用户名: 密码: 验证码:
矿震震动波波速层析成像原理及其预测煤矿冲击危险应用实践
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对进入深部开采冲击矿压日趋严重的现实,对获得深部煤岩体的应力信息,实现冲击矿压的预测预报显得更加迫切。论文围绕实验室研究得到的震动波波速与应力间的试验关系模型,利用矿震信号建立了矿震震动波速层析成像模型,在分析该模型各影响因素的基础上,采用理论分析、现场实验、数值模拟和数值仿真计算等方法对台网优化布设、提高输入数据精度进行了研究,进而揭示了冲击矿压与震动波波速的耦合规律,提出了预测预报冲击危险的三个指标值和防治对策,并在现场进行了工程实践应用。
     实验室研究了不同加卸载方式下应力与波速的耦合关系,建立了两者之间的试验关系模型,并对模型参数进行了分析。研究表明:三轴和单轴条件下,煤岩试样在弹性阶段纵波波速变化梯度大,塑性阶段波速变化趋于平缓,应力与纵波波速间具有幂函数关系,与实测值的相关系数计算说明模型相对理论公式具有更高的拟合度。
     基于矿震震动波速层析成像理论,建立了阻尼最小二乘求解模型,提出采用SIRT算法和多种射线追踪方法求解震动波波速。为评价反演结果稳定性,创建了基于统计学方法的波速偏离期望值评价模型。研究表明,模型虽求解速度慢,但能够稳定收敛,评价模型与射线覆盖密度存在很好对应关系。
     应用D值优化理论研究了影响矿震定位精度的主要因素,提出采用综合指数法确定危险区域和矿震发生概率的方法,通过理论分析震中和震源标准差反映台网定位能力的不足,建立了震中与震源误差期望值模型,最终形成台网布置优化及评价系统。实验和现场应用结果表明,该系统能够快速确定台网最优布置方案,准确评价台网定位能力。
     为提高矿震震动波速层析成像输入数据精度,确定利用纵波到时定位,并采用小波进行滤波提高到时标记精度,以此,创建GE-POWELL算法,确定求解的最优通道个数和初始纵波波速,建立反演计算中的两种震源求解模型。现场实验结果表明以上方法可有效提高震源的定位精度。
     基于强度、能量理论及动载荷关系式,论文创建了波速异常、波速梯度变化VG值和由试验关系模型确定的应力集中系数三个指标预测预报冲击危险,提出了防治措施,并在济宁三号井163下02C孤岛工作面进行了CT实验与数值模拟的冲击危险对比分析。对比结果表明:震动波速与数值模拟存在不同点和相同点,并比数值模拟的适用性更强。
     基于SOS监测系统,利用忻州窑煤矿8929工作面和鲍店煤矿103上02工作面回采产生的矿震信号进行冲击危险预测预报和防治实践,并采用三个冲击危险指标预测预报了下一个时段的冲击危险区域及危险级别,未来监测结果显示冲击矿压或强矿震大部分都发生在预测的危险区域内,并且很好的对应了煤柱应力集中区等位置,表明矿震震动波速层析成像用于冲击危险预测预报是可行且准确的,并为现场冲击矿压防治指明方向。
The rockburst phenomena become progressively more severe as the mining depth and extent increase, so it is urgent to get the stress information to realize the prediction of rockburst. Focusing the experimental relationship between stress and tremor velocity derived from laboratory investigation, this thesis built the mine tremor velocity tomography model to calculate the velocity using mine tremor information. The influencing factors of the model,such as the optimal configuration of seismological observation network and the improvement of input data precision, were analyzed by theoretical analysis, field testing, numerical simulation and numerical emulation so as to obtain accurate result, thereby revealing the correlation between rockburst and velocity, which is used to guide the prevention measures and calculate three prediction indexs. At last, the method was applied to the engineering practice and applications.
     Through the laboratorial research, the experimental models between stress and tremor velocity were created under different loading and unloading ways. Also the parameters of the derived model were analyzed. Studies indicate that the velocity gradient is usually highest at elastic stage and then begins to level out at plastic stage. Velocity can be used to infer stress distribution because the relationship can be expressed as power functions. The measured sonic velocity showed that the experimental models have the better fitness than theoretical formula.
     The damping least square solution model is proposed based on the mine tremor velocity tomography theory, wich use SIRT algorithm and various seismic raytracing methods to calculate the velocity. In order to evaluate the stability of inversion result, the evaluation model of expected velocity deviation was created based on the statistical methods. Studies show that the solution algorithm is rather time-cousuming, but can ensure the program to be convergent steadily, and also the good corresponding relationship exists between the expected velocity deviation model and raypath sampling density.
     In this paper, according to practical conditions and requirements of coal mines, especially the accuracy of picking seismic wave arrivals at stations and building velocity model, the main influencing factors and bad conditions which influence the accuracy of source location were analyzed using the theory of D-optimal design and localization. A view of using the comprehensive index method to determine the high microseismic activity zones and the occurrence probability of mining-induced tremors was also proposed. In addition, since the location capacity of network can’t be reflected accurately using the source standard error calculated by the traditional theoretical analysis, the model of expected epicenter and hypocenter error was created by numerical emulation experiment, and then the optimal design and assessment system of network was built up finally. The results from experiment and field practice show that, the optimal design and assessment system can be used to solve the optimal plan of network quickly and evaluate the location ability of network exactly.
     In order to improve the input data precision, the P-wave was selected and filted by wavelet analysis to improve the accuracy of picking first arrival time which is used in the two kinds of source location algorithm in forward calculation by the created algorithm GE-POWELL to identify the best channel number and the initial velocity value. The application of these methods in field tests can effectively improve the location accuracy of mine tremor.
     Based on strength theory, energy theory and dynamic load equation, three prediction indexs including velocity anomaly, velocity gradient VG anomaly and stress concentration factor calculated by experimental relationship between stress and tremor velocity were created to predict rockburst danger. The prediction results are used to guide the prevention measures. The compared analysis between CT experiment and numerical simulation was conducted in LW16302C Jisan Coal Mine. The application results show that they have the common points and differences, but velocity has the stronger applicability.
     The on-site prediction and prevention practice was conducted by using the recorded mine tremor signals form LW10302 in Baodian Coal Mine and LW8929 in Xin Zhouyao Coal Mine with SOS microseismic monitoring system. The three prediction indexs calculated from inversion velocity distribution were used to predict the rockburst danger zone and level for the next period and the future monitoring results showed that most of the rockburst events and strong mine tremors truly occurred in the predicted danger zones and well correlated with the stress concentration zones in coal pillar etc. The successful application indicated that the mine tremor velocity tomography can exactly predicit the rockburst danger and point out the direction for prevention.
引文
[1] GIBOWICZ S J, KIJKO A.矿山地震学引论[M].修济刚译.北京:地震出版社,1996.
    [2]窦林名,何学秋.冲击矿压防治理论与技术[M].徐州:中国矿业大学出版社,2001.
    [3]窦林名,何学秋.采矿地球物理学[M].北京:中国科学文化出版社,2002.
    [4]齐庆新,窦林名.冲击地压理论与技术[M].徐州:中国矿业大学出版社,2008.
    [5]李铁,蔡美峰,张少泉,等.我国的采矿诱发地震[J].东北地震研究,2005,21(3):1-26.
    [6]惠乃玲,刘耀权,杨明皓,等.抚顺老虎台煤矿矿震震源机制的研究[J].地震地磁观测与研究,1998,19(1):39-45.
    [7]钟以章,崔汝森.辽宁省北票煤田台吉井区采矿诱发的地震活动[A].中国诱发地震.北京:地震出版社,1984.
    [8]张风鸣,于中元,许晓艳,等.鹤岗煤矿矿震与区域天然地震活动相关性分析[J].东北地震研究,2005,21(1):9-13.
    [9]肖和平.煤矿构造矿震机理[J].湖南地质,1999,18(2-3):141-146.
    [10]纪洪光,史明霞.频繁矿震作用下的断层活化机理及其危害评价[J].中国矿业,2005,14(3):37-41.
    [11]潘一山,赵扬峰,马瑾.中国矿震受区域应力场影响的探讨[J].岩石力学与工程学报,2005,24(16):2847-2853.
    [12]张少泉,关杰,刘力强,等.矿山地震研究进展[J].国际地震动态,1994,(2):1-6.
    [13]张少泉,张兆平,杨憋源,等.矿山冲击的地震学研究与开发[J].中国地震,1993,6(1):1-15.
    [14]张少泉,张诚,修济刚,等.矿山地震研究述评[J].地球物理学进展,1993,8(3):69-85.
    [15]赵本均.冲击矿压及防治[M].北京:煤炭工业出版社,1995.
    [16]潘立友,钟亚平.深井冲击地压及其防治[M].北京:煤炭工业出版社,1997.
    [17]窦林名,赵从国,杨思光,等.煤矿开采冲击矿压灾害防治[M].徐州:中国矿业大学出版社,2006.
    [18]曹安业.采动煤岩冲击破裂的震动效应及其应用研究[D].徐州:中国矿业大学,2008.
    [19]潘一山,李忠华,章梦涛.我国冲击地压分布、类型、机理及防治研究[J].岩石力学与工程学报,2003,22(11):1844-1851.
    [20]陆菜平.组合煤岩的强度弱化减冲原理及其应用[D].徐州:中国矿业大学,2008.
    [21]窦林名,何学秋,王恩元,等.冲击矿压与震动的机理及预测研究[J].矿山压力与顶板管理,1999,(Zl):199-203.
    [22] Vardoulakis I. Rock bursting as a surface instability phenomenon[J]. Int.J.Rock Mech. Sci. &Geomech. Abstr, 1984, 21(3):137-144.
    [23] Dyskin A.V., et al .Model of rockburst caused by crack growing near free surface[J] .In: Young ed.rockburst and seismicity in mines.Rotterdam:A.A.Balkema, 1993, 169-174.
    [24]黄庆享,高召宁.巷道冲击地压的损伤断裂力学模型[J].煤炭学报,2001,26(2):156-159.
    [25]缪协兴,安里千,翟明华,张晓春,等.岩(煤)壁中滑移裂纹扩展的冲击矿压模型[J].中国矿业大学学报,1999,28(2):113-117.
    [26]张晓春.煤矿岩爆发生机制研究[D].华中理工大学,1999.
    [27]张晓春,缪协兴,杨挺青.冲击矿压的层裂板模型及实验研究[J].岩石力学与工程学报,1999,18(5):507-511.
    [28]张晓春.煤矿岩爆发生机制研究[J].岩石力学与工程学报,1999,18(4):492-492.
    [29]冯涛,潘长良.室岩爆机理的层裂屈曲模型[J].中国有色金属学报,2000,10(2):287-290.
    [30]齐庆新,高作志,王升.层状煤岩体结构破坏的冲击矿压机理[J].煤矿开采,1998(2):14-17.
    [31]齐庆新,刘天泉,史元伟.冲击地压摩擦滑动失稳机理[J].矿山压力与顶板管理,1995(4):174-177.
    [32]窦林名,何学秋.煤岩混凝土冲击破坏的弹脆性模型[J].第七届全国岩石力学大会论文,中国科学技术出版社,2002(9):158-160.
    [33]窦林名,陆菜平,牟宗龙,等.煤岩体的强度弱化减冲理论[J].河南理工大学学报,2005,24(3):169-175.
    [34]窦林名,陆菜平,牟宗龙,等.冲击矿压的强度弱化减冲理论及其应用[J].煤炭学报,2005,30(5):690-694.
    [35]陆菜平,窦林名,吴兴荣.煤岩动力灾害的弱化控制机理及其实践[J].中国矿业大学学报,2006,35(3):301-305.
    [36]窦林名,陆菜平,牟宗龙,等.组合煤岩冲击倾向性特性试验研究[J].采矿与安全工程学报,2006,23(1):43-46.
    [37]高明仕.冲击矿压巷道围岩的强弱强结构控制机理研究[D].徐州:中国矿业大学,2006.
    [38]牟宗龙.顶板岩层诱发冲击的冲能原理及其应用研究[D].徐州:中国矿业大学,2007.
    [39]李志华.采动影响下断层滑移诱发煤岩冲击机理研究[D].徐州:中国矿业大学,2009.
    [40]陈国祥.最大水平应力对冲击矿压的作用机制及其应用研究[D].徐州:中国矿业大学,2009.
    [41]曹安业,窦林名.采场顶板破断型震源机制及其分析[J].岩石力学与工程学报,2008,27(Z2):3833-3839.
    [42]何学秋,刘明举.含瓦斯煤岩破坏电磁动力学[M].中国矿业大学出版社,1995.
    [43]王恩元.含瓦斯煤破裂的电磁辐射和声发射效应及其应用研究[D].中国矿业大学,1997.
    [44]王恩元,何学秋.煤岩变形破裂电磁辐射的实验研究[J].地球物理学报,2000,43(1):131-137.
    [45]窦林名,何学秋.由煤岩变化破坏引起的电磁辐射[J].清华大学学报,2001,41(12):86-88.
    [46] Shen B, King A, Guo H. Displacement, stress and seismicity in roadway roofs during mining-induced failure[J]. International Journal of Rock Mechanics and Mining Sciences, 2007,45(5):672-688.
    [47] Brady B, Leighton F. Seismicity anomaly prior to a moderate rock burst:a case study[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1977, 14(3):127-132.
    [48] FRID V, VOZOFF K. Electromagnetic radiation induced by mining rock failure[J]. International Journal of Coal Geology, 2005, 64:57-65.
    [49] Legge, N.B., S.M. Spottiswoode. Fracturing and microseismicity ahead of a deep gold mine stope in the preremnant and remnant stages of mining[J]. Proc. 6th ICRM, 1987, 1071-1077.
    [50] Xie,H., W.G.. Pariseau. Fractal character and mechanism of rockbursts[J]. Proc. 33rd USSRM: Workshop on Induced Seismicity, 1992, Pre-workshop volume:140-156.
    [51] R.D.Stewart. A technique for determining the seismic risk in deep-level mining[J]. Rockbursts and Seismicity in Mines, Young(ed.), 1993.
    [52] Mariana Eneva. Evaluation of spatial patterns in the distribution of seismic activity in mines:A case study of Creighton Mine, northern Ontario[J]. Rockbursts and Seismicity in Mines, Young(ed.), 1993.
    [53] S.Lasocki. Statistical short-term prediction in mining induced seismicity[J]. Rockbursts and Seismicity in Mines, Young(ed.), 1993.
    [54] H.Marcak. The use of pattern recognition method for prediction of the rockbursts[J]. Rockbursts and Seismicity in Mines, Young(ed.), 1993.
    [55]姜福兴,杨淑华,成云海,等.煤矿冲击地压的微地震监测研究[J].地球物理学报,2006,49(5):1511-1516.
    [56]姜福兴,XUN Luo,杨淑华.采场覆岩空间破裂与采动应力场的微震探测研究[J].岩土工程学报,2003,25(1):23-25.
    [57]成云海,姜福兴,张兴民.微震监测揭示的C型采场空间结构及应力场[J].岩石力学与工程学报,2007,26(1):102-107.
    [58]成云海,姜福兴,程久龙,等.关键层运动诱发矿震的微震探测初步研究[J].煤炭学报,2006,31(3):273-277.
    [59]李世愚,和雪松,张少泉,等.矿山地震监测技术的进展及最新成果[J].地球物理学进展,2004,19(4):853-859.
    [60]李世愚,和雪松,张天中,等.地震学在减轻矿山地质灾害中的应用进展[J].国际地震动态,2006,4:1-9.
    [61] LU Cai-ping,DOU Lin-ming,CAO An-ye. Research on microseismic activity rules in Sanhejian Coal Mine[J]. JOURNAL OF COAL SCIENCE & ENGINEERING(CHINA), 2008, 14(3):373–377.
    [62]李铁,蔡美峰,纪洪广,等.强矿震预测的研究[J].北京科技大学学报,2005,27(3):260-263.
    [63]李庶林.我国金属矿山首套微震监测系统建成并投入使用[J].岩石力学与工程学报,2004,23(13):2156.
    [64]赵兴东,唐春安,李元辉,等.基于微震监测及应力场分析的冲击地压预测方法[J].岩石力学与工程学报,2005,24(增1):4745-4749.
    [65] Adams, L. and E. Williamson. On the compressibility of minerals and rocks at high pressures[J]. Journal of the Franklin Institute, 1923, 195:475-531.
    [66] Mohorovicic, A. Das Beben[J]. Jb. Met. Obs. Zagreb, 1909, 9:1-63.
    [67] Sharma, P. Geophysical Methods in Geology[M]. New York, Elsevier, 1986.
    [68] Wyllie, R., A. Gregory and G. Gardner. An experimental investigation of factors affecting elastic wave veloicties in porous media[J]. Geophysics, 1958, 23(3):459-493.
    [69] Toks?z, M., C. Cheng and A. Timur. Velocities of seismic waves in porous rocks[J]. Geophysics, 1976, 41(4):621-635.
    [70] Seya, K., I. Suzuki and H. Fujiwara. The change in ultrasonic wave velocities in triaxially stressed brittle rock[J]. Journal of Physics of the Earth, 1979, 27(5):409-421.
    [71] Young, R. and S. Maxwell. Seismic characterization of a highly stressed rock mass using tomographic imaging and induced seismicity[J]. Journal of Geophysical Research, 1992, 97(B9):12361-12373.
    [72] Yale, D. Recent advances in rock physics[J]. Geophysics, 1985, 50(12):2480-2491.
    [73] Jones, L. and H. Wang. Ultrasonic velocities in Creataceous shales from the Williston basin[J]. Geophysics, 1981, 46(3):288-296.
    [74] Nur, A. and G. Simmons. Stress-Induced Velocity Anisotropy in Rock: An Experimental Study[J]. Journal of Geophysical Research, 1969, 74(27):6667-6674.
    [75] Menke, W. Geophysical Data Analysis: Discrete Inverse Theory[M]. San Diego, Academic Press, Inc, 1989.
    [76] Hole, J. Nonlinear high-resolution three-dimensional seismic travel time tomography[J]. Journal of Geophysical Research, 1992, 97(B5):6553-6562.
    [77] Hadamard, J. Lectures on Cauchy's Problem in Linear Partial Differential Equations[M]. New York, Dover Publications, 1952.
    [78] Tarantola, A. Inverse Problem Theory: Methods for Data Fitting and Model Parameter Estimation[M]. Amsterdam, Elsevier, 1987.
    [79] Mosegaard, K. and A. Tarantola. Probabilistic Approach to Inverse Problems[A], Academic Press for the International Association of Seismology and Physics of the Earth Interior, 2002.
    [80] Yagola, A., A. Leonov and V. Titarenko. Data errors and an error estimation for ill-posed problems[J]. Inverse Problems in Engineering, 2002, 10(2):117-129.
    [81] Manthei, G. Seismic Tomography on a Pillar in a Postash Mine[C]. 4th International Symposiumon Rockbursts and Seismicity in Mines, Krakow, Poland, 1997.
    [82] Golub, G. and C. Reinsch. Contribution I-10: Singular Value Decomposition and Least Squares Solution. Linear Algebra: Handbook for Automatic Computation[M]. New York:Springer-Verlag 2, 1971.
    [83] Bording, R., A. Gersztenkorn, L. Lines, J. Scales and S. Treite. Applications of seismic travel-time tomography[J]. The Geophysical Journal of the Royal Astronomical Society, 1987, 90:285-303.
    [84] Deidda, G. and G. Ranier. Seismic tomography imaging of an unstable embankment[J]. Engineering Geology, 2005, 82:32-42.
    [85] Gilbert, P. Iterative methods for the three-dimensional reconstruction of an object from projections[J]. Journal of Theoretical Biology, 1972, 36:105-117.
    [86] Dines, K. and R. Lytle. Computerized geophysical tomography[J]. roceedings of the IEEE, 1979, 67(7): 1065-1076.
    [87] Guney, R., E. Benson and A. Sarwar. Imaging of the Earth by Iterative Reconstruction Methods[C]. Theory and Practice of Geophysical Data Inversion: Proceedings of the 8th International Mathematical Geophysics Seminar on Model Optimization in Exploration Geophysics, A. Vogel. Braunschweig, Wiesbaden, Veiweg. 5. 1990.
    [88] Worthington,M,H. An introduction to Geophysical Tomography[J]. First Break, 1984, 2:20-28.
    [89] Nolet,G. Seismic Tomography With Applicaion in Global seismology and Exploration Geophysics[M]. Reidel, Boston, 1987.
    [90] Jackson, M.J., D.R. Tweeton, MIGRATOM-Geophysical Tomography Using Wavefront Migration and Fuzzy Constraints[J], USBM RI 9497, 1994, 35.
    [91] Tweeton, D.R. A Tomographic Computer Program with Constraints To improve Reconstructions for Monitoring In Situ Mining Leachate[J], USBM RI 9159,1988,70.
    [92] Tweeton, D.R., M.J.Jackson, and K.S.Roessier. BOMCRATR-A Curved Ray Tomographic Computer Program for Geophysical Applications[J], USBM RI 9411,1992,39.
    [93] Zhou, H.-W. Travel-Time Tomography With a Spatial Cohereence Filter Geophysics[J], Geophysics, 1993, 58:720-726.
    [94] Davis, J.C. Statistics and Data Analysis in Geology[M]. John Wiley and Sons, New York, 1973.
    [95] Press, W.H., B.P.Flannery, S.A.Teukolsky, W.T.Vetterling. Numerical Recipes; The Art of scientific Computing[M]. Cambridge Univ. Press, New York, 1986.
    [96] Bregman, N.D. Tomographic inversion of Crosshole Seismic Data[D], Univ. Toronto, Toronto, 1986.
    [97] Menke, W. The Resolving Power of Cross-borehole Tomography[J]. Geophys. Res.Lett., 1984, 11:105-108.
    [98] Moser, T.J. Shortest Path Calculation of Seismic Rays[J]. Geophysics, 1991, 56:59-67.
    [99] Um,J. and C. Thurber. A Fast Algorithm for Two-Point Seismic Ray Tracing[J]. Bull. Seismol. Soc. Am.l, 1987, 77:972-986.
    [100] Singh, R.P. and Y.P.Singh. Geophysics[M], 1991.
    [101] Friedel,M.J. BOMSPS:Bureau of Mines Signal Processing Software-Concepts, Expression, and Tutorial[J]. USBM IC 9242, 1990, 40.
    [102] Jessop, J.A.,D.L.Boreck, M.J. Jackson, D.R. Tweeton, and M.J.Friedel. Evaluation of Stope Leaching Site Using Geotomography. Paper in In Situ Recovery of Minerals(Santa Barbara, CA, Oct.25-30,1992)[J]. Engineering Foundation, New York, 1994, 599-616.
    [103] Jackson, M.J.,M.J.Friedel, D.R. Tweeton, D.F.Scott, and T.Williams. Three-dimensional Imaging of Underground Mine Structures Using Seismic Tomography[J], Paper in Proceedings of the Symposium on the Application of Geophysics to Engineering and Enviromental Problems(SAGEEP95), 1995, 221-230.
    [104] Friedel, M.J., M.J.Jackson, D.F.Scott, T.J.Williams, and M.S.Olson. 3D Tomographic Imaging of Anomalous Conditions in a Deep Silver Mine[J]. J.Appl. Geophysics, 1996, 34(1):1-21.
    [105] Peterson,J.E., B.N.P.Paulson, and T.V.McEvilly. Applications of Algebraic Reconstruction Techniques to Crosshole Seismic Data. Geophysics[J], Geophysics, 1985, 50:1566-1580.
    [106] Saito, H. Traveltimes and Raypaths of First Arrival Seismic Waves:Computation Method Based on Huygens, Principle[J]. Paper in Society of Exploration Geophysicists 59th Annual Meeting, Expanded Abstracts. SEG, 1989, 244-247.
    [107] Richter, C.F. Elementary Seismology[M]. W.H.Freeman and Co.,San Francisco, 1958.
    [108] Telford, W.M.,L.P.Geldart, R.I. Sheriff, and D.A.Keys. Applied Geophysics[M]. Cambridge Univ. Press, New York,1976.
    [109] Ddbrin, M.B. Introduction to Geophysical Prospecting[M]. McGraw Hill, New York, 1976.
    [110] Buchanan, D . J., and L. J. Jackson. Coal Geophysics[M]. Geophysics reprint series #6, SEG, 1986.
    [111] Wangsness, R. K. Electromagnetic Fields[M]. John Wiley and sons, New York, 1979.
    [112] Devaney, A. J. Geophysical Diffraction Tomography[M]. IEEE Trans. Geosci. And Remote Sensing, v. GE-22, 1984.
    [113] Guust Nolet, A Breviary of Seismic Tomography Imaging the Interior of the Earth and Sun[M], Cambridge University Press, 2008.
    [114] E.Westman and K. Luxbacher, Seismic Tomography, an Ideal but Immature Tool for Coal Bump Prediction[M], Virginia Polytechnic Institute & State University, Blacksburg, VA.
    [115] MENDECKI A J.Seismic monitoring in mines[M].London: Chapman and Hall Press, 1997.
    [116] Bois,P., La Porte.M., Lavergne, M., and Thomas, G. Well to well seismic measurements[J], Geophysics, 1972, 3:471-483.
    [117] Mason,I. Algebraic reconstruction of two-dimensional inhomogeneity in the High Hazels seam of Thorseby colliery[J]. Geophysics, 1988, 46:298-308.
    [118] Cosma.C. Determination of rock mass quality by the crosshole seismic method[J]. Bull. Int. Assoc, Eng. Geol. 1992, 20:26-27.
    [119] Bodoky, T., Hermann, L., and Dianiska. L. Processing of the in-seam seismic transmission measurements[J]. Paper presented at 7th ann. Meet. Eur. Assoc. Eng. Geol., Budapest, 1985.
    [120] Friedel, M.J., Scott, D.F., Jackson, M.J., Williams. 3D tomographic imaging of anomalous conditions in a deep silver mine[J]. J. Appl. Geophys.,1995, 34(1):1-21.
    [121] Westman, E.C. and Luxbacher, K.D. Local Earthquake Tomography for Imaging Mining-Induced Changes. Within the Overburden above a Longwall Mine[J]. 42nd U.S. Rock Mechanics Symposium/2nd U.S.-Canada Rock Mechanics Symposium, June 29 - July 2, 2008, San Francisco, California, ARMA 08-299.
    [122]刘盛东,李承华.地震走时层析成像算法与比较[J].中国矿业大学学报,2000,29(2):211-214.
    [123]张平松,吴基文,刘盛东.煤层采动底板破坏规律动态观测研究[J].岩石力学与工程学报,2006,25(增1):3009-3012.
    [124]张平松,刘盛东,吴荣新.地震波CT技术探测煤层上覆岩层破坏规律[J].岩石力学与工程学报,2004,23(15):2510-2513.
    [125]刑庆祝.地震CT成像技术中正演模拟技术的研究与应用[D].福州:福州大学,2005.
    [126]许永忠,张爱敏,周明.深部开采地应力异常及陷落柱最小走时层析成像研究[J].中国矿业大学学报,2003,32(5):575-578.
    [127] Young, R.P. , Hutchins, D.A., McGaughey, J., Towers, J., Jansen, D., and Bostock, M. Geotomographic imaging in the study of mining induced seismicity[J]. In Seismicity in Mines(S.J. Gibowicz. ed.):reprinted from special Issue. Pure Appl. Geophys. 129. 571-596. Birkauser Verlag. Basel.
    [128] Dubinski, J., and Dworak, J. Recongnition of the zones of seismic hazard in Polish coal mines by using a seismic method[J]. In Seismicity in Mines(S.J. Gibowicz. ed.):reprinted from special Issue. Pure Appl. Geophys. 129. 609-617. Birkauser Verlag. Basel.
    [129] Maxwell,S.C. and Young, R.P. Seismic imaging of rock mass respones to excavation[J]. Inl. J. Rock Me& Min. Sci. & Geomech. Rbsrr, 1996, 33(7):713-724.
    [130] Maxwell,S.C. and Young, R.P. Application of seismic tomography to induced seismicity investigations[J]. In:Proceedings of Eurock 94. Balkema, Rotterdam, 1997.
    [131]胥颐,刘建华,等.天山-帕米尔结合带的地壳速度结构及地震活动研究[J].地球物理学报,2006,49(2):469-476.
    [132] Zimmerman, R.W. and King, M.S. Propagation of acoustic waves through a cracked rock[J]. Proc. 26th U.S. Symposium on Rock Mechanics, Rapid City.739-745.
    [133] Hopkins, D.L., Cook, N.G..W. and Myer, L.R.. Normal joint stiffness as a function of spatial geometry and surface roughness[J]. In: Rock Joints,(Eds. N. Barton and O. Stephansson, eds). Balkema, Rotterdam, 203-210.
    [134] GlazerS N, Lurka A. Application of passive seismic tomography to cave mining operations based on experience at palabora mining company, south Africa,The Southern African Institute of Mining and Metallurgy 1st International Symposium on Block and Sub-Level Caving Cave Mining, 373-388.
    [135] LURKA A. Location of high seismic activity zones and seismic hazard assessment in Zabrze Bielszowice coal mine using passive tomography [J]. China University Mining & Technology,2008,18:177-181.
    [136] Young, R. P., S. C. Maxwell. Mining-induced microseismicity:monitoring and applications of imaging and source mechanism techniques[J], Pure and Applied Geophysics, 1993, 139:697-719.
    [137] S. C. MAXWELL and R. P. YOUNG. A comparison between controlled source and passive source seismic velocity images[J]. Bulletin of the Seismological Society of America, 1993, 83(6):1813-1834.
    [138]沈明荣.岩体力学[M].上海:同济大学出版社,1999.
    [139] Xiaojun Huang, Bikash K. Sinha, Daniel R. Burns, and Nafi M. Toksoz. Formation stress estimation using standard acoustic logging[J]. Soc. Explor. Geophys. Expanded Abstracts,pages BG2, 1999, 6:53-56.
    [140] 3DTOM:Three-Dimensional Geophysical Tomography Michael J. Jackson Daryl R. Tweeton Bureau of Mines, united states department of the interior, report of investigations 9617,1996.
    [141] DOUGLAS A. Joint epicentre determination[J]. Nature, 1976, (215):47-48.
    [142] LILWALL R C, DOUGLAS A. estimation of P-wave travel times using the joint epicentre method[J]. Geophys. J. Roy. Astr. Soc., 1970, (19):165-181.
    [143] SATO Y, D.SKOKO. Optimum distribution of seismic observation points[J]. II. Bull. of Earthquake Res. Inst., 1965, (43):451-457.
    [144] KIJKO A. An algorithm for optimum distribution of a regional seismic network-I[J]. Pageoph., 1977, (115):999-1009.
    [145] KIJKO A. An algorithm for the optimum distribution of a regional seismic network-II. An analysis of the accuracy of location of local earthquakes depending on the number of seismic stations[J]. Pageoph., 1977, (115):1011-1021.
    [146] Mendecki A J, Van Aswegen G. A method for the optimal design of mine seismic networks in respect to location errors and its application. Research report, AAC Research and Development Services, Rock Mechanics Department, 56.
    [147]唐礼忠,杨承祥,潘长良.大规模深井开采微震监测系统站网布置优化[J].岩石力学与工程学报,2006,25(10):2036-2042.
    [148] STEINBERG DM, RABINOWITZ N. Optimal seismic monitoring for event location with application to On Site Inspection of the Comprehensive Nuclear Test Ban Treaty[J]. Metrika., 2003, (58):31-57.
    [149]云庆夏.进化算法[M].北京:冶金工业出版社,2000.
    [150]玄光男,程润伟.遗传算法与工程优化[M].北京:清华大学出版社,2004.
    [151]李敏强.遗传算法的基本理论与应用[M].北京:科学出版社,2002.
    [152]周明,孙树栋.遗传算法原理及应用[M].北京:国防工业出版社,1999.
    [153]朱永生.实验物理中的概率和统计[M].北京:科学出版社,2006.
    [154]杨浩.信号处理基础[M].北京:科学出版社,2008.
    [155]党宏社.信号与系统实验:MATLAB版[M].西安:西安电子科技大学出版社,2007.
    [156]葛哲学.小波分析理论与MATLAB R2007实现[M].北京:电子工业出版社,2007.
    [157]赵世尊.小波变换在去噪和识别薄层中的研究与应用[M].徐州:中国矿业大学,1998.
    [158]王大凯.小波分析及其在信号处理中的应用[M].北京:电子工业出版社,2006.
    [159] Andrzej Kijko. Seismological Outliers: L1 or Adaptive Lp Norm Application[J]. Bulletin of the Seismological Society of America, 1994, 84(2):473-477.
    [160]解可新.最优化方法[M].天津:天津大学出版社,2004.
    [161]李元科.工程最优化设计[M]北京:清华大学出版社,2006.
    [162]郭然.有岩爆倾向硬岩矿床采矿理论与技术[M].北京:冶金工业出版社,2003.
    [163]齐诚,赵大鹏,陈颐,等.首都圈地区地壳P波和S波三维速度结构及其与大地震的关系[J].地球物理学报,2006,49(3):805-815.
    [164]李玉江,陈连旺,李红.云南地区构造应力场与强震活动关系研究[J].大地测量与地球动力学,2009,29(4):26-29.
    [165]廖武林,姚运生,丁志峰,张丽芬.三峡地区P波速度层析成像研究[J].大地测量与地球动力学,2007,27(3):80-84.
    [166] Wesley Byron Johnson,Design and Testing of a Laboratory Ultrasonic Data Acquisition System for Tomography[D],. Blacksburg:Virginia Polytechnic Institute and State University, 2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700