1980.
    [53]杨德源.矿井风流热交换.中国煤炭学会煤矿安全学术交流会材料[R].1979.
    [54]刘泽功.通风安全工程计算机模拟与预测[M].北京:煤炭工业出版社.1996.
    [55]王英敏.矿井通风与安全[M].北京:冶金工业出版社.1979.
    [56]中国科学院地质研究所地热室.矿山地热概论.煤炭工业出版社.1981.
    [57]黄瀚文.矿井风温预测的统计研究[J].煤炭学报,1981,(3):51-58.
    [58]余恒昌.矿山地热与热害治理[M].北京:煤炭工业出版社,1991.
    [59]吴中立主编.矿井通风与安全[M].徐州:中国矿业大学出版社,1989,50-245.
    [60]赵以蕙.矿井通风与空气调节[M].徐州:中国矿业大学出版社,1990.
    [61]黄元平.矿井通风[M].北京:中国矿业大学出版社,1990.
    [62]巷道围岩与风流的热湿交换.国家七五攻关项目通风降温子课题鉴定报告(二)[R].中国矿业大学北京研究生部矿井降温课题组。1992.9.
    [63]孙艳玲,桂祥友.煤矿热害及其治理[J].辽宁工程技术大学学报,2003,22(增刊):35-37.
    [64]程卫民,王隆平.回采面非均质围岩散热量的电算模型[J].山东矿业学院学报,1990,9(2):150-158.
    [65]程卫民,靳克祥.围岩与风流辐射换热系数[J].山东矿业学院学报,1992,11(2):144-148.
    [66]程卫民.采面降温冷量与风量的关系探讨[J].山东矿业学院学报,1992,11(1):32-35.
    [67]程卫民,张子平.从矿工热舒适出发探讨高温矿井采面配风量[J].煤矿设计,1995(4):17-19.
    [68]胡桃元.姚桥矿井下热源分析及热害防治[J].淮南矿业学院学报.1995,15(2):36-42.
    [69]侯祺棕,沈伯雄.井巷围岩与风流间热湿交换的温湿预测模型[J].武汉工业大学学报,1997,19(3):123-127.
    [70]高仁礼,吴德昌,季宁,王振江,王秋生.高产高效综采工作面合理通风参数的研究[J].煤炭工程师,1997(4):1-5.
    [71]郭勇义,吴世跃.矿井热工与空调[M].北京:煤炭工业出版社,1997.
    [72]李崇山.综采综放工作面特殊条件的计算方法[J].山东矿业学院学报(自然科学版),1999,18(1):26-30.
    [73]王卫军.综采工作面人员操作可靠性与割煤机运行方式的选择与分析[J].中国安全科学学报,1999,9(6):45-48.
    [74]王卫军.综采工作面人-机系统可靠性与作业环境的研究[J].中国安全科学学报,1998,8(4):13-16.
    [75]王卫军.采区生产系统广义模糊可靠性分析[J].黄金科学技术,1999,45(7):67-71.
    [76]陈则韶.据热扩散率最小离散度确定导热系数的新热探针法[J].中国科学技术大学学报,2000,106(1):843-850.
    [77]于明志,彭晓峰,方肇洪.用于现场测量深层岩土导热系数的简化方法[J].热能动力工程,2003,18(5):512-517.
    [78]彭担任,赵全富,胡兰文,等.煤与岩石的导热系数研究[J].矿业安全与环保,2000,27(6):16-19.
    [79] LIU He-qing,SHI Shi-liang,LIU Rong-hua,WANG Hai-qiao.Study on influence of characteristics of air-supply jet on drain-contamination efficiency and air quality in heading[J].JOURNAL OF COAL SCIENCE & ENGINEERING,2001(7):67-72.
    [80]周西华,单亚飞,王继仁.井巷围岩与风流的不稳定换热[J].辽宁工程技术大学学报,2002,21(3):264-266.
    [81]张宝红,魏献昌,夏孝明.影响高产高效工作面环境因素分析[J].矿业安全与环保,2002,29(4):42-44.
    [82]孙树魁,张树光.埋深对井巷温度场分布影响的研究[J].辽宁工程技术大学学报,2003,22(3):301-302.
    [83]欧阳广臣,任草艳,孙海.浅谈综放工作面气候环境的影响因素[J].山东煤炭科技,2003(2):43-44.
    [84]胡华军.高温深矿井风流热湿交换及配风量的计算[D].山东:山东科技大学,2004.
    [85]苏昭桂.巷道围岩与风流热交换量的反演算法及其应用[D].山东:山东科技大学,2004.
    [86]高建良,刘伯川.局部通风掘进工作面参数的现场测定方法[J].矿业安全与环保,2004,31(4):1-4.
    [87]周西华,王继仁,洪林.湿空气密度的快速准确测算方法[J].矿业安全与环保.2005,32(4):49-50.
    [88]周西华,梁茵,王小毛,周令昌.饱和水蒸气分压力经验公式的比较[J].辽宁工程技术大学学报,2007,26(3):331-333.
    [89]吴海,王卫军,邹安全.综放工作面微气候对工人操作失误影响研究[J].中国安全科学学报,2006,16(10):112-115.
    [90]高建良,张学博.潮湿巷道风流温度及湿度计算方法研究[J].中国安全科学学报,2007,17(6):114-120.
    [91]高建良,张学博.潮湿巷道风流温度与湿度变化规律分析[J].中国安全科学学报,2007,17(4):136-139.
    [92]程健维,杨胜强,张再容.温度校核法确定高温矿井工作面最大允许产量[J].煤炭科学技术,2007,35(5):14-17.
    [93]王英敏.矿内空气动力学与矿井通风系统[M].北京:冶金工业出版社,1994.
    [94]周西化.矿井空调热力过程的数值模拟研究[D].辽宁:辽宁工程技术大学,1999.
    [95]周西华,王继仁,王树刚,陈衍宽.风流紊流换热的场模型[J].矿业安全与环保,2001,28(5):17-19.
    [96]周西华,王继仁,卢国斌,单亚飞,梁栋.回采工作面温度场分布规律的数值模拟[J].煤炭学报,2002,27(1):59-63.
    [97]周西华,王继仁,梁栋.掘进巷道风流温度场分布规律的研究[J].辽宁工程技术大学学报,2003,22(1):1-3.
    [98]周西华,王继仁,单亚飞,王树刚,梁栋.掘进巷道风流温度分布规律的数值模拟[J].中国安全科学学报,2002,12(2):19-24.
    [99]周西华,王继仁,梁栋.采煤机对回采工作面风流温度场影响[J].辽宁工程技术大学学报,2003,22(4):514-516.
    [100]侯祺棕,沈伯雄.调热圈半径及其温度场的数值解计算模型[J].湘潭矿业学院学报,1997,12(1):9-16.
    [101]王海桥.掘进工作面射流通风流场研究[J].煤炭学报,1999,24(5):498-501.
    [102]吴强,秦跃平,郭亮,等.掘进工作面围岩散热的有限元计算[J].中国安全科学学报,2002,12(6):33-36.
    [103] DENG Jun,XU Jing-cai.Dynamic Comuter-simulation of Temperature-fields in the Gob of Comprehensively Mechanized Roof-cal Caving Faces[C].Third Regional APCM in the minerals Industries International Symposium,1998.
    [104] Li Xiaodong,Lu Guobin,Zhang Lang,Zhou Xihua.Study on application and numerical simulation of the airflow temperature distribution rule in drifting tunnel[J].JOURNAL OF COAL SCIENCE & ENGINEERING(CHINA),2003(9):90~94.
    [105]梁茵.基于CFD技术的矿井空调舒适度的数值模拟研究[D].辽宁:辽宁工程技术大学,2006.
    [106] Gao J,Uchino K,Inoue M.Siulation of thermal environmental conditions in heading face with forcing auxiliary ventilation[J].Shigen-to-Sozai,2002,118(1):9-15.
    [107] Gao J,Uchino K,Inoue M.Prediction of climate conditions in developing roadway with forcing auxiliary ventilation system[J].Shigen-to-sozai,2002,118(2):1-6.
    [108] Gao J,Uchino K,Inoue M.Simulation of the heat and moisture transfer between airway walls and mine air at a heading face with auxiliary ventilation system[A]Stanislaw W.Proc.7rd Int.Mine Ventilation Congr[C].Cracow:Research & Development Center for Electrical Engineering and Automation in Mining EMAG,2001.49-55.
    [109]王海桥等.压入式受限贴附射流流场特征及参数计算[J].黑龙江科技学院学报,2001,11(4):4-7.
    [110]王海桥,施式亮,刘荣华,刘何清.独头巷道射流通风流场CFD模拟研究[J].中国安全科学学报,2003,13(1):68-71.
    [111]王海桥,施式亮,刘荣华,刘何清.独头巷道附壁射流通风流场数值模拟研究[J].煤炭学报,2004,29(4):425-428.
    [112] GAO Jian-liang,Study on the distribution of strata rock temperature around a driving head with auxiliary ventilation[J].JOURNAL OF COAL SCIENCE & ENGINEERING.2004(10):50-54.
    [113]高建良,魏平儒.掘进巷道风流热环境的数值模拟[J].煤炭学报, 2006,31(2):201-205.
    [114] GAO Jianliang,XU Kunlun.Simulation of the Airflow in Working Face with Auxiliary Ventilation[A].Progress in Safely Science and Technology[C].Science Press,2006:1857-1859.
    [115]高建良.巷道断面与风筒断面形状对局部通风工作面环境模拟结果的影响[J].焦作工学院学报(自然科学版),2004,23(1):1-6.
    [116] Zhang Shu-guang,SUN Shu-kui.Temperature field distribution of laneway in heat harmful mine[C].Proceedings ofⅫInternational Congress of International Society for Mine Surveying.2004.
    [117]张树光.深埋巷道围岩温度场的数值模拟分析[J].科学技术与工程,2006,6(14):2194-2196.
    [118]李杰林,周科平,邓红卫,杨成林.深井高温热环境的数值评价[J].中国安全科学学报,2007,17(2):61-65.
    [118]龙腾腾,周科平,陈庆发等.基于PMV指标的掘进巷道通风效果的数值模拟[J].安全与环境学报,2008,8(3):122-125.
    [119]肖林京,肖洪彬,李振华.基于ANSYS的综采工作面降温优化设计[J].矿业安全与环保,2008,35(1):21-23.
    [120]刘冠男,高峰,李涛.高温深井U型通风工作面多相流温度场数值分析[C].江苏力学学术大会第四届苏港力学及应用论坛论文集,2008:245-251.
    [121] LIU Guannan,GAO Feng,JI Ming.Investigation of the ventilation simulation model in mine based on multiphase flow[C].The 6th International Conference on Mining Science & Technology,2009.(in press)
    [122] LIU Guannan,GAO Feng,LIU Xingguang,KANG Zongxin.Analysis of the effect of atomizer spray refrigeration in high-temperatured caving face by stochastic model[C]. 2009 Asia-Pacific Conference on Computational Intelligence and Industrial Applications.(in press)
    [123] LIU Guannan,GAO Feng,GAO Yanan,LIU Xingguang.Investigation of the distribution ofthe temperature field in high temperature and high humidity caving face[C].2009 Asia-Pacific Conference on Computational Intelligence and Industrial Applications.(in press)
    [125] SHEER T J,BUTTERWORTH M D,RAMSDEN R.Ice as a coolant for deep mines[C].Proceedings of the 7th International Mine Ventilation Congress.Krakow,Poland:2001:354-360.
    [126] T.J.Sheer.Pneumatic conveying of ice particles through mine-shaft pipelines[C].Powder Technology,Volume 85,Issue 3,December 1995,Pages 203-219.
    [127] H.J.van Antwerpen,G.P.Greyvenstein.Use of turbines for simultaneous pressure regulation and recovery in secondary cooling water systems in deep mines[C].Energy Conversion&Management,2004,p223-258.
    [128] Plenderleith,W.Stewart,J.M.Pretorius,B.C.B.Holding,W.Recirculation of air in the ventilation and cooling of deep gold mines[C].Inst of Ming&Metallurgy,1984,p291-299.
    [129] Burton,Rodney;Bluhm,Steven.Recent developments in the cooling of deep mines[C].South African Mechanical Engineer,v 34,n1,jan,1984,p12-18.
    [130]胡春胜.矿井空调现状及评述[J].煤矿设计,1999(5);34-39.
    [131]支学艺,蒋仲安,陈旺星等.冬瓜山铜矿掘进工作面强化通风与降温技术[J].金属矿山,2006(12):64-66.
    [132]袁世伦.深井开采工作面通风与降温技术研究[J].中国矿山工程,2007,36(2):1-4.
    [133]杨胜强,王义江,于宝海,韩家根,张秀才.辅助通风技术改善深部热环境的试验研究[J].采矿与安全工程学报,2006,23(2):173-176.
    [134]王刚,王宗明,董开封.城郊煤矿防治井下热害的措施[J].矿业安全与环保,2002,29(6):14-16.
    [135]彭担任,隋金峰.采用下行通风防治综采工作面的热害[J].煤矿安全,1998(11):17-18.
    [136]曲方,秦跃平.高温矿井采掘工作面的合理布局[J].山西矿业学院学报,1997,15(3):261-267.
    [137]王勇.深井热害防治探讨[J].煤矿安全,2003,34(10):38-40.
    [138]张国枢,谭允祯,等.通风安全学[M].徐州:中国矿业大学出版社,2000.
    [139]陈喜山,王剑波,梁晓春等.热湿矿井通风降温系统的应用研究[J].金属矿山,2003(11):43-45.
    [140]王文,桂祥友,王国君.矿井热害的治理[J].矿业安全与环保,2002,29(3):31-33.
    [141]宋桂梅,张朝昌.高温矿井独头掘进面降温技术研究与方案对比[J].矿业安全与环保,2006,33(1):43-45.
    [142]黄颖华,沈斐敏.高温矿井降温技术研究动态[J].安全技术,2006,11:30-31.
    [143] Yang Minghua and Ma Xuejun.Influence of the compressed air in the factory on heat load[J].Heat Ventilating and Air Conditioning.1999(1):66~69.
    [144]陈安国.矿井热害产生的原因、危害及防治措施[J].中国安全科学学报,2005,14(8):3-6.
    [145]吴冷峻.冬瓜山采场通风优化与管理[J].矿业快报,2004,20(4):15-17.
    [146]肖知国,戴广龙,李恩伯.综采工作面降温前后空气状态参数对比分析[J].煤矿安全,2005,36(11):29-31.
    [147]郭金峰,刁心宏,等.冬瓜山深埋铜矿开采技术研究[J].金属矿山,2002(1):10-15.
    [148]朱维根.冬瓜山铜矿降温设计与研究[J].中国矿山工程.2004,33(3):5-7.
    [149]Кцрмодинамика.Изд-е,ЩейнэлцнАЕ.ТехницескаяТ-ермодинамика.Цзд2-е,М.,Энергия,1974.
    [150] Dohmen A,Hagen G,Straegies for improvement of the thermal environment in deep coal mines[A],4th US Mine Ventilation[C],Berkeley,CA(USA),1992.
    [151]庞兆多等.高温矿井降温技术调研[J].辽煤科技,1992(2),14-16.
    [152]冯兴隆,陈日辉.国内外深井降温技术研究和进展[J].云南冶金,2005,34(5):7-10.
    [153] Sheer T J,Correia R M,Chaplain E J and Hemp R.Research into the use of ice for cooling deep mines.In Third International Mine Ventilation Congress,Harrogate,1984,Howes M J and Jones M J,eds(London:IMM,1984).279.
    [154]周西华.矿井空调热力过程的数值模拟研究[D].辽宁:辽宁工程技术大学.1998.
    [155] He Manchao,Zhang Yi,Guo Dongming,Qian Zengzhen.Numerical ayalysis of doublet wells for cold energy storage on heat damage treatment in deeo mines[J].China Journal of Mining&Technology,2006,16(3):278-282.
    [156]何满潮,张毅,乾增珍,等.深部矿井热害治理地层储冷数值模拟研究.湖南科技大学学报,2006,21(2):13-16.
    [157]何满潮,张毅,郭东明.新能源治理深部矿井热害储冷系统研究[J].中国矿业,2006,15(9):62-64.
    [158]张毅.夹河矿深部热害发生机理及其控制对策[R].北京:中国矿业大学,2006.
    [159]何满潮,张毅,乾增珍等.储冷对井治理深部矿井热害研究[J].煤田地质与勘探,2006,34(5):23-26.
    [160]刘何清,吴超,朱国梅,等.一种高温矿井局部供冷装置研究[J].湖南科技大学学报(自然科学版),2007,22(4):26-29.
    [161]苗宇,童校长.局部降温系统在采煤工作面的应用[J].煤炭技术,2007,26(11):45-48.
    [162]李亚民.局部降温机在矿井高温工作面的应用[J].煤矿安全,2008,39(9):39-41.
    [163]肖知国,戴广龙,李恩伯.综采工作面降温前后空气状态参数对比分析[J].煤矿安全,2005,36(11):29-31.
    [164]瓦斯通防防灭火研究所.矿井降温技术的50年历程[J].煤矿安全,2003,34(1):28-32.
    [165]雷鸣,张邻楚.谢桥矿井降温方式及空调系统的探讨[J].煤炭科学技术,1997,25(1):40-44.
    [166]周应江,储方健.新集矿210807综采工作面热害治理[J].矿业安全与环保,2003,30(4):54-55.
    [167]刘鹏.矿井降温空调系统技术的探讨[J].煤,2009,18(8):77-78,80.
    [168]王景刚,乔华,冯如彬.深井降温的技术经济分析[J].河北建筑科技学院学报,2000,17(1):23-26.
    [169]金双林.三河尖煤矿高温高湿环境治理技术的研究及其应用[D].徐州:中国矿业大学,2005.
    [170]陈安明.济二煤矿深部开采热害调查及治理技术研究[D].西安:西安科技大学,2006.
    [171]约阿希姆·福斯,刘从孝译.矿井气候[M].北京:煤炭工业出版社.1989.
    [172]刘忠宝,王浚,张书学.高温矿井降温空调的概况及进展[J].真空与低温.2002,8(3),130-135.
    [173]何其愚,余庆华,王文科等.金属矿井深部开拓空调通风降温的研究[J].有色金属.2009,61(1):64-67.
    [174]何其愚,余庆华,王文科等.制冷空调在有色金属矿井深部开拓的应用[J].云南冶金.2009,38(1):15-19.
    [175]黄伯儒,陈遂斋,邓铠清.KKL101矿用无氟制冷机的研制与应用[J].煤炭科学技术.1995,23(10),13-15.
    [176]李惠娟.矿井降温中的空气调节作用[J].暖通空调,1994(6):43-45.
    [177]胡春胜.矿井集中空调技术中几个关键问题的探讨[J].煤矿设计,1998(1):43-46.
    [178] RAMSDEN R,SHEER T J,BUTTRWORTH M D.Design&Simulation of Ultra-Deep Mine Cooling Systems[C].In:Proceedings of the 7th international mine ventilation congress.Krakow,Poland:2001:755-760.
    [179] SCALES ROBERTH.Cycles of war[J].Armed Forces Journal,1997(7):38-43.
    [180] HOLDER DM,BROWN T,GIGIEL A J.The effects of water icing on the performance of open air cycle systems problems and solutions[C],19th Interational Congress of Refrigerationl 1995.Proceedings VolumeⅠb.1995(845).
    [181] BROWN T,HOLDER D M,GIGIEL A J.Safety aspects of air cycle refrigeration and heat pump system[C]. 19th Interational Congress of Refrigerationl 1995.Proceedings VolumeⅣb.1995(742).
    [182]刘何清,吴超,王卫军等.矿井降温技术研究述评.金属矿山,2005,(6),43-46.
    [183]谢和平,彭苏萍,何满潮.深部开采基础理论与工程实践[M].北京:科学出版社,2006.
    [184] DOHMEN A,HAGEN G.Strategics for Improvement of the Thermal Environment in Deep Coal Mines[A].4th US Mine Ventilation Symposium[C].Berkeley,CA(USA),1993.
    [185] SHEER T J,CHAPLAIN E J and CORREIA. R M.Some recent development in the use of ice for cooling mines[J].Journal of the Mine Ventilation Society of South Africa.June,1985.
    [186]乔华,王景刚,张子平.深井降温冰冷却系统融冰及技术经济分析研究[J].煤炭学报,2000,25(增刊):122-125.
    [187]刘忠宝,王浚.装甲坦克车辆空调的概括及进展[J].真空与低温,2002,8(1):12-17.
    [188]王玉杰,张寅,胡许强.高地温综采工作面降温技术研究与实践[J].煤炭工程,2007,(4):54-55.
    [189]高学奎.长走向大断面掘进工作面降温研究与实施[J].煤矿现代化,2008(2):79-81.
    [190]许振良.沉降性浆体在水平管道内输送时的水力坡度[J].中国有色金属学报,1999,9(2):441-447.
    [191] HALL C J.Mine ventilation engineering[J].New York:Alme,1981.
    [192] Bluhm,S.J.,M.Biffi,R.B.Wilson.Optimized cooling systems for mining at extreme depths[J].CIM Bulletin,2000,93(1036:146-150)
    [193] Fujita,Toshihiko.Hydraulic transport of ice water mixtures[J].Trans of the Jar,1993,10(3):349-356.
    [194]冯如彬,李慧娟.深井降温技术中的新方法—冰冷却系统.河北煤炭建筑工程学院学报.1995,12(2):62-65.
    [195]谢贤平.深井降温技术中的新方法[J].江西有色金属,1996,10(1),7-10.
    [196] B D KNODEL,D M FRANCE.Pressure drop in ice–water slurries for thermal storage application.Exp Heat Transfer,1998(1):265-275.
    [197]胡春胜,周秀隆,张铁岗等.真空冰降温工艺技术分析[J].矿业安全与环保,2007,34(1):70-71,81.
    [198]郭建伟.深热综采工作面制冷降温技术的研究与实施[J].矿业安全与环保,2006,33(1):37-39.
    [199] Sheer T J,Correa R M.Research into the use of ice for cooling mines[A].Harrogate,1984.
    [200]范付恒.平煤六矿丁6-22260采面降温技术的应用[J].煤炭工程,2008(7):50-51.
    [201]张革委,高学奎,黄志强.综采工作面综合降温技术的研究与应用[J],中州煤炭,2007(2):7-9.
    [202]周峰.煤矿深井开采低温辐射降温技术问世[J].煤矿机械,2005(10):131-131.
    [203]张自立.数学物理方程[M].西安:西安交通大学出版社.1989.
    [204]卞晓锴,包宗宏,史美仁.采空区温度场模拟及煤自燃状态预测.南京化工大学学报[J].2000,22(3):43-47.
    [205]张瑞林,杨运良,马哲伦等.自燃采空区风流场、温度场及热力风压场的计算机模拟.焦作工学院学报[J].1998,17(4):253-257.
    [206]冯青,李世斌,张丽.工程热力学[M].西安:西北工业大学出版社.2006.
    [207]常心坦,刘剑,王德明.矿井通风及热害防治[M].徐州:中国矿业大学出版社.2007.
    [208]刘式适,刘式达.物理学中的非线性方程[M].北京:北京大学出版社.1994.
    [209]王朝阳.低热损冷源介质输送技术及高效热交换技术实用手册[M].香港:中国科技文化出版社.2005.
    [210] Maibodi,Simulation of spray dryer absorber for removal of SO2 from flue gas,Proceedings:Tenth symposium on flue gas desulfurization,1987:7/19-7/23.
    [211]刘伟民,毕勤成,郭亚军等.冬季喷水制冰蓄冷系统中水滴的热计算及系统经济型分析.应用基础与工程科学学报[J].2005,(10)增刊:177-183.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700