用户名: 密码: 验证码:
构造煤结构及其对瓦斯特性的控制机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以淮北地区为主要研究区域,系统采集不同变形类型和程度构造煤样。基于构造煤宏观、微观变形构造和镜质组反射率测试,结合研究区区域、矿区及矿井地质条件分析和前人构造煤分类的理论研究成果,正确确定样品构造煤类型,并筛选出低、中、高煤级不同变形类型和变形程度的23个构造煤样品进行综合测试和研究,深入探讨了构造煤结构及其对瓦斯特性的控制机理,为矿井瓦斯赋存规律和突出预测提供了重要研究基础和理论支撑。
     运用扫描电镜、X射线衍射、电子顺共振、核磁共振和傅立叶红外光谱等结构分析手段,压汞、低温液氮吸附、二氧化碳吸附和等温吸附/解吸等瓦斯特性实验测试技术,系统研究了不同煤级、不同变形类型和程度构造煤超微和分子结构及瓦斯特性的演化特征,深入探讨不同煤级构造煤结构演化机理及其对构造煤孔隙结构、吸附/解吸等瓦斯特性和瓦斯赋存与突出的控制机理;将煤中伴生元素分析和孔隙压缩系数计算方法应用于构造煤研究,系统分析了元素赋存的构造动力学效应和构造煤孔隙压缩系数演化特征及其对瓦斯抽采的控制作用。
     结果表明,不同煤级、不同应力-应变环境构造煤结构演化机理存在较大差异,变形作用对低、中煤级煤分子结构的影响主要表现在促使煤中大分子脂链断裂和官能团的脱落,强韧性和剪切变形还有助于煤中不成对电子键合,促进煤中分子结构的芳构化进程,变形对高煤级煤分子结构的影响主要表现在不同程度上破坏了煤中芳香层片在垂向上和横向上的完整性;部分伴生元素或元素组合可以作为应力-应变环境的指示剂,可以根据这部分元素在构造煤中的富集程度判定该构造煤形成的应力-应变环境类型和作用强度;不同应力-应变环境、不同煤级构造煤结构演化对不同孔径孔隙的控制机理存在显著差异,不同类型变形对大孔和中、微孔孔容和比表面积的作用机理,分别表现在控制煤中节理、裂隙发育程度和分子结构的有序及无序化程度等方面;不同应力-应变环境中,构造煤结构演化对大孔孔隙形态的控制作用迥异,弱脆性碎裂变形作用下煤层节理、裂隙发育稀疏,中等脆性碎裂变形、剪切变形和弱韧性变形有助于构造煤中开孔的明显增加,而强脆性碎裂变形和强及较强韧性变形则破坏煤中孔隙体系和连通性,并导致细颈瓶孔的发育;不同类型构造煤吸附性的差异取决于主控孔径范围的孔隙含量;不同类型构造煤瓦斯赋存特征和突出危险性存在较大差异,依据不同类型构造煤的瓦斯特性差异,将构造煤划分为非突出、弱突出、突出和强突出四类。
Tectonized coals with various deformation types and extents were collected mostly in Huaibei area, which is the main study area. On the basis of overall characterization of coal samples on macro- and microscopic scales and vitrinite reflectance measurements, in combination with geological analyzes of study region, mining area and coal mines where the samples were collected and present achievements on classification of tectonized coals, the tectonized coal types of each collected samples were determined properly, and 23 tectonized coal samples with low, middle and high coal rank and various deformation types and extents were selected for experimental and theoretical study, the texture of tectonized coal and its controlling mechanism upon gas properties were intensively discussed, which provides important theoretical supports for forcasting the law of gas occurrence and gas outburst in coal mines.
     Textural analysis methods, such as scanning electron microscope (SEM), X-ray diffraction (XRD), electronic paramagnet resonance (EPR), nuclear magnetic resonance (NMR) and fourier transform infrared ray (FT-IR), experimental measurement techniques for gas properties, such as mercury intrusion porosimetry (MIP), liquid nitrogen adsorption, carbon dioxide adsorption and isothermal adsorption and desorption, were applied to selected coal samples for determining the evolutional characteristics of ultramicro and molecular texture and gas properties of tectonized coals with different coal ranks and deformation types and extents, the evolutional mechanisms of tectonized coal texture at different coal ranks and their controlling mechanism on gas properties of tectonized coal, such as pore structure, adsorption and desorption properties, and gas occurrence and outburst were intensively studied. Associated elements analysis of coal and a method to determine the pore compressibility were introduced to tectonized coal study, the effect of tectonic dynamics upon elemental occurrence and the pore compressibility of tectonized coal and its control on gas extraction were systematically discussed.
     Results show that, the textural evolution mechanisms of tectonized coal of different coal ranks and deformation types are significantly different, deformation make the macromolecular aliphatic chain break and the functional groups fall in coals with low and middle coal ranks, strong ductile and shear deformation cause unpaired electrons bond, which is useful for aromatic ring development of coal with low and middle coal ranks, as for coals with high coal rank, the effect of deformation of all of types is to break the integrity of aromatic nucleus vertically and horizontally in different extents. Some associated elements and their combination might be used as indicator of stress-strain environment, used for determining the type of stress-strain environment where the tectonized coal is formed and deformation extent depending upon their concentration in tectonized coal. Textural evolution of tectonized coals of various deformation types and coal ranks show different controlling mechanism upon pore volume and specific surface of pores with different pore diameters, deformation control the amount of pore volume and specific surface of macropores and meso-, micropores by affecting the development of cleats and ordered extent of molecular structure in coals, respectively. The shape of macropore varies as the deformation type and extent change, weak brittle cataclasm deformation leads to sparsely-developed cleats, medium brittle cataclasm and shear deformation and weak ductile deformation are helpful for significant increase of open pores, strong brittle cataclasm and ductile deformation will break the pore system and connectivity, and cause flask pore develop. The difference of adsorption properties of tectonized coals with various deformation types depends upon the amount of pores in certain range of pore diameter. The effect of tectonized coal type upon gas occurrence and outburst is quite different, selected tectonized coals were classified as no outburst, weak outburst, outburst and strong outburst tectonized coal, according to their gas properties, corresponding to probability of coal and gas outburst from weak to strong.
引文
安徽省地质矿产局.安徽省区域地质志[M].北京:地质出版社,1987.
    蔡成功.煤与瓦斯突出三维模拟实验研究[J].煤炭学报,2004,29(1):66-69.
    蔡成功,侯锦秀.层次分析、定性数据定量化在煤与瓦斯突出预测中的应用[J].数学的实践与认识,2005,35(10):59-64.
    曹代勇,王文侠.镜质组反射率各向异性分析技术及其在构造研究中的应用[J].中国煤田地质,1990a,2(1):1-8.
    曹代勇.安徽淮北煤田推覆构造中煤镜质组反射率各向异性研究[J].地质论评,1990b,36(4):333-340.
    曹代勇,张守仁,任德贻.构造变形对煤化作用进程的影响[J].地质论评,2002,48(3):313-317.
    曹运江,黄润秋,冯涛等.湖南利民矿井煤与瓦斯突出的构造差异性研究[J].成都理工大学学报,2005,32(2):182-187.
    曹垚林,仇海生,王志权.潘一矿煤钻屑瓦斯解吸指标△h2值的突出敏感性及其临界值[J].煤矿安全,2006,37(12):10-12.
    车遥,黄文辉,刘大锰等.中国煤层气资源开发的关键性问题及前景[J].石油天然气学报,2006,28(1):29-31.
    陈波,郑文涛,梁汉东等.地震活动与煤矿瓦斯溢出事故之间的影响关系[J].煤炭学报,2005,30(4):447-450.
    陈昌国.煤的物理化学结构和吸附(解吸)甲烷机理的研究[D].重庆:重庆大学,1995.
    陈茺,高晋生,严勇捷.兖州煤环己酮萃取物的组成、结构及性质的研究[J].燃料化学学报,1997a,25(2):135-138.
    陈茺,高晋生,严勇捷.环己酮萃取煤的研究[J].燃料化学学报,1997b,25(1):60-64.
    陈德玉,兰芳友,刘高魁等.沉积岩有机质红外光谱及其在石油有机地球化学中的初步应用[J].地球化学,1977,(4):262-272.
    陈凤,申东日,陈义俊等.模糊小波网络在煤与瓦斯突出预测中的应用[J].煤矿安全,2006,37(10):51-54.
    陈鹏,陈明秀,陶玉灵.汝箕沟无烟煤的分子结构—MAS/CP及偶极去相13C核磁其振法的应用[J].燃料化学学报,1988,16(3):260-265.
    陈萍,唐修义.低温氮吸附法与煤中微孔隙特征的研究[J].煤炭学报,2001,26(5):552-556.
    陈善庆.鄂、湘、粤、桂二叠纪构造煤成因及其成因分析[J].煤炭学报,1989,(4):1-9.
    崔光来,全书进,吴朝东.焉耆盆地侏罗系煤中微量元素地球化学特征及意义[J].北京大学学报,2004,40(4):594-600.
    戴金星,戚厚发.我国煤中发现在气孔及其在天然气勘探上的意义[J].科学通报,1982,(5):298-301.
    代世峰,任德贻,李生盛等.华北地台晚古生代煤中微量元素及As的分布[J].中国矿业大学学报,2003,32(2):111-114.
    代世峰,任德贻,唐跃刚.煤中常量元素的赋存特征与研究意义[J].煤田地质与勘探,2005,33(2):1-5.
    邓勃,宁永成,刘密新.仪器分析[M].北京:清华大学出版社,1991.
    董庆年.红外光谱法[M].北京:化学工业出版社,1979.
    范金志,郭德勇,张建国.层次分析法确定煤与瓦斯突出影响因素的权重[J].矿业安全与环保,2004,31(3):4-8.
    范景坤,张登龙,李子明等.试析淮北矿区共伴生硬质高岭土矿物特征[J].淮南工业学院学报,2001,21(4):5-8.
    范景坤.淮北矿区煤层气资源及抽放技术[J].中国煤层气,2004,1(2):28-31.
    范景坤.淮北矿区瓦斯突出煤层煤层气抽采技术[J].中国煤层气,2007,4(1):24-27.
    方开泰,潘恩沛.聚类分析[M].北京:地质出版社,1982.
    冯杰,李文英,谢克昌.傅立叶红外光谱法对煤结构的研究[J].中国矿业大学学报,2002,31(5):362-366.
    傅家谟.有机地球化学[M].上海:上海科学技术出版社,1984.
    傅家谟,刘德汉,盛国英.煤成烃地球化学[M].北京:科学出版社,1990.
    傅雪海,陆国祯,秦杰等.利用测井响应值进行煤层气含量拟合和煤体结构划分的研究[J].测井技术,1999,23(2):112-115.
    傅雪海,秦勇,薛秀谦等.煤储层孔、裂隙系统分形研究[J].中国矿业大学学报,2001a,30(3):225-228.
    傅雪海,秦勇,李贵中等.山西沁水盆地中、南部煤储层渗透性影响因素[J].地质力学学报,2001b,7(1):45-52.
    傅雪海,秦勇,李贵中.煤储层渗透性研究新进展[J].辽宁技术工程大学学报,2001c,20(6):739-743.
    付建华,程远平.中国煤矿煤与瓦斯突出现状及防治对策[J].采矿与安全工程学报,2007,24(3):253-259.
    高连芬,刘桂建,Chou Chenlin等.中国煤中硫的地球化学研究[J].矿物岩石地球化学通报,2005,24(1):79-87.
    高凌蔚,窦廷焕,苗康运.煤系地层中常见的碎裂变质岩[J].煤田地质与勘探,1979,(2): 78-87.
    管俊芳,侯瑞云.煤储层基质孔隙和割理孔隙的特征及孔隙度的测定方法[J].华北水利水电学院学报,1999,20(1):23-25.
    郭宝罗,钟增球,李志中.断裂构造岩分类初探[J].地球科学,1987,12(1):31-38.
    郭斌斌.构造煤特征及其与二氧化碳突出的地质分析[J].煤田地质与勘探,2001,29(1):28-30.
    郭德勇,韩德馨,袁崇孕.平顶山十矿构造煤结构成因研究[J].中国煤田地质,1996a,8(3):22-25.
    郭德勇.煤和瓦斯突出构造物理学研究[D].北京:中国矿业大学,1996b.
    郭德勇,韩德馨.地质构造控制煤和瓦斯突出作用类型研究[J].煤炭学报,1998a,23(4):337-341.
    郭德勇,韩德馨,冯志亮.围压下构造煤的孔隙度和渗透率特征实验研究[J].煤田地质与勘探,1998b,26(4):31-34.
    郭德勇,韩德馨.构造煤的电子顺磁共振实验研究[J].中国矿业大学学报,1999,28(1):94-97.
    郭德勇,韩德馨,王新义.煤与瓦斯突出的构造物理环境及其应用[J].北京科技大学学报,2002a,24(6):581-592.
    郭德勇,韩德馨,张建国.平顶山矿区构造煤分布规律及成因研究[J].煤炭学报,2002b,27(3):249-253.
    郭德勇,韩德馨.煤与瓦斯突出粘滑机理研究[J].煤炭学报,2003,28(6):598-602.
    郭德勇,范金志,马世志等.煤与瓦斯突出预测层次分析-模糊综合评判方法[J].北京科技大学学报,2007,29(7):660-664.
    郭德勇,李念友,裴大文等.煤与瓦斯突出预测灰色理论-神经网络方法[J].北京科技大学学报,2007,29(4):354-357.
    郭莉,段林娣,张春雷等.煤层显微煤岩类型与裂隙分布的关系[J].煤田地质与勘探,2005,33(5):9-12.
    郭立稳.含瓦斯煤破裂过程的热效应研究[D].徐州:中国矿业大学,1999.
    郭晓波,张时音,陈玉华.内蒙古二道岭区煤储层孔隙结构特征[J].中国煤田地质,2003,15(6):27-29.
    高雷阜,徒君,赵艳艳.基于Hopfield网的煤与瓦斯突出分类模型[J].辽宁工程技术大学学报,2005,24(6):818-820.
    高凌蔚,窦延焕,苗康运.煤系中常见的碎裂变质岩[J].煤田地质与勘探,1979,(2):75-87.
    韩军,张宏伟,朱志敏等.阜新盆地构造应力场演化对煤与瓦斯突出的控制[J].煤炭学报,2007,32(9):934-938.
    韩树棻.两淮地区成煤地质条件及成煤预测[M].北京:地质出版社,1990.
    郝吉生,倪小明.基于Windows平台的采掘工作面煤与瓦斯突出预测专家系统[J].煤炭学报,2005,30(2):141-145.
    赫琦.煤的显微孔隙形态特征及其成因探讨[J].煤炭学报,1987,(4):52-54.
    何俊,何学秋,刘明举.煤与瓦斯突出多尺度预测研究[J].岩石力学与工程学报,2004,23(18):3122-3126.
    何俊,刘明举,颜爱华.煤田地质构造与瓦斯突出关系分形研究[J].煤炭学报,2002,27(6):623-626.
    何俊,娄季凡,刘明举.褶曲分形特征及其与瓦斯突出关系研究[J].焦作工学院学报,2001,20(3):168-171.
    何学秋.含瓦斯煤岩流变动力学[M].徐州:中国矿业大学出版社,1995.
    何永年,林传勇,史兰斌.构造岩石学基础[M].北京:地质出版社,1988.
    侯泉林,张子敏.关于“糜棱煤”概念之探讨[J].焦作矿业学院学报,1990,(2):21-26.
    侯泉林,李培军,李继亮.闽西南前陆褶皱冲断带[M].北京:地质出版社,1995.
    胡建治,叶朝辉,陈德玉.强场下煤13C NMR谱[J].波谱学杂志,1991,8(1):81-87.
    胡社荣.河南煤田构造演化和煤变质作用的地质因素[D].北京:中国矿业大学北京研究生部,1992.
    胡耀青,赵阳升,杨栋等.煤体的渗透性与裂隙分维的关系[J].岩石力学与工程学报,2002,21(1):1452-1456.
    黄德生.地质构造控制煤与瓦斯突出的探讨[J].地质科学,1992,(增刊):201-208.
    黄第藩,秦匡宗,王铁冠等.煤成油的形成和成烃机理[M].北京:石油工业出版社,1995.
    霍多特B B.煤和瓦斯突出[M].宋世钊,王佑安译.北京:中国工业出版社,1966.
    霍永忠,吴巧生.煤储层特性研究若干问题的思考[J].地质科技情报,1997,16(1):66-67.
    霍永忠,张爱云.煤层气储层的显微孔裂隙成因分类及其应用[J].煤田地质与勘探,1998,26(6):28-32.
    姜波,王桂梁.断裂构造岩分类研究[J].中国煤田地质,1990,2(2):1-3.
    姜波,王桂梁.论超微分析在煤田构造研究中的意义[J].煤炭学报,1993,18(1):78-86.
    姜波,金法礼.煤田超显微构造研究方法[J].煤炭科学技术,1994,22(10):12-15.
    姜波,秦勇,金法礼等.高温高压下煤超微构造的变形特征[J].地质科学,1998a,3(1):17-24.
    姜波,秦勇,金法礼.高温高压实验变形煤XRD结构演化[J].煤炭学报,1998b,23(2):188-193.
    姜波,秦勇,宋党育等.高煤级构造煤的XRD结构及其构造地质意义[J].中国矿业大学学报,1998c,27(2):115-118.
    姜波,秦勇.实验变形煤结构演化的电子顺磁共振研究[J].长春科技大学学报,1998d,28(4):411-416.
    姜波,秦勇.实验变形煤结构的13C NMR特征及其构造地质意义[J].地球科学,1998e,23(6):579-582.
    姜波,秦勇.变形煤的结构演化机理及其地质意义[M].徐州:中国矿业大学出版社,1998f.
    姜波,秦勇.变形煤镜质组反射率演化的地化机理及其地质意义[J].煤田地质与勘探,1999a,27(5):19-21.
    姜波,秦勇.变形煤的EPR结构演化及其构造地质意义[J].高校地质学报,1999b,5(3):334-339.
    姜波,秦勇,范炳恒等.淮北地区煤储层物性及煤层气勘探前景[J].中国矿业大学学报,2001,30(5):433-437.
    姜波,徐凤银,刘仰露等.柴达木北缘镜质组光性组构及应力-应变分析[J].中国矿业大学学报,2002,31(6):561-564.
    姜波,琚宜文.构造煤结构及其储层物性特征[J].天然气工业,2004,24(5):27-29.
    姜德义,张广洋,胡耀华等.有效应力对煤层气渗透率影响的研究[J].重庆大学学报,1997,20(5):22-25.
    蒋承林,俞启香.煤与瓦斯突出机理的球壳失稳假说[J].煤矿安全,1995,(2):17-25.
    蒋建平,罗国煜,康继武.煤X射线衍射与构造煤变质浅议[J].煤炭学报,2001,26(1):31-34.
    蒋建平,高广运,康继武.镜质组反射率测试及其所反映的构造应力场[J].地球物理学报,2007,50(1):138-145.
    降文萍,崔永君,张群等.不同变质程度煤表面与甲烷相互作用的量子化学研究[J].煤炭学报,2007,32(3):292-295.
    焦作矿业学院地质教研室.瓦斯地质概论[M].北京:煤炭工业出版社,1990.
    金奎励,赵长毅,刘大猛等.当代煤及有机岩研究新技术[M].北京:地质出版社,1997.
    靳钟铭.含瓦斯煤层力学特性的实验研究[J].岩石力学与工程学报,1991,10(3):271-279.
    经雅丽,张克信,林启祥等.沉积地球化学特征与古环境意义[J].地质科技情报,2005,24(1):35-40.
    景国勋,张强.煤与瓦斯突出过程中瓦斯作用的研究[J].煤炭学报,2005,30(2):169-171.
    井悦,王长毅.我国煤层气开发的经济战略价值分析[J].经济问题探索,2002,(5):35-37.
    琚宜文,王桂梁.煤层流变及其与煤矿瓦斯突出的关系[J].地质论评,2002a,48(1):96-105.
    琚宜文,王桂梁.淮北宿临矿区构造特征及演化[J].辽宁工程技术大学学报,2002b,21(3):286-289.
    琚宜文,王桂梁,胡超.海孜煤矿构造变形及其对煤厚变化的控制[J].中国矿业大学学报,2002c,31(4):374-379.
    琚宜文.构造煤结构演化与储层物性特征及其作用机理[D].徐州:中国矿业大学,2003.
    琚宜文,姜波,王桂梁等.构造煤结构及储层物性[M].徐州:中国矿业大学,2005.
    康建宁,赵旭生,邹银辉.煤与瓦斯突出预测新指标及其装备的研究[J].煤炭科学技术,2006,34(10):82-87.
    康钦容,唐建新,张卫中等.事故树分析法在白皎煤矿与瓦斯突出安全评价中的应用[J].矿业安全与环保,2006,33(3):83-85.
    库哈连柯T A,钱秉均.中国煤的红外光谱[J].科学通报,1961,(12):47-49.
    梁冰,章梦涛,潘一山等.煤与瓦斯突出的固流耦合失稳理论[J].煤炭学报,1995,20(5):492-496.
    梁汉东.煤岩自然释放氢气与瓦斯突出关系初探[J].煤炭学报,2001,26(6):637-642.
    李北平.重庆地区煤与瓦斯突出特征及其地质影响因素分析[J].矿业安全与环保,2007,34(3):69-70.
    李成武,许延超.煤与瓦斯突出主要影响因素主成分分析[J].煤矿安全,2007,38(7):14-17.
    李康,钟大赉.煤岩的显微构造特征及其与瓦斯突出的关系—以南桐鱼田堡煤矿为例[J].地质学报,1992,66(2):148-157.
    李葵英.界面与胶体的物理化学[M].哈尔滨:哈尔滨工业大学出版社,1998.
    李明潮,张五侪.中国主要煤田的浅层煤成气[M].北京:科学出版社,1990.
    李明潮,梁生正,赵克镜.煤层气及其勘探开发[M].北京:地质出版社,1996.
    李树刚,钱鸣高.我国煤层与甲烷安全共采技术的可行性[J].科技导报,2000,(6):36-41.
    李涛,高凌蔚,刘天林.煤岩流变分析[A].煤炭科学院勘探分院文集(1)[C].西安:陕西人民出版社,1987.
    李伟,连昌宝.淮北煤田煤与瓦斯突出地质因素分析与防治[J].煤炭科学技术,2007,35(1):19-22.
    李小明,曹代勇,张守仁等.不同变质类型煤的XRD结构演化特征[J].煤田地质与勘探,2003,31(3):5-7.
    李小彦.煤储层裂隙研究方法辨析[J].煤田地质与勘探,1998,26(增刊):14-16.
    李小彦,王强,杜新峰等.我国煤层气成分变化及时空分布特征[J].煤田地质与勘探,2002,30(6):20-24.
    李振广,秦匡宗.用13C NMR CP/MAS波谱表征干酪根的性质[J].石油学报,1990,11(4):25-32.
    李振广,秦匡宗.干酪根结构中碳分布特征及其与生烃潜力的关系—13C NMR CP/MAS与DD技术的应用[J].地球化学,1995,24(2):101-109.
    栗源一雄.关于瓦斯突出煤的形状和炭化程度[J].采矿与安全,1978,24(12):1-13.
    连承波,李汉林.地应力对煤储层渗透性影响的机理研究[J].煤田地质与勘探,2005,33(2):30-32.
    练友红,汪长明.用事故树分析法确定煤矿瓦斯突出的主导因素探讨[J].矿业安全与环保,2006,33(增刊):95-97.
    梁冰,章梦涛,潘一山等.煤和瓦斯突出的固流耦合失稳理论[J].煤炭学报,1995,20(5):492-496.
    林传勇,何永年,史兰斌.岩石的韧性剪切和脆-韧性转换变形[A].肖庆辉等.当代地质科学前沿[C].武汉:中国地质大学出版社,1993.
    林宗虎.煤层气一种亟待开发利用的清洁能源[J].工业锅炉,2006,(3):1-5.
    刘常洪.煤的孔隙结构及其对甲烷的吸附特征[D].淮南:淮南矿业学院,1991.
    刘粤惠,刘平安.X射线衍射分析原理与应用[M].北京:化学工业出版社,2003.
    刘晶,郑楚光,张军营等.煤中易挥发痕量元素赋存形态的分析方法及实验研究[J].燃烧科学与技术,2003,9(4):295-298.
    刘明举,许考,何学秋等.煤与瓦斯突出的流变电磁辐射机理探讨[J].矿业安全与环保,2001,28(5):30-32.
    刘明举,颜爱华,丁伟等.煤与瓦斯突出热动力过程研究[J].煤炭学报,2003,28(1):50-54.
    刘明举,龙威成,刘彦伟.构造煤对突出的控制作用及其临界值的探讨[J].煤矿安全,2006,37(10),45-50.
    刘洪林,王红岩,宁宁等.中国煤层气资源及中长期发展趋势预测[J].中国能源,2005,27(7):21-26.
    刘文岗,姜耀东,周宏伟等.冲击倾向性煤体的细观特征与裂纹失稳的试验研究[J].湖南科技大学学报,2006,21(4):14-18.
    刘振学,魏贤勇,宗志敏等.煤的溶剂萃取研究进展(Ⅰ)有机溶剂及其萃取机理[J].煤炭转化,2003,26(2):1-5.
    卢宏伟.煤与瓦斯突出综合预测的集对分析模型与应用[J].矿业安全与环保,2007,34(1):3-5.
    卢新卫.陕西煤中硒的环境地球化学特征[J].陕西师范大学学报,2003,31(1):107-112.
    吕志发,张新民,钟玲文等.块煤的孔隙特征及其影响因素[J].中国矿业大学学报,1991,20(3):45-50.
    罗陨飞,李文华.中低变质程度煤显微组分大分子结构的XRD研究[J].煤炭学报,2004,29(3):338-341.
    马恒,贾传荧,葛少成等.瞬态瑞利波在预测煤与瓦斯突出中的应用[J].煤炭学报,2004,29(增刊):45-48.
    马文璞.区域构造解析[M].北京:地质出版社,1992.
    马志茹,张蓬洲,赵秀荣等.峰峰肥煤的固体高分辨核磁共振研究[J].燃料化学学报,1996,24(3):251-255.
    马中飞.综采工作面水力超前卸压防突技术的理论和应用研究[D].徐州:中国矿业大学,2006.
    孟召平,彭苏萍,贺日兴等.阜新刘家区井田地质构造对煤储层影响及有利区块预测[J].中国煤田地质,1997,9(3):36-39.
    苗海周.煤“爆炸”了─论“构造煤”成因分析[J].煤,2007,(87):29-30.
    南存全,冯夏庭.基于SVM的煤与瓦斯突出区域预测研究[J].岩石力学与工程学报,2005,24(2):263-267.
    聂百胜.煤与瓦斯突出预测技术研究现状及发展趋势[J].中国安全科学学报,2003,13(6):40-43.
    潘一山,杨小彬,王学滨.多孔介质局部化与煤和瓦斯突出射流理论[J].辽宁工程技术大学学报,2001,20(4):446-447.
    彭立世.煤与瓦斯突出预测的地质指标[J].瓦斯地质,1985,1(1):53-60.
    彭立世,陈凯德.构造煤和煤与瓦斯突出机制[J].焦作矿业学院学报,1988,(3):23-25.
    秦匡宗,劳永新.茂名和抚顺油页岩组成结构的研究(Ⅰ.有机质的芳碳结构)[J].燃料化学学报,1985a,13(2):133-139.
    秦匡宗,劳永新.茂名和抚顺油页岩组成结构的研究(Ⅱ.有机质的脂碳结构)[J].燃料化学学报,1985b,13(3):193-201.
    秦匡宗.茂名和抚顺油页岩组成结构的研究(Ⅲ.有机质的平均结构单元)[J].燃料化学学报,1986,14(1):1-7.
    秦匡宗,张秀义,劳永新.干酪根的X射线衍射研究[J].沉积学报,1987,5(1):26-36.
    秦匡宗,赵丕裕.用固体13C核磁共振技术研究黄县褐煤的化学结构[J].燃料化学学报,1990a,18(1):1-7.
    秦匡宗,陈德玉,李振广.干酪根的13C NMR研究—用有机碳三种结构组成表征干酪根的演化[J].科学通报,1990b,35(22):1729-1733.
    秦匡宗,吴肖令.抚顺油页岩热解成烃机理—固体13C核磁波谱技术的应用[J].石油学报,1990c,6(1):36-43.
    秦匡宗,李振广,勃达也夫H.干酪根的13C NMR研究—偶极相移技术的应用[J].科学通报,1992,37(8):721-723.
    秦匡宗.干酪根结构[A].傅家谟,秦匡宗.干酪根地球化学[C].广州:广东科技出版社,1995a:425-441.
    秦匡宗,郭绍辉. NMR在固体化石能源中的应用[J].波谱学杂志,1995b,12(5):451-457.
    秦匡宗,郭绍辉.煤结构的新概念与煤成油机理的再认识[J].科学通报,1998,43(18):1912-1918.
    秦汝祥,张国枢,杨应迪.瓦斯涌出异常预报煤与瓦斯突出[J].煤炭学报,2006,31(5):599-602.
    秦勇.中国高煤级煤的显微岩石学特征及结构演化[M].徐州:中国矿业大学出版社,1994.
    秦勇,姜波,曾勇等.中国高煤级煤EPR阶跃式演化及地球化学意义[J].中国科学D辑,1997a,27(6):499-502.
    秦勇,姜波,王超等.中国高煤级煤的电子顺磁共振特征—兼论煤中大分子基本结构单元的“拼叠作用”及其机理[J].中国矿业大学学报,1997b,26(2):10-14.
    秦勇,张德民,傅雪海等.山西沁水盆地中、南部现代构造应力场与煤储层物性关系之探讨[J].地质论评,1999a,45(6):576-583.
    秦勇,傅雪海,叶建平等.中国煤储层岩石物理学因素控气特征及机理[J].中国矿业大学学报,1999b,28(2):14-18.
    秦勇,叶建平,林大扬等.煤储层厚度与其渗透性及含气性关系初步探讨[J].煤田地质与勘探,2000,28(1):24-27.
    秦勇.中国煤层气地质研究进展与述评[J].高校地质学报,2003,9(3):339-358.
    秦勇,王文峰,宋党育等.山西平朔矿区上石炭统太原组11号煤层沉积地球化学特征及成煤微环境[J].古地理学报,2005,7(2):249-260.
    曲星武,王金城.煤的X射线分析[J].煤田地质与勘探,1980,8(2):33-39.
    屈争辉,姜波,汪吉林等.淮北地区构造演化及其对煤与瓦斯的控制作用[J].中国煤炭地质,20(10):34-37.
    任纪舜.中国东部及邻区大地构造演化的新见解[J].中国区域地质,1989,(4):3-14.
    任建业.变形岩石中的运动学标志[J].地质科技情报,1988,7(1):23-30.
    阮传德,张蓬洲,王岩国.无烟煤结构的高分辨率电镜研究[J].燃料化学学报,1995,23(1):75-79.
    撒占友,何学秋,张永亮等.煤岩电磁辐射效应及其在煤与瓦斯突出预测中的应用[J].中国矿业,2006,15(1):48-54.
    桑树勋,秦勇,傅雪海等.陆相盆地煤层气地质—以准噶尔、吐哈盆地为例[M].徐州:中国矿业大学出版社,2001.
    桑树勋,朱炎铭,张时音等.煤吸附气体的固气作用机理(Ⅰ)—煤孔隙结构与固气作用[J].天然气工业,2005,25(1):13-16.
    尚慧云,李晋超.陆相生油的有机质类型[A].石油勘探开发科学研究院地质研究所.中国陆相油气生成[C].北京:石油工业出版社,1982:114-129.
    尚水平,付保山.鹤壁八矿煤层突出敏感指标的确定及应用[J].矿业安全与环保,2003,30(1):47-48.
    宋党育,秦勇,张军营等.晋北-宁北煤中痕量元素的地球化学特征[J].地球化学,2005,34(3):248-256.
    宋鸿林.动力变质岩分类述评[J].地质科技情报,1986,5(1):21-26.
    宋鸿林.构造动力学中的显微构造研究[A].肖庆辉等.当代地质科学前沿[C].武汉:中国地质大学出版社,1993.
    宋鸿林.五十年来中国小型构造研究的回顾和展望[J].地质论评,2002,48(2):158-165.
    宋立军,李增学,吴冲龙等.安徽淮北煤田二叠系沉积环境与聚煤规律分析[J].煤田地质与勘探,2004,32(5):21-25.
    宋卫华,封富,李怀敏.煤与瓦斯突出和地球固体潮的关系[J].辽宁工程技术大学学报,2004,23(6):734-736.
    宋卫华,张宏伟.构造区域应力场与煤与瓦斯突出区域预测[J].矿业安全与环保,2007,34(4):7-12.
    宋志敏,牛雅莉,彭立世.矿井瓦斯突出危险带的预测方法[J].矿业安全与环保,2002,29(4):17-19.
    苏现波,方文东.煤储层渗透性及其分级与分类[J].焦作工学院学报,1998,17(2):94-99.
    苏现波,冯艳丽,陈江峰.煤中裂隙的分类[J].煤田地质与勘探,2002,30(4):21-24.
    苏现波,张丽萍,林晓英.煤阶对煤的吸附能力的影响[J].天然气工业,2005,25(1):19-21.
    孙波,李爱民,谢耀社.煤与瓦斯突出预测综合指标F值的试验研究[J].煤炭科学技术,2006,34(6):64-66.
    孙传显,龙荣生,王瑛等.南桐煤矿煤体结构的差异性及对瓦斯突出的影响[J].西安矿业学院学报,1989,(2):25-30.
    孙继平,李迎春.红外诊断技术在突出工作面预测中的应用[J].煤矿安全,2006,37(11):17-20.
    孙茂远.中国煤层气勘探开发现状、问题及其建议[J].中国能源,2002(11):27-30.
    孙茂远,范志强.中国煤层气开发利用现状及产业化战略选择[J].天然气工业,2007,27(3):1-5.
    孙四清,陈致胜,韩保山等.测井曲线判识构造软煤技术预测煤与瓦斯突出[J].煤田地质与勘探,2006,34(4):65-68.
    孙旭光,陈建平,郝多虎.塔里木盆地煤显微组分显微傅里叶红外光谱特征及意义[J].北京大学学报,2001,37(6):832-838.
    孙岩,韩克丛.断裂构造岩带的划分[M].北京:科学出版社,1985.
    谈庆明,俞善炳,朱怀球等.含瓦斯煤在突然卸压下的开裂破坏[J].煤炭学报,1997,22(5):514-518.
    谭学术.煤的渗透性研究[J].西安矿业学院学报,1994,14(1):22-25.
    汤达祯.河东煤田煤变质规律、煤的结构演化和煤成气生成作用研究[D].北京:中国地质大学,1991.
    汤友谊,陈江峰,彭立世.无线电波坑道透视构造煤的研究[J].煤炭学报,2002,27(3):254-258.
    唐方头.煤的X射线分析在渣渡矿区滑动构造中的应用[J].煤田地质与勘探,2002,30(1):1-3.
    唐修义,赵继尧,陈昌华.阜新、南票两煤田热变煤地球化学特征初探[A].中国科学院地球化学研究所开放实验室年报[C].北京:科学出版社,1988.
    唐亚兰.煤中气孔和镶嵌结构及其在煤变质研究中的意义[J].煤田地质与勘探,1986,(3):28-29.
    田原宇,申曙光,田亚峻等.煤的溶化技术与煤的化学族组成[J].太原理工大学学报,2001,32(6):555-558.
    田云丽,周利华.基于BP神经网络的煤与瓦斯突出预测方法的研究[J].系统工程理论与实践,2005,(12):102-106.
    万天丰.古构造应力场[M].北京:地质出版社,1988.
    王大曾.瓦斯地质[M].北京:煤炭工业出版社,1992.
    王恩义.地质构造突出机理研究[J].河南理工大学学报,2005,24(3):181-185.
    王恩营.高瓦斯矿井煤与瓦斯突出区域预测瓦斯地质方法[J].煤矿安全,2006,37(10):42-44.
    王桂梁,朱炎铭.论煤层流变[J].中国矿业学院学报,1988,(3):16-25.
    王桂梁,曹代勇,姜波等.华北南部的逆冲推覆、伸展滑覆与重力滑动构造[M].徐州:中国矿业大学出版社,1992.
    王桂梁,姜波,曹代勇等.徐州-宿州弧形双冲-叠瓦扇逆冲断层系统[J].地质学报,1998,72(3):228-236.
    王桂梁,刘登桃,姜波等.福建天湖山区推滑叠加型滑脱构造模式[J].中国科学B辑,1995,25(1):85-92.
    王洪林,唐书恒,林建法.华北煤层气储层研究与评价[M].徐州:中国矿业大学出版社,2000.
    王焕金,何绍勋.椭球形标志物应变分析方法及应用—并讨论退应变分析方法问题[J].大地构造与成矿学,1986,10(1):83-95.
    王嘉荫.应力矿物概论[M].北京:地质出版社,1978.
    王金旺,邵宏舜.沥青质芳香族核磁共振波谱与有机质的演化和原油成熟度[J].石油实验地质,1984,6(3):241-252.
    王凯,俞启香.煤与瓦斯突出的非线性特征及预测模型[M].徐州:中国矿业大学出版社,2005.
    王乐平,王现强.我国煤层气超临界吸附的研究进展[J].现代矿业,2009,(1):20-22.
    王启军,陈建渝.油气地球化学[M].北京:中国地质大学出版社,1988.
    王生辉,崔玉环,巩军伟等.岩浆侵入煤层对煤与瓦斯突出的影响[J].煤炭技术,2005,24(3):69-70.
    王生维,陈钟惠.煤储层孔隙、裂隙系统研究进展[J].地质科技情报,1995,14(1):53-59.
    王文峰,宋志敏,秦勇.淮北宿县矿区煤层气地质评价[J].煤田地质与勘探,2002a,30(3):29-33.
    王文峰,徐磊,傅雪海.应用分形理论研究煤孔隙结构[J].中国煤田地质,2002b,14(2):26-33.
    王文杰,王信.中国东部煤田推覆、滑脱构造与找煤研究[M].徐州:中国矿业大学出版社,1992.
    王文侠.涟源坳陷煤反射率变化及其与深部断裂构造的关系[J].煤田地质与勘探,1988a,(2):20-25.
    王文侠.湖南涟源坳陷晚古生代煤田构造变形[D].徐州:中国矿业大学,1988b.
    王文侠.涟源煤田无烟煤镜质组反射率异性组构与有限应变分析[J].煤炭学报,1991,16(2):94-102.
    王晓华,熊玉春,顾晓华等.几种烟煤CS2萃取物的GC/MS分析[J].燃料化学学报,2002,30(1):72-77.
    王延斌,韩德馨.渤海湾盆地石炭纪-二叠纪煤的有机组分红外光谱研究[J].地质学报,1999,73(4):370-375.
    王佑安,杨思敬.煤和瓦斯突出危险煤层的某些特征[J].煤矿安全,1980,(1):3-9.
    王运泉,任德贻,雷家锦等.煤中微量元素分布特征初步研究[J].地质科学,1997,32(1):65-73.
    王志荣,郎东升,刘士军等.豫西芦店滑动构造区瓦斯地质灾害的构造控制作用[J].煤炭学报,2006,31(5):553-557.
    位爱竹,王凯,伍永生.基于GA-BP混合算法的煤与瓦斯突出强度预测研究[J].矿业安全与环保,2006,33(4):4-6.
    魏建平,张文勇,潘辉等.鹤壁矿区煤与瓦斯突出特征及影响因素分析[J].煤炭工程,2007,(4):60-62.
    魏贤勇,宗志敏,秦志宏等.分子煤化学的构想及其发展前景[A].袁晴棠,金涌.中国工程院化工、冶金与材料工程学部第二届学术会议论文集[C].北京:中国工程院,1999:623-628.
    温桂兰.干酪根电子顺磁共振特性研究及其在石油勘探中的应用[J].地球化学,1985,(3):242-248.
    文光才,周俊,刘胜.对突出做功的瓦斯内能的研究[J].矿业安全与环保,2002,29(1):1-3.
    翁成敏,潘志贵.峰峰煤田煤的X射线衍射分析[J].地球科学,1981,(1):214-221.
    伍爱友,姚建,肖红飞.基于灰色关联分析的煤与瓦斯突出预测指标优选[J].煤炭科学技术,2005,33(4):55-58.
    伍爱友,肖红飞,王从陆等.煤与瓦斯突出控制因素加权灰色关联模型的建立与应用[J].煤炭学报,2005a,30(1):58-62.
    吴代赦,郑宝山,唐修义等.中国煤中氟的含量及其分布[J].环境科学,2005,26(1):7-11.
    吴帆,彭朴,陆婉珍.烃类化合物NMR化学位移数据库及各类碳氢原子族化学位移统计分布[J].波谱学杂志,1996,13(4):393-402.
    吴国光,王祖讷.低阶煤的热重-傅里叶变换红外光谱的研究[J].中国矿业大学学报,1998,27(2):181-184.
    吴俊.突出煤的微结构及表面特征的研究[J].煤炭学报,1987,12(2):40-46.
    吴俊,唐修义,杨宜春.我国若干煤田突出煤的煤岩和有机地化特征及其意义[J].山东矿业学院学报,1988,(2):17-24.
    吴俊,金奎励,童有德等.煤孔隙理论及在瓦斯突出和抽放评价中的应用[J].煤炭学报,1991,16(3):86-94.
    吴俊.微孔隙特征及其与油气运移储集关系的研究[J].中国科学B辑,1993,23(1):77-84.
    吴俊.中国煤成烃基本理论与实践[M].北京:煤炭工业出版社,1994.
    吴佩芳.煤层气开发的理论与实践[M].北京:地质出版社,2000.
    吴文金,刘文中,陈克清.淮北煤田二叠系沉积环境分析[J].北京地质,2000,12(3):21-25.
    吴香尧.岩组学导论[M].重庆:重庆出版社,1984.
    谢克昌.煤的结构与反应性[M].北京:科学出版社,2002.
    辛国强. X射线衍射法研究干酪根结构[J].石油实验性质,1987,9(1):34-41.
    许宝元,安绍宣,陈洪起.用X光衍射方法进行干酪根的结构参数—芳香度的测定[J].石油勘探与开发,1986,(1):31-34.
    许浩,张尚虎,冷雪等.沁水盆地煤储层孔隙系统模型与特性分析[J].科学通报,2005,50(增刊Ⅰ):45-50.
    许志琴.地壳变形与显微构造[M].北京:地质出版社,1984.
    徐龙君,张代均,鲜学福.煤的吸附特征及其应用[J].煤炭转化,1997,20(2):25-31.
    徐龙君,鲜学福,刘成伦等.用X射线衍射和FTIR光谱研究突出区煤的结构[J].重庆大学学报,1999,22(4):23-27.
    徐望国,曹运江,刘新华等.湖南利民矿区沉积条件的演变对煤与瓦斯突出的控制[J].湖南工程学院学报,2002,12(2):71-77.
    徐胜平,江洪清,梁汉东.煤岩中氢气氦气甲烷释放规律的研究[J].矿业安全与环保,2003,30(6):4-6.
    徐学峰,张宏伟,陈学华.地质动力区划在煤与瓦斯突出研究中的应用[J].辽宁工程技术大学学报,2003,22(增刊):25-27.
    徐跃奇,石淑娴,任玉琴.突出煤与非突出煤的结构探讨[J].煤矿安全,1980,(1):10-15.
    严继民,张启元,高敬琮.吸附与凝聚—固体的表面与孔[M].北京:科学出版社,1986.
    杨建业.贵州普安矿区晚二叠世煤中微量元素的质量分数和赋存状态[J].燃料化学学报,2006,34(2):129-135.
    杨起,汤达祯.华北煤变质作用对煤含气量和渗透率的影响[J].地球科学—中国地质大学学报,2000,25(3):273-277.
    姚宝魁,孙广忠,罗信华等.煤与瓦斯突出的防治[M].北京:中国科学技术出版社,1993a.
    姚宝魁,孙广忠,尹代勋等.煤与瓦斯突出的区域性预测[M].北京:中国科学技术出版社,1993b.
    姚多喜,吕劲.淮南谢一矿煤的孔隙研究[J].中国煤田地质,1996,8(4):31-33.
    姚风云,汪新民.淮北煤层气开发利用中的环境问题[J].青岛化工学院学报,2002,23(2):94-96.
    姚艳斌,刘大猛,黄文辉等.两淮煤田煤储层孔-裂隙系统与煤层气产生性能研究[J].煤炭学报,2006,31(2):163-168.
    叶朝辉,李新安.煤的固体高分率13C—NMR谱[J].科学通报,1985,30(20):1545-1547.
    叶朝辉,Wind W,Maciel G.中国煤的磁共振研究[J].中国科学A辑,1988,18(2):163-172.
    叶建平,秦勇,林大扬等.中国煤层气资源[M].徐州:中国矿业大学出版社,1998.
    叶建平,史保生,张春才.中国煤储层渗透性及其主要影响因素[J].煤炭学报,1999,24(2):118-122.
    易俊,姜永东,鲜学福.在交变电场作用下煤解吸吸附瓦斯特性分析[J].中国矿业大学学报,2005,14(5):70-73.
    于不凡.煤与瓦斯突出机理[M].北京:煤炭工业出版社,1985.
    于洪观,范维唐,孙茂远等.煤中甲烷等温吸附模型的研究[J].煤炭学报,2004,29(4):463-467.
    于洪观,范维唐,孙茂远等.煤对CH4/CO2二元气体等温吸附特性及其预测[J].煤炭学报,2005,30(5):618-622.
    俞启香.矿井瓦斯防治[M].徐州:中国矿业大学出版社,1992.
    俞启香.煤与瓦斯承压散体失控突出机理的初步研究[J].煤炭学报,2006,31(3):329-333.
    袁崇孚.构造煤和煤与瓦斯突出[J].瓦斯地质,1985,1(1):45-52.
    张爱云,伍大茂,郭丽娜等.从海上黑色页岩建造地球化学—成矿意义[M].北京:科学出版社,1986.
    张春贺.世界未来石油工业的过渡化发展方向—以加拿大油砂石油生产和煤层气开发利用为例[J].中国矿业大学学报,2005,14(7):14-17.
    张代均,鲜学福.煤结构的X射线分析[J].西安矿业学院学报,1990,10(3):42-49.
    张代均,鲜学福.煤微组分结构的X—射线实验研究[J].分析测试通报,1991,10(3):32-35.
    张国华,梁冰.工作面预采煤体中瓦斯积聚过程探讨[J].辽宁工程技术大学学报,2003,22(3):334-336.
    张国华,梁冰.煤岩渗透率与煤与瓦斯突出关系理论探讨[J].辽宁工程技术大学学报,2002,21(4):414-417.
    张泓,王绳祖,郑玉柱等.古构造应力场与低渗煤储层的相对高渗区预测[J].煤炭学报,2004,29(6):708-711.
    张红日.下花园煤矿构造煤的特征及成因探讨[J].煤,1995,4(1):47-51.
    张红日.下花园煤矿构造煤的成因探讨[J].矿业安全与环保,1999,(5):31-34.
    张红日,王传云.突出煤的微观特征[J].煤田地质与勘探,2000,28(4):31-35.
    张宏伟.地质动力区划方法在煤与瓦斯突出区域预测中的应用[J].岩石力学与工程学报,2003,22(4):621-624.
    张慧,王晓刚.煤的显微构造及其储集性能[J].煤田地质与勘探,1998,26(6):33-35.
    张慧.煤孔隙的成因类型及其研究[J].煤炭学报,2001a,26(1):40-43.
    张慧.反映煤储层渗透性的参数之一块煤率[J].煤田地质与勘探,2001b,29(6):21-22.
    张慧,王晓刚,员争荣等.煤中显微裂隙的成因类型及其研究意义[J].岩石矿物学杂志,2002,21(3):278-284.
    张慧,李小彦,郝琦等.中国煤的扫描电子显微镜研究[M].北京:地质出版社,2003.
    张井,于冰,唐家祥.瓦斯突出煤层的孔隙结构研究[J].中国煤田地质,1996,8(2):71-74.
    张力.外加电磁场对瓦斯吸附解吸影响规律及作用机理的研究[D].徐州:中国矿业大学,2002.
    张丽萍,苏现波,曾荣树.煤体性质对煤吸附容量的控制作用探讨[J].地质学报,2006,80(6):910-915.
    张庆玲,张群,崔永君等.煤对多组分气体吸附特征研究[J].天然气工业,2005,25(1):57-60.
    张群,庄军.丝炭和暗煤的顺磁共振研究[J].煤炭学报,1995,20(3):266-271.
    张群,杨锡禄.平衡水条件下煤对甲烷的吸附特性研究[J].煤炭学报,1999,24(6):566-570.
    张仕和.煤与瓦斯突出机理的探讨[J].中国煤炭,2006,32(6):38-39.
    张守仁.造山带外缘煤的演化特征研究及其应用[D].北京:中国矿业大学北京校区,2001.
    张树业等.变质岩结构构造图册[M].北京:地质出版社,1985.
    张素新,肖红艳.煤储层中微孔隙和微裂隙的扫描电镜研究[J].电子显微学报,2000,19(4):531-532.
    张铁岗.平顶山矿区煤与瓦斯突出的预测及防治[J].煤炭学报,2001,26(2):172-177.
    张文永,徐胜平.灰色聚类评估法在五沟煤矿突出预测中的应用[J].矿业安全与环保,2006,33(增刊):36-38.
    张新民,张遂安,钟玲文等.中国煤层甲烷[M].西安:陕西科学技术出版社,1991.
    张秀义,郝奇.无烟煤、半石墨和天然焦的特征与区别[A].煤炭科学研究总院建院三十周年文集[C].北京:煤炭科学研究总院,1986.
    张许良.煤与瓦斯突出区域性预测的综合判据研究[J].煤炭学报,2003,28(3):251-255.
    张许良,彭苏萍,杨瑞召等.瓦斯突出危险带的三维地震探测技术[J].煤炭科学技术,2003,31(12):12-15.
    张许良,彭苏萍,张子戌等.煤与瓦斯突出敏感地质指标研究[J].煤田地质与勘探,2003,31(2):7-10.
    张许良,彭苏萍,张子戌等.煤与瓦斯突出数学地质模型研究[J].煤田地质与勘探,2004,32(1):14-17.
    张有生,秦勇,陈家良.煤储层渗透率的非均质性模型[J].中国矿业大学学报,1998,27(1):43-46.
    张玉贵,曹运兴,李凯琦.构造煤顺磁共振波谱特征初探[J].焦作工学院学报,1997,16(2):37-40.
    张玉贵.构造煤演化与力化学作用[D].太原:太原理工大学,2006.
    张子敏,张玉贵.瓦斯地质规律与瓦斯预测[M].北京:煤炭工业出版社,2005.
    张子敏,张玉贵.大平煤矿特大型煤与瓦斯突出瓦斯地质分析[J].煤炭学报,2005,30(2):137-140.
    张子戌,刘高峰,吕闰生等.基于模糊模式识别的煤与瓦斯突出区域预测[J].煤炭学报,2007,32(6):592-595.
    章梦涛.冲击地压失稳理论及数值模拟计算[J].岩石力学与工程学报,1987,(3):198-204.
    章梦涛,徐曾和,潘一山等.冲击地压和突出的统一失稳理论[J].煤炭学报,1991,16(4):48-53.
    章云根.淮南煤层气富集规律及勘探风险分析[D].徐州:中国矿业大学,1997.
    赵峰华,任德贻.应用高分辨透射电镜研究煤显微结构和组构[J].地质论评,1995,4(6):564-569.
    赵峰华,彭苏萍,唐跃刚等.合山超高有机硫煤中Fe-Mn-Hg-Zn-Ni-Cr-V的赋存状态及意义[J].中国矿业大学学报,2005,35(1):33-36.
    赵继尧,王向东.安徽省闸河矿区热变质煤的煤化学和煤岩学特征[A].中国科学院地球化学研究所开放实验室年报[C].贵阳:贵州人民出版社,1987.
    赵阳升,杨栋,胡耀青等.低渗透煤储层煤层气开采有效技术途径的研究[J].煤炭学报,2001,26(5):455-458.
    赵毅鑫,姜耀东,张雨.冲击倾向性与煤体细观结构特征的相关规律[J].煤炭学报,2007,32(1):64-68.
    赵志根,唐修义,李宝芳.淮南矿区煤的稀土元素地球化学[J].沉积学报,2000,18(3):454-459.
    赵志根,唐修义.低温氮吸附法测试煤中的微结构及其意义[J].煤田地质与勘探,2001,29(5):28-30.
    郑伯让.构造岩岩组学[M].武汉:中国地质大学出版社,1989.
    郑刘根,刘桂建,Chou Chenlin等.中国煤中砷的含量分布、赋存状态、富集及环境意义[J].地球学报,2006,27(4):355-366.
    郑刘根,刘桂建,张浩原等.淮北煤田二叠纪煤中稀土元素地球化学研究[J].高校地质学报,2006,12(1):41-52.
    郑哲敏.从数量级和量纲分析看煤与瓦斯突出的机量[A].中国力学学会第二届理事会扩大会议论文汇编:力学与生产建设[C].北京:北京大学出版社,1982.
    中国科学院地球化学研究所顺磁共振实验室.电子顺磁共振法测定煤、沥青、石油和沉积分散有机质中自由基含量及其在地质上的意义[J].地球化学,1975,(1):75-82.
    中华人民共和国煤炭工业部.防治煤与瓦斯突出细则[M].北京:煤炭工业出版社,1988.
    钟玲文,张新民.煤的吸附能力与煤化程度和煤岩组成的关系[J].煤田地质与勘探,1990,18(4):29-35.
    钟增球.变形岩石优选方位研究的进展[J].地质科技情报,1988,7(3):21-29.
    周建勋.煤的变形与光性组构的高温高压变形实验研究—及煤田构造中石英的显微构造与组构[D].徐州:中国矿业大学,1991.
    周荣福,傅雪海,秦勇.我国煤储层等温吸附常数分布规律及其意义[J].煤田地质与勘探,2000,28(5):23-26.
    周世宁,何学秋.煤和瓦斯突出机理的流变假说[J].中国矿业大学学报,1990,19(2):1-8.
    周亚平,杨斌.气体超临界吸附进展[J].化学通报,2000,(9):8-13.
    邹银辉,赵旭生,刘胜.声发射连续预测煤与瓦斯突出技术研究[J].煤炭科学技术,2005,33(6):61-65.
    朱兴珊.南桐矿区构造演化及其对煤和瓦斯突出的控制[D].徐州:中国矿业大学,1993.
    朱兴珊,徐凤银,肖文江.破坏煤分类及宏观和微观特征[J].焦作矿业学院学报,1995,14(1):38-44.
    朱兴珊,徐凤银,李权一.南桐矿区破坏煤发育特征及其影响因素[J].煤田地质与勘探,1996,24(2):28-32.
    朱学栋,朱子彬,韩崇家等.煤中含氧官能团的红外光谱定量分析[J].燃料化学学报,1999,27(4):335-339.
    Anderson R B, Bayer J, Hofer L J E. Determining surface areas from CO2 isotherms [J]. Fuel, 1965, 44: 443-452.
    Austen D E G, Ingram D J E, Giwen P H et al. Electron spin resonance study of puremacerals [A]. Given P H. Coal Science [C]. Washington: American Chemical Society, 1966: 344-362.
    Axelson D E. Spinning sideband supersession and quantitative analysis in solid state 13C NMR of fossil fuels [J]. Fuel, 1987a, 66(2): 195-199.
    Axelson D E. Solid state carbon-13 nuclear magnetic resonance study of Canadian coals [J]. Fuel Process Technology, 1987b, 16(3): 257-278.
    Axelson D E. Solid state 13C nuclear magnetic resonance of heavy of oil/bitumen-derived solid [J]. Fuel, 1987c, 66(1): 40-43.
    Bartuska V J, Maciel G B. Prospects for carbon-13 nuclear magnetic resonance analysis of solid fossil fuel materials [J]. Fuel, 1977, 56(4): 354-357.
    Beeman M S, Kohlstedt D L. Dislocation density: Stress relationships in natural and synthetic sodium chloride [J]. Tectonophysics, 1988, 148(1-2): 147-161.
    Birk D, White J C. Rare earth elements in bit-uminous coals and underclays of the Sydney Basin, Nova Scotia: Element sites, distribution, Mineralogy [J]. International Journal of Coal Geology, 1991, 19(1-4): 219-251.
    Botto R E, Wilson R, Winans R E. Evaluation of the reliability of solid 13C NMR spectroscopy for the quantitative analysis of coals and macerals concentrates [J]. Energy & Fuels, 1987, 81(1): 173-181.
    Bratek K, Bratek W, Gerus-Piasecka I et al. Properties and structure of different rank anthracites [J]. Fuel, 2002, 81(1): 97-108.
    Bregsgunov A Y, Polvektov O G, Vorobeva G A et al. Very high field and mutfrequence ESR study of coal samples [J]. Chemical Physics Letters, 1990, 175(6): 621-623.
    Bustin R M, Ross J V, Moffat I. Vitrinite anisotropy under differential stress and high confining pressure and temperature: Preliminary observation [J]. International Journal of Coal Geology, 1986, 6(4): 343-351.
    Bustin R M, Ross J v, Rouzaud J N. Mechanisms of graphite formation from kerogen: Experimental evidence [J]. International Journal of Coal Geology, 1995, 28(1): 1-36.
    Bustin R M. Importance of fabric and composition on the stress sensitivity of permeability in some coal, Northern Sydney Basin, Australia: Relevance to coalbed methane exploration [J]. AAPG Bulletin, 1997, 81(11)1894-1908.
    Cao Y X, Mitchell Gareth D, Davis Alan et al. Deformation, metamorphism of bituminous andanthracite coals from China [J]. International Journal of Coal Geology, 2000, 43(1-4): 227-242.
    Cao Y X, Davis Alan, Liu R X et al. The influence of tectonic deformation on some geochemical properties of coals—a possible indicator of outburst potential [J]. International Journal of Coal Geology, 2003, 53(2): 69-79.
    Cartz L, Hirsch P B. A contribution to the structure of coals from X-ray diffraction studies [J]. Phil. Trans. R. Soc. Lond. A, 1960, 252(1019): 557-602.
    Christopher J, Sarpal A S, Kapur G S et al. Chemical structure of bitumen-derived asphaltenes by nuclear magnetic resonance spectroscopy and X-ray diffractometry [J]. Fuel, 1996, 75(8): 999-1008.
    Clarkson C R, Bustin R M. Variation in permeability with lithotype and maceral composition of Cretaceous coals of the Canadian Cordillera [J]. International Journal of Coal Geology,1997,33(2): 135-151.
    Clarkson C R, Bustin R M. The effect of pore structure and gas pressure upon the transport properties of coal: A laboratory and modeling study [J]. Fuel, 1999, 78(11): 1333-1344.
    Clarkson C R, Bustin R M. Binary gas adsorption/desorption isotherms: Effect of moisture and coal composition upon dioxide selectivity over methane [J]. International Journal of Coal Geology, 2000, 42(4): 241-271.
    Collins R E. New theory for gas adsorption and transport in coal [A]. Proceedings of the 1991 Coalbed Methane Symposium [C]. Tuscaloosa: The University of Alabama, 1991: 25-32.
    Davidson R M. C-13 nuclear magnetic resonance studies of coal. IEA Coal Research, London, 1986.
    De Boer J H. The shape of capillaries [A]. The structure and properties of porous materials [C]. London: Butterworths, 1958.
    Dennis L W. 13C NMR studies of Kerogen from Cretaceous black shale thermally altered by basaltic in frusion and laboratory simulations [J]. Geochimica et Cosmochimica Acta, 1982, 46(6): 901-907.
    Diamond R. X-ray diffraction data for large aromatic molecules [J]. Acta Crystallographica, 1957, 10: 359-361.
    Diamond R. A least-squares analysis of the diffuse X-ray scattering from carbons [J]. Acta Crystallographica, 1958, 11: 129-138.
    Dickneider T A, Whelan J K, Blough N V. EPR study of kerogens from three Alaskan North Slope wells [J]. Organic Geochemistry, 1995, 23(2): 97-108.
    Dixon W T. Spinning-sideband-free and spinning-sideband-only NMR spectra in spinning samples[J]. The Journal of Chemical Physics, 1982, 77(4): 1800-1809.
    Enever J R, Henning A. The relationship between permeability and effective stress for Australian coal and its implications with respect to coalbed methane exploration and reservoir modeling [A]. Proceedings of the 1997 Intermational Coalbed Methane Symposium [C]. Tuscaloosa: University of Alabama, 1997.
    Eskenazy G M. Aspects of the geochemistry of rare earth elements in coal: An experimental approach [J]. International Journal of Coal Geology, 1999, 38(3-4): 285-295.
    Evans H, Brown K M. Coal structures in outbursts of coal and firedamp conditions [J]. The Mining Engineer, 1973, 132(148): 171-179.
    Fowler P, Gayer R A. The association between tectonic deformation, inorganic composition and coal rank in the bituminous coals from the South Wales coalfield, United Kingdom [J]. International Journal of Coal Geology, 1999, 42(1): 1-31.
    Franklin R F. The interpretation of diffuse X-ray diagrams of carbon [J]. Acta Crystallographica, 1950, 3: 107-121.
    Franklin R F. Crystallite growth in graphitizing and non-graphitizing carbons [J]. Proceedings of the Royal Society of London, 1951, 209(1097): 196-218.
    Friesen W I, Mikula R J. Fractal dimensions of coal particles [J]. Journal of Colloid and Interface Science, 1987, 120(1): 263-271.
    Friesen W I, Mikula R J. Mercury porosimetry of coal: Pore volume distribution and compressibility [J]. Fuel, 1988, 67(11): 1516-1520.
    Gamson P, Beamish B. Johnson David. Effect of coal microstructure and secondary mineralization on methane recovery [J]. Geological Society, London, Special Publications, 1996, 109: 165-179.
    Goetze C, Kohlstedt D L. The dislocation structure of experimentally deformed marble [J]. Contributions to Mineralogy and Petrology, 1977, 59(3): 293-306.
    Grigoriew H. Diffraction studies of coal structure [J]. Fuel, 1990, 69(7): 840-845.
    Grimes W R. The physical structure of coal [A]. Coal Science [C]. New York: Academic Press, 1982.
    Gülbin Gürdal, M Nam?k Yal??n. Pore volume and surface area of the carboniferous coals from the Zonguldak basin (NW Turkey) and their variations with rank and maceral composition [J]. International Journal of Coal Geology, 2001, 48(1-2): 133-144.
    Guo D Y, Han D X, Jiang G J. Research on Geological Structure Mark of Coal and Gas Outbursts in Pingdingshan Mining Area [J]. Journal of China University of Mining & Technology, 2002, 12(1): 72-76.
    Hall H N. Compressibility of Reservoir Rocks [J]. Petroleum Transactions of the AIME, 1953, 198: 309-311.
    Hammond T E, Cory D G, Ritchey W M et al. High resolution solid state 13C NMR of Canadian peats [J]. Fuel, 1985, 64(12): 1687-1695.
    Harris I, Gayer R ed. Coal bed Methane and Coal Geology [M]. London: London Geological Society, 1996.
    Hatcher P G. Chemical structural models for coalfield wood (vitrinite) in low rank coal [J]. Organic Geochemistry, 1990, 16(4-6): 959-968.
    Hilde T W, Suyeda K L. Evolution of the western pacific and its margin [J]. Tectomophysics, 1977, 38(1-2): 145-165.
    Hirsh P B. X-ray scattering from coals [J]. Proc. R. Soc. Lond. A, 1954, 226(1165): 143-169.
    Huai H, Groombridge C J, Scott A C et al. 13C soild-state NMR spectra of Shanxi coals [J]. Fuel, 1996, 75(1): 71-77.
    Jiang B, Ju Y W, Qin Y. Texture of tectonic coals and their porosity [A]. Wang Y, Ge S, Guo G. Mining Science and Technology: Proceedings of the 5th International Symposium on Mining Science and Technology [C]. Abingdon: Taylor & Francis, 2004: 317-320.
    Jiang B, Qu Z H, Wang J L et al. Research on coupling mechanism of mine structure and gas occurrence [J]. Procedia Earth and Planetary Science, 2009, 1(1): 1029-1036.
    Jiang B, Qu Z H, Wang G X et al. Effects of structural deformation on formation of coalbed methane reservoirs in Huaibei coalfield, China [J]. International Journal of Coal Geology, doi:10.1016/j.coal.2009.12.011.
    Jiang C L, Li Z H, Han Y. Distribution of heavy hydrocarbon in coal seams and its use in predicting outburst of coal [J]. Journal of China University of Mining & Technology, 2003, 13(1): 29-34.
    Joubert J I. Sorption of methane in moist coal [J]. Fuel, 1973, 52(3): 181-185.
    Karacan C O. Heterogeneous sorption and swelling in a confined and stressed coal during CO2 injection [J]. Energy & Fuels, 2003, 17(6): 1595-1608.
    Kohlstedt D L, Weatherss M S. Deformation-induced microstructure paleopiezometer and differential stress in deeply eroded fault zones [J]. Journal of Geophysical Research, 1980, 85(B11): 6269-6285.
    Kortenski J, Bakardjiev S. Rare earth and radioactive elements in some coals from the Sofia, Svoge and Pernik Basins, Bulgaria [J]. International Journal of Coal Geology, 1993, 22(3-4): 237-246.
    Kwan C L, Yen T F. Electron spin resonance study by line width and line shape analysis [J].Analytical Chemistry, 1979, 51(8): 1225-1229.
    Paterson L. A model for Outbursts in Coal [J]. Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 1986, 23(4): 327-333.
    Langmuir I. The constitution of fundamental properties of solids and liquids [J]. Journal of American Chemical Society, 1916, 38(2): 221-295.
    Larsen J W. The effects of dissolved CO2 on coal structure and properties [J]. International Journal of Coal Geology, 2004, 57(1): 63-70.
    Laxminarayana C, Peter J. Modelling methane adsorption isotherms using pore filling models: A case study on Indian coals [A]. Proceedings of the 1999 International Coalbed Mehtane Symposium [C]. Tuscaloosa: The University of Alabama,1999a: 117-128.
    Laxminarayana C, Crosdale P J. Role of coal type and rank on methane sorption characteristics of Bowen Basin, Australia coals [J]. International Journal of Coal Geology, 1999b, 40(4): 309-325.
    Levine J R, Davis A. The relationship of coal optical fabrics to Alleghanian tectonic deformation in the central Appalachian fold-and–thrust belt [J]. GSA Bulletin, 1989, 101(10): 1333-1347.
    Li B, Zhou S. Studies of gas outburst mechanism and its dangerous prediction in coal tunnels [A]. Mining Science and Technology [C], Rotterdam: A.A. Balkema Publisher, 1996: 241-244.
    Li H Y, Yujiro ogawa, Sohei Shimada. Mechanism of methane flow through sheared coals and its role on methane recovery [J]. Fuel, 82(10): 1271-1279.
    Li J T, Guo D Y, Zhang Z Y. A study of law of coal-and-gas outburst & its controlling factors in Kailuan Mine Area, China [J]. Journal of Coal Science & Engineering, 2007, 13(1): 49-53.
    Li Sheng, Wang Qi-jiang, Luan Qiao-lin et al. Development of regional prediction information system of coal and gas outburst [J]. Journal of Coal Science & Engineering, 2006, 12(1): 79-81.
    Mandelbrot B B. The fractal geometry of nature [M]. San Francisco: Freeman, 1982. Marchand A, Conard J. Electron paramagnetic resonance in kerogen studies [A]. Durand B. Kerogen [C]. Paris: Editions Technip., 1980.
    María B. Díaz Aguado and C. González NiciezaShepherd. Control and prevention of gas outbursts in coal mines, Riosa–Olloniego coalfield, Spain [J]. International Journal of Coal Geology, 2007, 69(4): 253-266.
    Mastalerz M, Drobniak A, Dariusz S, Acosta W S, Rupp J. Variations in pore characteristics in high volatile bituminous coals: Implications for coal bed gas content [J]. International Journal of Coal and Geology, 2008, 76(3): 205-216.
    Masuda K, Okuma O, Nishizawa T et al. High-temperature NMR analysis of aromatic units inasphaltenes and preasphaltenes derived from Victorian brown coal [J]. Fuel, 1996, 75(3): 295-299.
    McLatchie A S, Hemstock R A, Young J W. Effective compressibility of reservoir rock and its effects on permeability [J]. Journal of Petroleum Technology, 1958, 10(6): 49-51.
    Medek J, Weishauptova Z, Kovar L. Combined isotherm of adsorption and absorption on coal and differentiation of both processes [J]. Microporous and Mesoporous Materials, 2006, 89(1-3): 276-283.
    Miknis F P, Turner T F, Ennen L W et al. NMR characterization of coal pyrolysis products [J]. Fuel, 1988, 67(11): 1568-1577.
    Miura K et al. Dewatering of coal through solvent extraction [J]. Fuel, 2002, 81(11-12): 1417-1422.
    Moffat D H, Weale K E. Sorption by coal of methane at high pressures [J]. Fuel, 1955, 34: 449-462.
    Morishima H, Matsubayshi H. ESR diagram: A method to distinguish vitrinite macerals [J]. Geochimica et Cosmochimica Acta, 1978, 42(5): 537-540.
    Nelson J B. X-ray studies of ultrafine structure of coal.Ⅱ-atomic distribution function of vitrinite from bituminous coals [J]. Fuel, 1954, 33: 381-393.
    Newman G H. Pore-volume compressibility of consolidated, friable, and unconsolidated reservoir rocks under hydrostatic loading. Journal of Petroleum Technology, 1973, 25(2): 129-134.
    Newman R H, Davenport S J. Comparison of Australasian Tertiary coals based on resolution-enhanced solid-state 13C NMR spectra [J]. Fuel, 1986, 65(4): 533-539.
    Nicolas A, Poirer J P et al. Crystalline plasticity and solid state flow in metamorphic rocks [M]. Chichester: John Wiley and Sons, Ltd., 1976.
    Nishioka M. Evidence for the associated structure of bituminous coal [J]. Fuel, 1993, 72(12): 1719-1723.
    Nishioka M. Dependence of solvent swelling on coal concentration: A theoretical investigation [J]. Energy & Fuels, 2001, 15(5): 1270-1275.
    Ohtsuka Y, Nozawa A, Somita A et al. Application of high-field, high-resolution 13C CP/MAS NMR spectroscopy to the structural analysis of Yallourn coal [J]. Fuel, 1984, 63(10): 1363-1366.
    Pan V H, Maciel G E. The analysis of three representative premium coals by 13C nuclear magnetic resonance [J]. Fuel, 1993, 72(4): 451-468.
    Pariti U M, Harpalani S. Study of coal sorption isotherms using a multicomponet gas mixture [A]. Proceedings of the 1993 International Coalbed Mehtane Symposium [C]. Tuscaloosa: TheUniversity of Alabama, 1993: 151-160.
    Passchir C W, Simpson C. Porphyroclast system as kinematic indicators [J]. Journal of Structural Geology, 1986, 8(8): 831-843.
    Petrakis L, Grandy D W. Electron spin resonance spectrometric study of free radicals in coals [J]. Analytical Chemistry, 1978, 50: 303-308.
    Pfeifer P, Avnir D. Chemistry in noninteger dimensions between two and three.Ⅰ. fractal theory of heterogeneous surfaces [J]. Journal of Chemical Physics., 1983, 79(7): 3558-3565.
    Pollock S M, Goodarzi F, Riediger C L. Mineralogical and elemental variation of coal from Alberta, Canada: An example from the No.2 seam, Genesee Mine [J]. International Journal of Coal Geology, 2000, 43(1-4): 259-286.
    Popov A f, Strigutsky V P, Bessarrabov V I et al. EPR dispersion study of the products of reductive modification of bituminous coal [J]. Fuel, 1993, 72(1): 59-63.
    Pugmire R J, Zilm K W, Woolfenden W R et al. Solid state NMR studies of coal macerals [A]. Proceedings International Conference on Coal Science [C], New York: Pergamon Press, 1981a: 798-806.
    Pugmire R J, Zilm K W, Grant D M et al. Carbon-13 CP/MASS study of coal macerals of varying rank [A]. Blaustein B D, Bockrath B C, Friedman S. New Approaches in Coal Chemistry ACS Symp Series 169 [C]. Washington D C: Am. Chem. Soc., 1981b.
    Pusey W C. The ESR-kerogen method: A new technique of estimating the organic maturity of sedimentary rock [J]. Petroleum Times, 1973, 77(3): 21-26.
    Qin K Z, Wu X L. An approach to estimate the average structural unit weight of kerogen [J]. Organic Geochemistry, 1990, 16(4-6): 995-1000.
    Qin K Z, Chen D Y, Li Z G. A new method to estimate the oil and gas potentials of coals and kerogens by solid state 13C NMR spectroscopy [J]. Organic Geochemistry, 1991, 17(6): 865-872.
    Qu Z H, Wang G X, Jiang B et al. Experimental study on the porous structure and compressibility of tectonized coals[J]. Energy Fuels, doi:10.1021/ef9015075.
    Retcofsky H L, Stark J M, Friedel R A. Electron spin resonance in American coals [J]. Analytical Chemistry, 1968, 40: 1699-1704.
    Reznik A A. An analysis of the effect CO2 injection on the recovery of in-situ methane from bituminous coal [J].SPE Journal, 1984, (24): 521-528.
    Romanov V N, Goodman A L, Larsen J W. Errors in CO2 adsorption measurements caused by swelling [J]. Energy & Fuels, 2006, 20(1): 415-416.
    Rouquerol J, Avnir D, Fairbridge C W et al. Recommendations for the characterization of poroussolids [J]. Pure and Applied Chemistry, 1994, 66(8): 1739-1758.
    Ruppel T C. Adsorption of methane on dry coal at elevated pressure [J]. Fuel, 1974, 53(3): 152-162.
    Schatzel S J, Stewart B W. Rare earth element sources and modification in the lower Kittanning coal bed, Pennsylvania: implications for the origin of coal mineral matter and rare earth element exposure in underground mines [J]. International Journal of Coal Geology, 2003, 54(3-4): 223-251.
    Sethi N K, Pugmire R J, Facelli J C et al. Quantitative determination of different carbon types in fusinite and anthracite coals from carbon-13 nuclear magnetic resonance chemical shielding line-shape analysis [J]. Analytical Chemistry, 1988, 60: 1574-1579.
    Shepherd J. Outbursts and geological structure in coal mines: A review [J]. Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 1981, 18(4): 267-283.
    Silbernagel B G, Gebhard L A, Dyrkacz G R et al. Electron spin resonance of isolated coal macerals [A]. Winans R E, Crelling J C. Preliminary survey. Chemistry and characterization of coal macerals [C]. Washington: American Chemical society, 1984.
    Slitcher C P. Principles of magnetic resonance [M]. New York: Spinger Verlag, 1983.
    Smith K L, Smoot L D, Fletcher T H et al. The structure and reaction processes of coal [M]. New York: Plenum Press, 1994.
    Smyth M. Statistics of coal microlithotypes and their correlation to permeability of coal seams [J]. International Journal of Coal Geology, 1993, 22(2): 167-187.
    Soderquist A, Burton D L, Pugmire R J et al. Structural variations and evidence of segmental motion in the aliphatic region in coals observed with dipolar dephasing NMR [J]. Energy & Fuels, 1987, 1: 50-55.
    Solum M S, Pugmire R J, Grant D M. 13C solid-state NMR of Argonne premium coals [J].Energy & Fuels, 1989, 3(2): 187-193.
    Somerton W H. Effect of stress on permeability of coal [J]. Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 1974, 12(5-6): 129-145.
    Supaluknari S, Larkins F P, Redlich P et al. Determination of aromaticities and other structural features of Australian coals using solid state 13C NMR and FTIP spectroscopies [J]. Fuel Process Technology, 1989, 23(1): 47-61.
    Supaluknari S, Burgar I, Larkins F P. High-resolution solid-state 13C studies of Australian coals [J]. Organic Geochemistry, 1990, 15(5): 509-519.
    Takanohashi T, Fengjuan X, Saito I et al. Effect of lighter constituents on the solubility of heavy constituents of coals [J]. Fuel, 2000, 79(8): 955-960.
    Theriault Y, Axelson D E. Solid state 13C NMR dipolar dephasing study of Canadian coals [J]. Fuel, 1988, 67(1): 62-66.
    Thimons E D, Kissel E N. Diffusion of methane through coal [J]. Fuel, 1973, 52(4): 274-280.
    Trewhella M J, poplett I J F, Grint A. Structure of Green River oil shale kerogen-determination using solid state 13C NMR spectroscopy [J]. Fuel, 1986, 65(4): 541-546.
    Tullis J A.Preferred orientation in experimentally deformed quartzs [D]. Los Angeles: University of California, 1971.
    Van Krevelen D W. Coal [M]. Amsterdam: Elsevier Scientific Publishing Co., 1981.
    Wang Z R, Chen L X, Cheng C R et al. Forecast of Geological Gas Hazards for“Three-Soft”Coal Seams in Gliding Structural Areas [J]. Journal of China University of Mining & Technology, 2007, 17(4): 484-488.
    Warren B E. X-ray diffraction in random layer lattices [J]. Physical Review, 1941, 59(9): 693-698.
    Weathers M S, Bird J M, Cooper R F et al. Differential stress determined from deformation-induced microstructures of the Moine thrust zone [J]. Journal of Geophysical Research, 1979, 84(b13): 7495-7509.
    Wei X Y, Zong Z M et al. LC MS analysis of CS2-NMP soluble fraction from upper Freeport coal [A]. Li B. Q., Liu Z. Y. Prospects for Coal Science in the 21 Century [C]. Taiyuan: Shanxi Science & Technology Press, 1988: 263-266.
    Wenk H R, Barber D J. Defects in deformed calcite and carbonate rocks [A]. Electron Microscopy in Mineralogy [C]. New York: Springer-Verlag Berlin Heideberg, 1976.
    Wertz D L, Bissell M. One-dimensional description of the average polycyclic aromatic unit in Pocahontas No.3 coal: An X-ray scattering study [J]. Fuel, 1995, 74(10): 1431-1435.
    White S. Geological significance of recovery and recrystalization process in quartz [J].Tectonophysics, 1977, 39(1-3): 147-170.
    Wilson M A, Pumire R J, Karas J et al. Carbon distribution in coals and coal macerals by cross polarization magic angle spinning carbon-13 nuclear magnetic resonance spectrometry [J]. Analytical Chemistry, 1984a, 56: 933-943.
    Wilson M A, Pugmire J R. New NMR technique in coal analysis [J]. TrAC Trends in Analytical Chemistry, 1984b, 3(6): 144-147.
    Wilson M A, Vassallo A M, Liu Y L et al. High resolution solid state nuclear magnetic resonance spectroscopy of Chinese maceral concentrates [J]. Fuel, 1990, 69(7): 931-934.
    Wu C F, Zeng Y, Zhang X L. Application of the third theory of quantification in screening sensitive geological factors influencing coal and gas outburst [J]. Journal of China University of Mining & Technology, 2003, 13(1): 66-71.
    Yi J, Akkutlu I, Karacan C, Clarkson C R. Gas sorption and transport in coals: A poroelastic medium approach [J]. International Journal of Coal Geology, 2009, 77(1-2): 137-144.
    Yoshida, Takanohashi et al. The effect of extraction condition on‘hypercoal’production(1)—under room-temperature filtration [J]. Fuel, 2002, 81(11-12): 1463-1469.
    Zerda T W, Yuan X, Moore S M et al. Surface area, pore size distribution and microstructure of combustion engine deposits [J]. Carbon, 1999, 37(12): 1999-2009.
    Zheng L G, Liu G J, Wang L et al. Composition and quality of coals in the Huaibei coalfield, Anhui, China [J]. Journal of Geochemical Exploration, 2008, 97(2-3): 59-68.
    Zimmerman R W. Compressibility of an isolated spheroidal cavity in an isotropic elastic medium [J]. ASME Journal of Applied Mechanics, 1985, 52(3): 606-608.
    Zimmerman R W. Compressibility of sandstones [M]. Amsterdam: Elsevier Scientific Publishing Co., 1991.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700