用户名: 密码: 验证码:
贫细赤铁矿的管段高紊流矿化与柱式短流程分选研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国铁矿资源开发力度逐步加大,贫细难选赤铁矿的开发已经势在必行。目前,围绕赤铁矿分选已经形成了弱磁-强磁-阴离子反浮选的较成熟分选工艺,但随着资源贫化,以及矿物粒度越来越细,其中的阴离子反浮选工艺逐渐暴露出分选效率低、工艺流程长、选矿成本高等问题。因此,在整体工艺框架下,开展高效的反浮选分选方法、设备和工艺研究具有十分重要的意义。
     首先开展了贫细赤铁矿的工艺矿物学和可浮性研究,分析了贫细赤铁矿的矿物学特性,揭示了“贫、细”对赤铁矿分选过程的显著影响,研究了贫细赤铁矿的可浮性过程特征。本文系统分析了各种分选方法及过程,特别是旋流-静态微泡浮选柱分选方法及过程的特点,提出了利用浮选柱特别是柱内管段高紊流矿化以及粗精选一体的多流态梯级强化过程来提高贫细赤铁矿的分选效率、强化分选工艺的思路。
     本论文对基于射流的管段高紊流矿化过程的研究始于气泡特征。指出了单个气泡在管段内运动过程中直径的变化规律,并采用摄像-图像处理法首次对管段内气泡尺寸的分布规律进行了研究。利用压差法研究了基于射流的管段内气含率的变化和分布规律。考察了循环压力、吸气量、柱体背压以及起泡剂用量条件对管段整体气含率的影响,揭示了管段内局部气含率的分布规律。
     利用激光多普勒测速仪(LDV)研究了基于射流的管段内单相流场的二维速度场分布,掌握了管段内单相流场的速度分布特征。利用FLUENT软件对基于射流的管段内的流场进行了单相和气液两相流数值模拟研究。研究结果表明:管段单相流数值模拟得到的速度场分布规律与利用LDV得到的实验结果在总体趋势上是一致的,说明数值模拟技术作为研究管段流场的手段是合理的。在此基础上,通过管段气液两相流数值模拟分析了管段内速度、压力、湍流动能和气含率的分布规律,掌握了管段内的基本流场特性,揭示了管段直径、柱体背压和气泡直径对管段内流场的影响。
     本文开展了基于中矿的管段高紊流矿化的浮选动力学研究,推导出了管段的浮选速度常数、平均停留时间和浮选回收率的表达式。
     本文最后开展了贫细赤铁矿分选试验研究。建立了实验室分选系统和柱式短流程工艺研究系统(工业分流试验系统),通过分选试验研究了高效柱式粗选设备的分选过程,开发出“粗-扫”两段式柱式短流程工艺,与浮选机工艺相比,简化了流程,在精矿品位相近的情况下,回收率提高了8.25个百分点,强化了对微细粒矿物的回收,该项研究也填补了我国铁矿选矿技术的空白。
     在工艺研究的基础上,结合磁铁矿柱式分选工艺工业应用的经验,进行了柱式分选设备的适应性改进和一粗两扫中矿顺次返回流程的工业系统设计。
With the rapid development of exploration of iron resources, it is imperative to utilize lean fine hematite. At present, separation technology of weak magnetic-high intensity magnetic-anionic reverse flotation has matured for hematite, but with the depletion and increasingly fine particles of hematite, anionic reverse flotation technology gradually exposes the problems including low separation efficiency, long process flow and high separation cost, etc. Consequently, it is rather important to develop the efficient separation methods, equipment and technology based on the whole technology framework.
     Firstly, studies of process mineralogy and floatability of lean fine hematite were conducted; the mineralogical properties were analyzed; significant influences of“lean and fine”on separation process of hematite were revealed; and the floatability process characteristics of lean fine hematite were studied. Features of various separation methods and processes, especially FCSMC, were systematically analyzed, and the idea that enhancement of separation efficiency of lean fine hematite and intensification of separation technology could be achieved by using high turbulence mineralization of pipe section in FCSMC and multiple-flow-pattern gradient intensifying process of integrated roughing and cleaning was proposed.
     Study of high turbulence mineralization in pipe section based on jet started from bubble characteristics. The change in single bubble diameter in motion was analyzed; meanwhile, bubble size distribution in pipe section was studied for the first time with application of photo-image method. Pressure difference method was used to study the variation and distribution of gas holdup in pipe section based on jet. Effects of cycle pressure, gas flow rate, back pressure and frother dosage on total gas holdup of pipe section were investigated; and distribution of local gas holdup of pipe section was disclosed.
     The velocity distribution characteristics of single phase flow field in pipe section based on jet were mastered by study of corresponding 2-D velocity distribution using Laser Dopper Velocity (LDV). FLUENT software was used to conduct single-phase and gas-liquid two-phase fluid dynamic numerical simulation of pipe section based on jet. The results show that generally velocity distribution of single phase numerical simulation shares the similar tendency with that of LDV, indicating that it is reasonable to study flow field of pipe section with numerical simulation technology. Moreover, the gas-liquid two-phase numerical simulation was used to analyze the distributions of velocity, pressure, turbulent kinetic energy and gas holdup, and basic flow field characteristics were mastered. Besides, the influences of diameter of pipe section, back pressure and bubble size on flow field of pipe section were revealed.
     Expressions of flotation rate constant, average residence time and recovery for pipe section were derived from flotation kinetics research of highly turbulent mineralization in pipe section based on cycle middling.
     The separation research of lean fine hematite was carried out lastly. Lab separation system and column-shortened-process research system (industrial divergent stream test system) were built, through which separation process of high efficient column roughing equipment was studied. And“roughing- scavenging”two-segment column shortened process was developed, which was a simplified process with a dramatic increase of 8.25% in recovery in the case of similar concentrate grade comparing to flotation machine technology. It strengthened the recovery of micro-fine minerals. This research fills in the blank of iron ore processing technology in China.
     On the bases of technology development and industrial application of column separation technology for magnetite, modification of adaptation of column separation equipment was conducted and one roughing - two scavengings - middling sequential returning process was designed.
引文
[1]翟勇.低品位微细粒赤铁矿高效利用技术研究[D].长沙:中南大学, 2008.
    [2]李振,刘炯天,魏德洲等.铁矿分选技术进展[J].金属矿山, 2008, (5): 1-6.
    [3]李维兵,刘保平,陈占金等.我国红铁矿选矿技术研究现状及发展方向[J].金属矿山, 2005, (3): 1-6,25.
    [4]谢广元.选矿学[M].徐州:中国矿业大学出版社, 2001: 464.
    [5] Finch J A, Dobby G S. Column Flotation [M]. London: Pergamon Press, 1989: 1-4;5-7;37-73;654-678.
    [6] Bilgesu I, Meloy T P, Williams M C. Packed Column Froth Flotation -- Escalator Model and Plugging [J]. International Journal of Mineral Processing, 1998, 53(1-2): 59-74.
    [7]高祖昌,王永其.充填式静态浮选柱及其分选细粒煤的实践[J].选煤技术, 1999, (2): 11-14.
    [8]支同祥.浮选柱研究现状与应用前景[J].中国煤炭, 1999, 25(6): 56-61.
    [9] Clayton R, Jameson G J, Manlapig E V. The Development and Application of the Jameson Cell [J]. Minerals Engineering, 1991, 4(7-11): 925-933.
    [10] Harbort G J, Jackson B R, Manlapig E V. Recent Advances in Jameson Flotation Cell Technology [J]. Minerals Engineering, 1994, 7(2): 319-332.
    [11]刘炯天.詹姆森型浮选柱的性能分析及应用模式探讨[J].矿冶, 1995, 4(4): 55-61.
    [12]田嘉印.铁矿山选矿技术发展现状及今后应加强的工作[J].金属矿山, 2004, (2): 27-31.
    [13]何廷树.新型细粒浮选机的研究[D].沈阳:东北大学, 1996.
    [14]刘动.反浮选应用于铁精矿提铁降硅的现状及展望[J].金属矿山, 2003, (2): 38-42.
    [15]马子龙.金川镍矿柱式短流程分选研究[D].徐州:中国矿业大学, 2009.
    [16]道林,周延熙.用浮选柱反浮选铁矿的研究[J].国外金属矿选矿, 2001, 38(2): 33-36.
    [17]朱家骥等.中国铁矿选矿技术[M].北京:冶金工业出版社, 1994: 11-12;281.
    [18]马鸿文.工业矿物与岩石[M].北京:化学工业出版社, 2005: 302-305.
    [19]刘尧.鞍山式贫赤铁矿石选矿方法评述[J].金属矿山, 1981, (3): 27-33.
    [20]刘阅兵.赤铁矿选矿新工艺试验研究[D].昆明:昆明理工大学, 2007.
    [21] Santos M L. Study on Economical Iron Content in Iron Concentrate [J]. Materials Research Bulletin, 1996, (4): 89-96.
    [22]佩兰特.岩石与矿物[M].北京:中国友谊出版社, 2003: 286-289.
    [23]张泾生,邓克,李维兵.磁选-阴离子反浮选工艺应用现状及展望[J].金属矿山, 2004, (5): 24-28.
    [24]熊大和,张国庆. Slon-2000磁选机在调军台选矿厂的工业试验与应用[J].金属矿山, 2003, (12): 37-39,52.
    [25]彭显宏.东鞍山烧结厂红铁矿分选具体问题的探讨[J].国外金属矿选矿, 2004, 41(6): 10-14.
    [26]白晓鸣.司家营贫赤铁矿选矿试验研究[J].矿业工程, 2004, 2(6): 25-28.
    [27]王陆新,周惠文,张宏艺.关宝山难选赤铁矿石可选性工业试验研究[J].矿业工程, 2005, 3(1): 31-34.
    [28]杨晓峰,梁嵩.选别弓长岭贫赤铁矿的合理流程研究[J].矿业工程, 2005, 3(2): 35-38.
    [29]孙炳泉.近年我国复杂难选铁矿石选矿技术进展[J].金属矿山, 2006, (3): 11-13.
    [30]张泾生.我国铁矿资源开发利用现状及发展趋势[J].钢铁, 2007, 17(1): 1-6.
    [31]全文欣,张彬,庞玉荣等.我国铁矿选矿设备和工艺的进展[J].国外金属矿选矿, 2006, 43(2): 8-14.
    [32]宋仁峰,李维兵.鞍钢矿山浮选技术发展综合评述[J].金属矿山, 2008, (9): 1-6.
    [33]刘动.关于阴离子反浮选含泥量变化对指标影响及相关环节和药剂调整的探讨[J].国外金属矿山, 2002, 27(5): 44-47.
    [34] Parks G A. The Isoelectric Points of Solid Oxides ,Solid Hydroxides and Aqueous Hydroxo Complex System [J]. Chem. Reviews, 1965, (65): 177-198.
    [35] Uwadiale G G O O. Flotation of Iron Oxides and Quartz a Review [J]. Mineral Processing and Extractive Metallurgy Review, 1992, (11): 129-161.
    [36] Gaudin A M, Fuerstenau D W. Quartz Flotation with Anionic Collectors [J]. Trans. AIME, 1955, (202): 66-72.
    [37] Fuerstanau.硅酸盐矿物的结晶化学、表面性质及浮选行为[J].国外金属矿选矿, 1978, (9): 32-33.
    [38] Ahemed S M, Cleave A B V. Adsorption and Flotation Studies with Quartz. Part I, Adsorption of Calcium, Hydrogen and Hydroxyl Ions on Quartz [J]. Canadian Journal of Chemical Engineering, 1965, (43): 23-65.
    [39] Fuerstenau M C, Palmer B R. Anionic Flotation of Oxides and Silicates [J]. Flotation :A.M. Gaudin Memorial 1976, (1): 148~149.
    [40] Iwasaki I, Cook S R B, Choi H S. Flotation Characteristics of Hematite, Goethite and Activated Quartz with 18-Carben Aliphatic and Related Compounds [J]. Trans. AIME, 1960, (217): 237-243.
    [41]《黑色金属矿石选矿试验》编写组.黑色金属矿石选矿试验[M].北京:冶金工业出版社, 1976: 550-551.
    [42]王淀佐,胡岳华.氢氧化物表面沉淀在石英浮选中的作用[J].中南矿冶学院学报, 1990, 21(3): 248-253.
    [43]吴永云.淀粉在选矿工艺中的应用[J].国外金属矿选矿, 1999, 36(11): 26-30.
    [44]高志明.内蒙古某赤铁矿选矿工艺研究[D].唐山:河北理工大学, 2007.
    [45] Fuerstenau M C. Encyclopedia of Chemical Technology [J]. Gaudin Menorial, 1986, (1): 15-18.
    [46]董干国,刘桂芝,刘林. Bf―T型浮选机在铁精矿提铁降杂工艺中的应用[J].矿冶, 2005, 14(4): 20-22.
    [47]马自飞,陈国荣,栾玲等. Bf-T型浮选机在赤铁矿反浮选作业中的应用[J].金属矿山, 2006, (1): 83-85.
    [48]邱冠周,伍喜庆,王毓华等.近年浮选进展[J].金属矿山, 2006, (1): 41-52.
    [49]郑飞.国外浮选柱的发展概况[J].化工矿山技术, 1991, 20(3): 33-37.
    [50]李绍英,谢华,阎志强等.浮选柱的研发与工业应用[J].煤, 2007, 16(2): 31-32.
    [51]余永富,张汉泉.我国钢铁发展对铁矿石选矿科技发展的影响[J].武汉理工大学学报, 2007, 29(1): 1-7.
    [52]沈慧庭,黄晓燕. 2000~2004年铁矿选矿技术进展评述[J].矿冶工程, 2005, 25(6): 26-30.
    [53] R.J.斯特,金宗德.美国明塔克矿用浮选柱改善浮选回收率[J].国外金属矿山, 1998, 23(2): 51-56.
    [54]张洪恩,沈跃平.浮选柱技术的新进展[J].金属矿山, 1990, 19(4): 54-58,17.
    [55] H.E.怀斯,钱鞠梅.使用浮选柱生产高品位位铁矿石精矿[J].国外选矿快报, 1998, (20): 15-18.
    [56] G.B.拉朱,朱海滨.铁矿石浮选柱的选别[J].国外金属矿山, 1994, 19(5): 55-58.
    [57]В.М.阿夫多欣,张兴仁,肖力子.铁矿石深度选矿工艺的现状及主要发展方向[J].国外金属矿选矿, 2007, 44(9): 10-16.
    [58]张强.用充填介质浮选柱选别铁矿石时主要操作参数的影响[J].国外金属矿选矿, 1990, 27(3): 1-5.
    [59]崔礼生,张洪恩.新型浮选柱的研制与试验[J].金属矿山, 1993, (2): 41-46,60.
    [60]苏成德,赵振财.填料式浮选柱浮选赤铁矿的研究[J].国外金属矿选矿, 1996, 33(4): 30-34.
    [61]彭显宏.浮选柱在东鞍山红铁矿应用的探讨[J].钢铁增刊, 2002, (10): 70-72.
    [62]刘炯天.旋流―静态微泡柱分选方法及应用(之一) [J].选煤技术, 2000, (1): 42-44.
    [63]张海军,刘炯天,韦锦华等. Fcsmc浮选柱提铁降硅工业试验研究[J].矿冶工程, 2008, 28(2): 31-34.
    [64]卢世杰. KYZ型浮选柱机理研究[J].有色金属(选矿部分), 2002, (1): 20-23.
    [65]李茂林,鲁晏,黄波.应用射流浮选柱分选微细煤泥的试验研究[J].煤炭加工与综合利用, 2001, (2): 21-23.
    [66]姜志伟,黄波,李幼竹.射流浮选柱充气机理的研究[J].煤炭学报, 1995, 20(4): 432-436.
    [67]周凌锋,傅联海,张强.新型细粒浮选柱的研究[J].金属矿山, 2006, (1): 80-82.
    [68]罗仙平,何丽萍,周晓文等.浮选动力学研究进展[J].金属矿山, 2008, (4): 71-74,102.
    [69]陈子鸣.浮选动力学研究之二浮选速度常数分布密度函数的复原[J].有色金属(选矿部分), 1978, (10): 28-33.
    [70] Imaizumi T, Inoue T. Kinetics Consideration of Froth Flotation [A]. 6th. Int. Min. Process. Congr. [C]. 1963. 581-589.
    [71] Woodburn E T, Loveday B K. The Effect of Variable Residence Time on the Performence of a Flotation System [J]. J. South African Inst. Min. Metal, 1965, (7): 612-628.
    [72] Ball B, Fuerstenau D W. A Two-Phase Distributed Parameter Model of the Flotation Process [A]. 9th Int. Min.Process. Congr. [C]. 1970. 199-207.
    [73]胡熙庚等.浮选理论与工艺[M].长沙:中南工业大学出版社, 1991: 83-96;101;421-422.
    [74] Mohanty M K, Honaker R Q. A Comparative Evaluation of the Leading Advanced Flotation Technologies [J]. Minerals Engineering, 1999, 12(1): 1-13.
    [75]周晓华.浮选柱的旋流分选机理与矿物分选实践[D].徐州:中国矿业大学, 2005.
    [76]刘炯天.旋流-静态微泡浮选柱及洁净煤制备[D].北京:中国矿业大学(北京校区), 1999.
    [77]翟爱峰.基于可浮性过程特征的硫化铜矿柱式分选研究[D].徐州:中国矿业大学, 2008.
    [78] Boussinesq J. Essay of the Theory of Flow Water [M]. Paris: Mem. Acad. Sci, 1877: 523-546.
    [79] Hetsroni G. Handbook of Multiphase Systems [M]. Washington: Hemisphere Publishing Corporation, 1982: 54-87.
    [80] Pai S L. Two-Phase Flow [M]. Braunschweig: Vieweg-Verlag, 1977: 132-154.
    [81] Willis G B. One-Dimensional Two-Phase Flows [M]. New York: McGraw-Hill, 1969: 234-237.
    [82]林宗虎.变幻流动的科学-多相流体力学[M].北京:清华大学出版社, 2000: 12;63-65;102.
    [83]朱友益.新结构lhj浮选柱的分选机理及数学模型研究[D].北京:北京科技大学, 1997.
    [84]周凌锋,张强.气泡尺寸变化对微细粒浮选效果的研究[J].有色金属:选矿部分, 2005, (3): 21-23.
    [85]代敬龙,谢广元,刘姗姗等.浮选气泡尺寸影响因素分析[J].选煤技术, 2007, (5): 7-10.
    [86] Joshi J B, Parasu U V, Phanikumar D V. Gas Hold-up Structure in Bubble Column Reactors [J]. PINSA, 1998, 64(A4): 441-567.
    [87] Joshi J B. Computational Flow Modeling and Design of Bubble Column Reactors [J]. Chemical Engineering Science, 2001, (56): 5893-5993.
    [88]吴晓波,杨永琴.图像测量技术的新应用[J].光学精密工程, 1998, 6(3): 10-15.
    [89]王建民.提高图像测量系统精度的细分算法的研究[J].光学精密工程, 1998, 6(4): 44-50.
    [90]孙云飞,赵长德,何克忠.利用图像测量技术的摊铺机实时定向测量系统[J].光电工程, 2000, 27(4): 39-41.
    [91]张金全,张国英.红外窗口整流罩气动加热对红外热图像测量影响试验研究[J].红外技术, 2001, 23(2): 32-34.
    [92]冷何英,戴俊钊.高精度图像测量系统中的细分方法[J].光电工程, 1999, 26(增刊): 111-115.
    [93] Merchuk J C, Stein Y. Local Holdup and Liquid Velocity in Air-Lift Reactors [J]. AIChE J., 1981, 27(3): 377-388.
    [94]袁恩熙.工程流体力学[M].北京:石油工业出版社, 1994: 116.
    [95]刘程等.表面活性剂应用大全[M].北京:北京工业大学出版社, 1992: 97-98.
    [96]路展民,李广达,彭五顺等.气泡-水两相流的激光多普勒测量[J]. 1988, 20(6): 489-495.
    [97]张宏伟.掺气水流双流体模型数值模拟研究[D].西安:西安理工大学, 2002.
    [98] Soo S L. Fluid Dynamics of Multiphase System [M]. Waltham: Blaisdell Publishing Co, 1967:
    [99] Ishii M. Thermo-Fluid Dynamic Theory of Two-Phase Flow [M]. Paris: Eyrolles, 1975: 231-235.
    [100]刘峰,钱爱军,郭秀军.重介质旋流器流场湍流数值计算模型的选择[J].煤炭学报, 2006, 31(3): 346-350.
    [101]刘峰,钱爱军.重介质旋流器流场的计算流体力学模拟[J].选煤技术, 2004, (5): 10-15.
    [102]阎超.计算流体力学方法及应用[M].北京:北京航空航天大学出版社, 2006: 227-230.
    [103]王树立,赵会军.鼓泡塔内气液两相湍流实验研究[J].化工科技, 2004, 12(2):6-11.
    [104]梁在潮.工程湍流[M].武汉:华中理工大学出版社, 1999: 1-7;2-5;4-7.
    [105]曾克文.浮选槽内矿浆紊流强度对浮选影响的理论及应用研究[D].长沙:中南大学, 2001.
    [106] Yoon,戴宗福.矿粒―气泡作用中的流体动力及表面力[J].国外金属矿选矿, 1993, 30(6): 5-11,53.
    [107]朱友益,张强.湍流态下浮选矿化速率数学模型[J].武汉冶金科技大学学报, 1998, 21(4): 381-386.
    [108]卢寿慈,翁达.界面分选原理及应用[M].北京:冶金工业出版社, 1992: 204-208.
    [109]列维奇,戴干策,陈敏恒.物理-化学流体动力学[M].上海:上海科学技术出版社, 1965: 209-224.
    [110]韩德刚,高盘良.化学动力学基础[M].北京:北京大学出版社, 1987: 4-124.
    [111]张海军.浮选柱的自吸封闭式泡沫输配研究[D].徐州:中国矿业大学, 2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700