用户名: 密码: 验证码:
远程采动煤岩体变形与卸压瓦斯流动气固耦合动力学模型及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
经过多年的科学研究和工程实践证明,采动卸压瓦斯抽采技术是防治煤与瓦斯突出、降低煤层瓦斯含量最有效、最经济的区域性措施。尽管近几十年来开展了大量的采动卸压瓦斯抽采现场试验,但对采动煤岩体变形与卸压瓦斯瓦斯流动相互作用的研究尚不够成熟,还无法为卸压瓦斯的高效抽采提供理论基础和技术支持。本文以远程采动煤岩体为研究对象,运用岩石力学、采矿工程、渗流力学、数值仿真等理论,采用现场实验、实验室相似模拟、理论分析和数值分析相结合的研究方法,系统研究了采动煤岩体的卸压特征、移动变形、采动应力变化及卸压瓦斯流动规律;开展了采动煤岩体变形与瓦斯流动耦合作用研究,构建了采动煤岩体弹脆塑性本构模型和采动煤岩体变形与瓦斯流动耦合动力学模型及数值计算方法,通过模型的应用初步获得了远程上被保护层应力场、位移场与渗透率的时空变化规律,最后提出了保护层开采工程分类及判定方法,以及远程保护层开采及卸压瓦斯抽采技术体系,并在阳泉新景矿成功地进行了试验,取得了显著的抽采效果。本文为保护层开采设计及远程被保护层卸压瓦斯的高效抽采提供了理论依据和技术支持。论文主要研究内容及成果有:
     1)利用平面应变相似模拟实验系统,以阳泉矿区新景矿为地质背景,开展了远程采动煤岩体裂隙演化相似模拟试验研究,获得了远程被保护层采动应力、裂隙发育和变形的时空演化规律;
     2)基于Drucker-Prager准则,引入理想弹脆塑性模型和内切圆准则,构建了采动煤岩弹脆塑性损伤本构模型及数值格式,采用VC++2005将其开发成FLAC3D能够调用的模型,并开展了模型验证与应用,为采动煤岩体变形的研究提供了本构模型;
     3)构建了反映采动裂隙、离层对瓦斯流动影响的非线性卸压瓦斯流动方程——广义幂定律,为采动煤岩体卸压瓦斯流动提供了控制方程;
     4)构建了适合高强度开采条件下低渗透性煤岩体变形与瓦斯流动特点的采动煤岩变形与瓦斯流动气固耦合动力学模型;利用COMSOL Multiphysics多物理场耦合软件平台实现了模型的验证与应用,初步获得了远程下保护层上覆岩应力场、位移场与渗透率的时空变化规律;
     5)提出了综合考虑煤层赋存条件、层间硬岩以及保护层工作面回采参数等影响因素的保护层工程分类及判定方法,以当量相对层间距为指标对上、下保护层进行了分类;
     6)提出了远程保护层开采及卸压瓦斯抽采技术体系,并在阳泉新景矿成功地进行了试验,取得了显著的抽采效果。保护范围内被保护层综合瓦斯抽采率达到了70.1%,瓦斯含量由18.17降至5.4m3/t,有效地消除了3#煤层的煤与瓦斯突出危险性,实践验证了采动煤岩变形与瓦斯流动气固耦合模型的合理性和可行性。
The pressure-relief gas drainage technique is the most effective and economical regional method to decrease gas content and eliminate coal and gas outburst from many years’practices and studies. In recent decades, many field tests was operated on pressure-relief gas drainage due to mining, however, the interaction between the deformation and pressure-relief gas flow of coal and rock mass is not considerate enough to provide the theory and method for efficient pressure-relief gas drainage. By taking coal and rock mass due to mining as the research object in the paper, the combination methods of laboratory experiment, filed experiment, theoretical analysis and numerical analysis are used to research on mechanical characteristic, movement, deformation, pressure relief and seepage characteristic of overlying coal and rock masses. The paper carried on the interaction between the deformation and pressure-relief gas flow, and then set up elasto-brittle- plastic constitutive model of coal rock mass damage due to mining and fully coupled model and numerical solution for deformation and pressure-relief gas flow. The research provides theoretical basis and reference for the design of protective layer mining and relief-pressure gas drainage. The main aspects can be seen as the following:
     1) A similar experiment for fissure evolution of remote coal and rock mass due to mining, obtained the space-time change law of mine-induced stress, fracture development and deformation in the remote protected layer.
     2) The elasto-brittle- plastic constitutive model of coal rock mass damage due to mining was set up based on the plastic flow format of Drucker-Prager constitutive model by introducing the inscribed circle criterion and the ideal brittle-plastic model, and validated by comparing with the traditional constitutive models through uniaxial and triaxial compression numerical tests.
     3) Considering the nonlinear characteristics of the pressure-relief gas flow effecting by the mine-induced fracture and separation, the generalized power law was set up to study the pressure-relief gas migration, depending on the local Reynolds number.
     4) A fully coupled model and numerical solution for deformation and pressure-relief gas flow were established to simulate the low-permeability coal and rock mass under high-strength underground mining. Then the correctness and rationality of this model was validated by COMSOL Multiphysics software, through the simulation of single borehole gas drainage and three boreholes gas drainage.
     5) The classification and judgment method of the protective layer was brought out by the equivalent relative interval between the protective layer and the protected layer, considering the occurrence condition and mining parameters of the protective layer working face and the effluence of hard rock in the overburden. The under protective layer is classified into three kinds, and the upper protective layer two kinds.
     6) A technical system was brought out of pressure-relief gas drainage for the protective layer and the protected layer. The chosen methods were successfully applied in Xinjing coal mine of Yangquan coal field, and the relieved gas in the remote protected layers was better drained utilizing the mining influence of the protective layer, which validates the fully coupled model for deformation and pressure-relief gas flow.
引文
[1]胡殿明,林柏泉.煤层瓦斯赋存规律及防治技术[M].徐州:中国矿业大学出版社,2006.
    [2]国家煤矿安全监察局.煤矿安全技术“专家会诊”资料汇编[R]. 2005年10月.
    [3]周世宁.关于《煤矿安全生产》的汇报.周世宁院士向温家宝总理的汇报[R]. 2005年1月.
    [4]周世宁,林柏泉.煤层瓦斯赋存与流动理论[M].北京:煤炭工业出版社,1996.
    [5]付建华.煤矿瓦斯灾害防治理论研究与工程实践[M].徐州:中国矿业大学出版社,2005,103-107.
    [6]周世宁,鲜学福,朱旺喜.煤矿瓦斯灾害防治理论战略研讨[M].徐州:中国矿业大学出版社,2001.
    [7]国家煤矿安全监察局.煤矿安全规程[M].北京:煤炭工业出版社,2008
    [8]国家煤矿安全监察局.防治煤与瓦斯突出规定[M].北京:煤炭工业出版社,2009.
    [9]国家煤矿安全监察局.保护层开采技术规范(AQ1050-2008)[M].北京:煤炭工业出版社,2008
    [10]国家煤矿安全监察局.煤矿瓦斯抽采基本指标(AQ1026-2006)[M].北京:煤炭工业出版社,2006
    [11]国家煤矿安全监察局. 2009年全国煤矿事故分析报告[R]. 2010年2月.
    [12]钱鸣高,刘昕成.矿山压力及其控制(修订本)[M].北京:煤炭工业出版社,1991.
    [13]钱鸣高,石平五等.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2003.
    [14]程远平,俞启香,等.煤与远程卸压瓦斯安全高效共采试验研究[J].中国矿业大学学报,2004,33(2):132-136.
    [15]黄志安,童海方等.采空区上覆岩层“三带”的界定准则和仿真确定[J].北京科技大学学报,2006,7(6):609-612.
    [16]钱鸣高,缪协兴等.岩层控制的关键层理论[M].徐州:中国矿业大学出版社,2003.
    [17]王金庄.采动覆岩断裂破坏的开采条件分析[C]. 99全国矿山测量学术会议论文集(承德),1999.
    [18]北京开采所.煤矿地表移动与覆岩破坏规律及其应用[J].北京:煤炭工业出版社,1981.
    [19] [美]S.S.彭著.煤矿地层控制[M].北京:煤炭工业协会出版社,1984.
    [20] [美]Z.T.比尼斯基著,孙恒虎等译.矿业工程岩层控制[M].徐州:中国矿业大学出版社,1990.
    [21]赵德深.开采空间在覆岩中的传播规律[J].阜新矿业学院硕士学位论文[D],1986.
    [22]郭惟嘉等.采动覆岩离层性确定方法及离层规律研究[J].煤炭学报,1995,20(1):39-44.
    [23]梁运培,孙东玲.岩层移动的组合岩梁理论及其应用研究[J].岩石力学与工程学报,2002,21(5):654-657.
    [24]彭永伟.高强度开采煤体采动裂隙场演化及其与瓦斯流动场耦合作用研究[D].煤炭科学研究总院博士论文,2008.
    [25]石必明.保护层开采远距离煤岩破裂变形数值模拟[J].中国矿业大学学报,2004,33(3):259-263.
    [26]杨大明,俞启香.缓倾斜下解放层开采后岩层地应力变化规律的研究[J].中国矿业学院学报,1988,1:32-38.
    [27]俞启香.矿井瓦斯防治[M].徐州:中国矿业大学出版社,1992.
    [28]周世宁,孙辑正.煤层瓦斯流动理论及其应用[J].煤炭学报,1965,2(1):24-36.
    [29]周世宁.瓦斯在煤层流动的机理[J].煤炭学报,1990,15(1):61-67.
    [30]郭勇义.煤层瓦斯一维流场流动规律的完全解[J].中国矿业学院学报,1984,2(2):19-28.
    [31]孙培德.煤层瓦斯流场流动规律的研究[J].煤炭学报,1987,12(4):74-81.
    [32]孙培德.瓦斯动力学模型的研究[J].煤田地质与勘探,1993,21(1):32-40.
    [33]孙培德.煤层瓦斯流动方程补正[J].煤田地质与勘探,1993,21(5):61-62.
    [34]孙培德.煤层气越流的固气耦合理论及其计算机模拟研究[D].重庆大学博士学位论文,1998.
    [35]鲜学福.地电场对煤层中瓦斯渗流影响的研究[R].国家自然科学基金资助项目总结报告,1993.
    [36]杨其銮,王佑安.煤屑瓦斯扩散理论及其应用[J].煤炭学报,1986,11(3):62-70.
    [37]罗新荣.煤层瓦斯运移物理模型与理论分析[J].中国矿业大学学报,1991,20(3):36-42.
    [38]姚宇平.煤层瓦斯流动的达西定律与幂定律[J].山西矿业学院学报,1992,10(1):32-37.
    [39]缪协兴,刘卫群,陈占清.采动岩体渗流理论[M].北京:科学出版社,2004.
    [40]孔祥言.高等渗流力学[M].合肥:中国科学技术大学出版社,1999.
    [41]林柏泉.含瓦斯煤体渗透率的探讨[J].煤矿安全,1988,12(2):15-20.
    [42]赵阳升.矿山岩石流体力学[M].北京:煤炭工业出版社,1994.
    [43]许江,鲜学福.含瓦斯煤的力学特性的实验分析[J].重庆大学学报,1993,16(5):26-32.
    [44]赵阳升.煤体-瓦斯耦合数学模型及数值解法[J].岩石力学与工程学报,1994,13(3):229-239.
    [45]傅雪海,秦勇,张万红.高煤级煤基质力学效应与煤储层渗透率耦合关系分析[J].高校地质学报,2003,9(3):373-377.
    [46]郭德勇,韩德馨,冯志亮.围压下构造煤的孔隙度和渗透率特征实验研究[J].煤田地质与勘探. 1998,26(4):31-34.
    [47]Rutqvist J, Tsang C-F. A study of caprock hydromechanical changes associated with CO2-injection into a brine formation [J]. Environ Geol. 2002, 42:296–305.
    [48]曹广祝,仵彦卿,丁卫华,等.低渗透压力条件下砂岩渗透性质的CT试验[J].实验煤田地质与勘探,2005,33(4):59-62.
    [49]唐巨鹏,潘一山,李成全,等.固流耦合作用下煤层气解吸渗流实验研究[J].中国矿业大学学报,2006,35(2):274-278.
    [50]程国明,马凤山,王思敬,等.基于几何测量法的裂隙岩体渗透性研究[J].岩石力学与工程学报,2004,23(21):3595-3599.
    [51]程国明,黄侃,王思敬.综放开采顶煤裂隙及其对渗透性研究的意义[J].煤田地质与勘探,2002,30(6):19-21.
    [52]杨天鸿,徐涛,唐春安,等.脆性岩石破裂过程渗透性演化试验研究[J].东北大学学报,2003,24(10):974-977.
    [53]周世宁,林柏泉等.煤矿瓦斯动力灾害防治理论及控制技术[M].北京:科学出版社,2007.
    [54]白茅,刘天泉.孔隙裂隙弹性理论及引用导轮论[M].北京:石油工业出版社,1999.
    [55]薛世峰,全兴华等.地下流固耦合理论的研究进展及应用[J].石油大学学报,2000,24(2):109-114.
    [56] Terzaghi. Theoretical soil mechanics [M]. New York: John wiley and sons lnc., 1945.
    [57] Biot M A. General theory of three-dimensional consolidation [J]. J. Appl. Phys. 1941, 12(5): 155-164.
    [58] Biot M A. Theory of elasticity and consolidation for a porous anisotropic solid [J]. J. Appl. Phys. 1955, 26 (2):182-191.
    [59] Lubinski A. Theory of elasticity for porous bodies displaying a strong pore structure [C]. Proc. 2"d U.S. National Congress of Applied Mechanics. 1954: 247-256.
    [60] Geerstma J. A remark on the analogy between thereto-elasticity and the elasticity of saturated porous media [J]. Mech.Solids. 1957, 6: 13-16.
    [61] Savage W Z, Braddock W A. A model for hydrostatic consolidation of Pierre shale [J]. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr, 1991, 28:345-354.
    [62] Zienkiewicz O C, Shiomi T. Dynamic behavior of saturated porous media: the generalized Biot formulation and its numerical solution [J]. Int. J. Num. and Analy. Mech. In Geomech, 1984, 8:71-96.
    [63] Verruijt A. Elastic storage of aquifers [R], In: Flow Through Media [C]. De wiest R J M. New York Tiho Wiley. 1969.
    [64] Mctigue D F. Thermoelastic response of fluid-saturated porous rock [J]. J. Geophys. Res, 1986, 91: 9533-9542.
    [65] Witherspoon P A, Wang J S Y. Validity of cubic law for fluid flow in deformable rock fracture [J]. Water Resource Research, 1980, 45(6):112-118.
    [66] Noorishad J, Ayatollahi M S. A finite-element method for coupled stress and fluid flow analysis in fractured rock masses [J]. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1982,45(19):185-193.
    [67]赵阳升,秦惠赠,白其峥.煤层瓦斯流动的固-气耦合数学模型及数值解法的研究[J].固体力学学报,1994,15(1):49-56.
    [68]梁冰,章梦涛,潘一山等.煤和瓦斯突出的固流耦合失稳理论[J].煤炭学报,1995,20(5):492-496.
    [69]梁冰,刘建军,范厚彬等.非等温条件下煤层中瓦斯流动的数学模型及数值解法[J].岩石力学与工程学报,2000,19(1):1-5.
    [70]孙可明.低渗透煤层气开采与注气增产流固耦合理论及其应用[D].辽宁工程技术大学博士学位论文,2004.
    [71]赵阳升,胡耀青,赵宝虎等.块裂介质岩体变形与气体渗流的耦合数学模型及其应用[J].煤炭学报,2003,28(1):41-45.
    [72] W.C.Zhu, J.Liu, J.C.Sheng, et al. Analysis of coupled gas flow and deformation process with desorption and Klinkenberg effects in coal seams [J]. International Journal of Rock Mechanics & Mining Sciences, 2007, 44:971–980.
    [73]涂敏.煤层气卸压开采的采动煤岩体力学分析与应用研究[D].中国矿业大学博士学位论文,2008.
    [74] Snow D T. Anisotropic permeability of fractured media [J]. Wat. Resour. Res., 1969, 5(6):1273-1289.
    [75] Barton N, Bandis S C. Strength, deformation and conductivity coupling of rock joints [J]. Int. J. RockMech. Min.Sci. & Geomech. Abstr., 1985,22(3):121-140.
    [76] Jing L, Tsang C F, Stephansson O. DECOVALEX-an international co-operative research project on mathematical models of coupled THM processes for safety analysis of radioactive waste repositories[J], Int. J. Rock Mech. Min.Sci. &Geomech. Abstr., 1995,32(5):399-408.
    [77]李鸿昌.矿山压力的相似模拟试验[M].徐州:中国矿业大学出版社,1988.
    [78]李国君.铁法矿区高瓦斯低透气性煤层群煤层气产业化研究与工程实践[D].中国矿业大学博士学位论文,2007.
    [79]李树刚.综放开采围岩活动影响下瓦斯运移规律及控制[D].中国矿业大学博士学位论文,1998.
    [80]李红心.岩体卸荷损伤数值模拟及其工程应用[D].三峡大学硕士论文,2007
    [81]黄志安,童海方等.采空区上覆岩层“三带”的界定准则和仿真确定.北京科技大学学报[J],2006,7(6):609-612.
    [82]姜振泉,季梁军.岩石全应力-应变过程渗透性试验研究[J].岩土工程学报,2001,3(2):153-156.
    [83]蔡美峰.岩石力学与工程[M].北京:科学出版社,2002.
    [84]李树刚,钱鸣高,石平五.煤样全应力应变过程中的渗透系数-应变方程[J].煤田地质与勘探,2002,2(1):22-25.
    [85] Lo K Y &Lee C E. Stress analysis and slope stability in strain-softening material [J]. Geotechnique, 1973, 23(1): 1-11.
    [86]刘文政.脆塑性结构极限载荷的计算与工程应用[D].清华大学博士学位论文,1989.
    [87]郑宏,葛修润,李悼芬.脆塑性岩体的分析原理及其应用[J].岩石力学与工程学报,1997,16(1):8-21.
    [88]陆万明,罗学富.弹性理论基础[M].北京:清华大学出版社,1990.
    [89]戴自航,沈蒲生.摩尔-库仑等面积圆屈服准则的简化形式及应用[J].福州大学学报,2003,31(4):454-459.
    [90]段斌,何江达,李莉.关于岩土材料塑性屈服准则中材料参数取值条件的研究[J].红河水,2005,24(3):32-35.
    [91]沈新普.岩土工程弹脆塑性数值研究及材料参数识别反演方法[D].清华大学博士学位论文,1993.
    [92]Itasca Consulting Group Inc..FLAC3D users′manual[R].Minneapolis: Itasca Consulting Group Inc.,2005.
    [93]任强,刘伟韬.覆岩采动裂隙带发育规律的数值模拟分析[J].安全与环境学报,2006,6(7):76-78.
    [94]孙维吉.不同孔径下瓦斯流动机理及模型研究[D].辽宁工程技术大学硕士论文,2007.
    [95]司胜利.煤层气解吸扩散运移动力学[J].云南地质,2003,23(4):465-470.
    [96]程远平,俞启香等.上覆远程卸压岩体移动特性与瓦斯抽放技术研究[J].辽宁工程技术大学大学学报,2003,22(4):483-486.
    [97]梁冰,章梦涛.煤层瓦斯流动与煤体变形的耦合数学模型及数值方法[J].岩石力学与工程学报,1996,15(2):135-142.
    [98]梁冰.煤和瓦斯突出固流耦合失稳理论[M].北京:地质出版社,2000.
    [99]赵庆波等.世界煤层气发展现状[M].北京:地质出版社,1998.
    [100] Bear J.多孔介质流体动力学[M].北京:中国建筑工业出版社,1983.
    [101]薛定谬,A.E.著,王鸿勋等译.多孔介质中的渗流物理[M].北京:石油工业出版社,1982.
    [102]孙培德.煤层瓦斯流场流动规律的研究[J].煤炭学报,1987(4):74-82.
    [103] Sun Peide. Study of dynamic models for coal gas dynamics (part 1) [J]. Min. Sci. Technol. ,1991,12 (1):17-25.
    [104]杨天鸿,唐春安,徐涛等.岩石破裂过程的渗流特性[M].北京:科学出版社,2004.
    [105]郭德勇,韩德馨,冯志亮.围压下构造煤的孔隙度和渗透率特征实验研究[J].煤田地质与勘探,1998,26(4):31-34.
    [106]李祥春.煤层瓦斯渗流过程中流固耦合问题研究[D].太原理工大学硕士学位论文,2005.
    [107]Klinkenberg LJ. The permeability of porous media to liquids and gases [J]. Drilling and production practice. American Petroleum Institute,1941:200-212.
    [108]肖晓春,潘一山.低渗煤储层气体滑脱效应试验研究[J].岩石力学与工程学报. 2008,27 (z2):3509-3516.
    [109]Jones FO, Owens WW. A laboratory study of low permeability gas sands [J]. J Pet Tech. 1980:1631 -1670.
    [110]冯增朝.低渗透煤层瓦斯抽放理论与应用研究[D].太原理工大学博士学位论文,2005
    [111]程远平,周德永,俞启香等.保护层卸压瓦斯抽采及涌出规律研究[J].采矿与安全工程学报,2006,23(1):12-18.
    [112]肖晓春,潘一山.考虑滑脱效应的水气耦合煤层气渗流数值模拟[J].煤炭学报,2006,31(6):711-714.
    [113]涂敏.煤层气卸压开采的采动岩体力学分析与应用研究[D].中国矿业大学博士论文,2008.
    [114]董平川,徐小荷,何顺利.流固耦合问题及研究进展[J].地质力学学报,1999,5 (3):17-25.
    [115]Bear J. Dynamics of fluids in porous media[M]. Elsevier, New York, 1972.
    [116] Gambolati G. Equation for one-dimensional vertical flow of groundwaterⅠ: the rigorous theory [J]. Water Resource Resm,1973,9(4):1022-1028.
    [117] Mganus Wangen. A finite element formulation in lagrangian co-ordinates for heat and fluid in compacting sedimentary[J]. Int. J. Num .Anal. Mhetods Geomech, 1993, 17:401-432.
    [118]薛世峰.非混溶饱和两相渗流与变形孔隙介质耦合作用的理论研究及其在石油工程中的应用[D].中国地震局地质研究所博士学位论文,2000.
    [119]Tortike W S, Farouq Ali S M. Reservoir simulation integrated with geomechanics [J]. JCPT, 1993, 32(5):28-37.
    [120]冉启全,李仕伦.流固耦合油藏数值模拟中物性参数动态模型研究[J].石油勘探与开发,1997, 24(3):61-65
    [121]阳仿勇.变形介质气藏流固偶尔和渗流理论及应用研究[D].西南石油学院博士论文,2005.
    [122]Harpalani S,Schraufnagel RA. Influence of matrix shrinkage and compressibility on gas production from coalbed methane reservoirs[C]. SPE 20729, 65th Ann Tech Conf Exhib, New Orieans, September 23–26, 1990.
    [123]董平川.油气储层流固耦合理论、数值模拟及应用[D].东北大学博士学位论文,1998.
    [124] Settari, et al. Advances incoupled geomechnical and reservoir modeling with applications to reservoir compaction[J].SEP 51927
    [125] Comsol AB.Comsol Multiphysics Quick Start and Reference [M].2007.
    [126] Comsol AB.Comsol Multiphysics Model Guide [M].2007.
    [127] Comsol AB.Comsol Multiphysics Earth science module [M].2007.
    [128]孙培德,杨东全,陈奕柏.多物理场耦合模型及数值模拟导论[M].北京:中国科学技术出版社,2007.
    [129] Chan DYC, Hughes BD. Transient gas flow around the boreholes [J]. Transport Porous Media, 1993, 10:137-188.
    [130] Wu YS, Pruess K, Persoff P. Gas flow in porous media with Klinkenberg effects [J]. Transport Porous Media, 1998, 32:117-153.
    [131]胡千庭.煤矿瓦斯抽采与瓦斯灾害防治[M].徐州:中国矿业大学出版社,2007.
    [132]于不凡.煤矿瓦斯灾害防治及利用技术手册(修订版)[M].北京:煤炭工业出版社,2005.
    [133]袁亮.松软低透煤层群瓦斯抽采理论与技术[M].北京:煤炭工业出版社,2005.
    [134]于不凡.开采解放层的认识与实践[M].北京:煤炭工业出版社,1986.
    [135]梁运培,文光才.顶板岩层“三带”划分的综合分析法[J].煤炭科学技术,2000,28(5):39-42.
    [136]俞启香,程远平,蒋承林等.高瓦斯特厚煤层煤与卸压瓦斯共采原理及实践[J].中国矿业大学学报,2004,33(2):128-131.
    [137]石必明.保护层开采覆岩变形移动特性及防突工程应用实践[M].北京:煤炭工业出版社,2008.
    [138]王海锋.采场下伏煤岩体卸压作用原理及在被保护层卸压瓦斯抽采中的应用[D].中国矿业大学博士学位论文,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700