用户名: 密码: 验证码:
低煤级储层三相态含气量物理模拟与数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于低煤级煤在现有技术条件下含气量测试不准的事实,本论文围绕低煤级储层水溶气、吸附气、游离气三相态含气量预测这一关键科学问题,系统地开展了低煤级煤不同温、压条件下的等温吸附实验,揭示了低煤级储层在煤岩组成、含水性、孔隙性、吸附性等有别于中、高煤级储层的特有表现形式;首次开展了低煤级煤层水甲烷溶解度物理模拟,揭示了甲烷在煤层水中的溶解度与温度、压力、矿化度、游离CO2含量的关系,初步探讨了甲烷在煤层水中的溶解机理;基于煤的视密度、真密度、压汞及三轴压缩力学试验,物理模拟了围压下低煤级煤的变形特征;首次构建了储层条件下低煤级储层游离气、吸附气、水溶气的耦合关系及其含量预测的理论与方法。以海拉尔盆地褐煤储层为例,预测了煤层埋深2000m以浅的三相态含气量。本论文为丰富我国煤层气地质理论、开发我国低煤级煤层气资源奠定了基础。
As the gas content testing of soluble methane, absorbed methane and free-state methane in low-rank coal seams was inaccurate by present technologies, three states gas content was studied in this thesis. From isothermal adsorption experiment under different temperature and pressure, we discussed the effects of adsorption in low rank coal, and found the specific relation of coal components, moisture and adsorption in low rank coal reservoir, which was differed from middle/high rank coal; based on the first physical simulation of soluble methane in coal seam water, we revealed the relations of temperature, pressure, salinity, free-state CO2 content and solubility and discussed preliminary study of soluble methane mechanism in coal seam water; from the testing data of apparent relative density, true relative density, mercury injection and triaxial compression rock mechanics experiment, we simulated the deformation of low rank coal under stress and discussed mechanical properties of samples; this thesis firstly established the coupling relation of free-state methane, adsorbed methane and soluble methane in low rank coal reservoir, and set up the prediction theory and method of methane volume in low rank coal seam. Case in lignite seam of Hailar Basin, we predicted three states gas volume in coal seams above 2000m depth. This thesis enriched coal bed methane geological theory and established foundation of CBM resource exploration in low rank coal.
引文
[1] Andrew R, Scott A R. Hydrogeologic factors affecting gas content distribution in coal beds [J]. Int J Coal Geology, 2002, 50(2): 363-387.
    [2] Ates Y, Barron. Effect of gas sorption on the strength of coal [J]. Min Sci. Tech. 1988, 6(3), 291-300.
    [3] Bustin R M., Clarkson C R. Free gas storage in matrix porosity: A potentially significant coalbed methane in low rank coals[C]. In: International Coalbed Methane Symposium, 1999, 197-214.
    [4] Close J C. Natural Fraeture in Coal[C]. In:Hydrocarbons from Coal, Law B E and Rice D D, AAPG Studies in Geology #38, 1993: 119-132.
    [5] Collins R E. New Theory for Gas Adsorption and Transport in Coal[C]. In: Proceedings of the 1991 Coalbed Methane Symposium, Tuscallosa, 1991: 25-32.
    [6] Crosdale, P. J., Beamish, B. B., Valix, M. Coalbed methane sorption related to coal composition [J]. Int. J. Coal Geol. 1998, 35:147-158.
    [7] Dawson M, Kalkreuth W. Coal rank and coalbed methane potential of cretaceous/ tertiary coals n the Canadian rocky mountain foothills and adjacent foreland: 1. Hinton and Cache areas [J], Alberta Bulletin of Canadian Petroleum Geology, 1994, 42(4): 544-561.
    [8] Diamond W P. and Levine J R. Direct method determination of the gas content of coal: procedures and results [J]. US Bur. Mines, Rep. Invest., 1981, 8515: 36.
    [9] Diamond W P. and Schatzel S J. Measuring the gas content of coal: A review [J]. International Journal of Coal Geology, 1998, 35: 311-331.
    [10] Diamond, W. P., Levine, J. R. Direct Method Determination of Gas Content of Coal: Procedures and Results[R]. U S. Bureau of Mines Report of Investigations RI8515.1981.
    [11] Dodson and Standing, 1944. C.R. Dodson and M.B. Standing, Pressure, volume, temperature and solubility relations for natural gas-water mixtures [J]. Am. Pet. Inst. Drill. Prod. Pract. (1944), pp. 173-180.
    [12] Ettinger I L. Swelling stress in the gas-coal system as an energy source in the developing of gas bursts [J]. Soviet mining science, (5), 1979: 494-501.
    [13] Ettinger I., Eremin I., Zimakov B., Yanvoskaya M. Natural factors influeneing coal sorption properties. I. Petrography and sorption properties of coals [J]. Fuel, 1966, 45:267-275.
    [14] Friesen W.I., Mikule R. J. Fraetel dimensions of Coal Partieles [J]. Joumal of Colloldand Interface Seience.1987, 20(l): 263-271.
    [15] Gamson P,Beamish B.,Johnson David.夏锁林译,傅雪海校.煤层显微构造和次生矿化作用对甲烷回采率的影响[J].煤层气,1998,16(1):21-28.
    [16] Gan H., Nandi S. P., Walker P. L. Porosities of coals [J]. Fuel, 1972, 51(3): 272-285.
    [17] Gasser PH P.金属的化学吸附和催化作用[M].赵壁英等译.北京:北京大学出版社,1991.
    [18] Gayer R., Harris I. Coalbed Methane and Coal Geology [M]. The Geological Soeiety, London, 1996, l-338.
    [19] Harpalin S., Miphreson M J. The effect of gas pressure on permeability of coal [J]. 2nd US Mine Ventulation Symp. Reho. 1986, (1): 369-375.
    [20] ISRM. Commission on standardization of laboratory and field tests, Suggest methods for determining water content, porositydensity, absorption and related properties and swelling and slake durability index, Document No.2, First Revision.In rock characterization, Testing and monitoring (E. T. Brown, E D), Pergamon Press, Oxford, 1981.
    [21] J Killingley, J Levy, S Day. Methane adsorption on coals of the Bowen Basin [M]. Queensland Australia, 1995.
    [22] John D M, Paul S S, Timothy J P. Guide to determining coalbed content[R]. Gas Research Institute Topical Report No. GRI-94/0396, 1995.
    [23] Johnson R C, Flores R M. Developmental geology of coalbed methane from shallow to deep in Rocky Mountain basins and in Cook Inlet–Matanuska basin, Alaska, U.S.A. and Canada[J]. Int J Coal Geology, 1998, 35(1-4): 241-282.
    [24] Kissell F.N., McCulloch C.M., Elder C.H. The Direct Method of Determining Methane Content of Coals for Ventilation Design[R]. U.S. Bureau of Mines Report of Investigations RI7767.1981.
    [25] Krooss B M, Bergen F, Gensterblum Y. High-pressure Methane and Carbon Dioxide Adsorption on Dry and Moisture-Equili-brated Pennsylvanian Coals [J]. International Journal of Coal Geology, 2002, 51: 69-92.
    [26] Levine J R. Model study of the influence of matrix shrinkage on absolute permeability of coal bed reservoirs [J]. Geological Society Publication, 1996, (199): 197-212.
    [27] Malone P G, Lottman L K, Calmp B S, Smith J L. An investigation of parameters affeeting desorption rates of Warrior Basin coals[C]. Proeeedings-International Coalbed Methane SymPosium. 1989, 35.
    [28] Mavor M J, Close J C, Pratt T J. Summary of the completion optimization and assessment laboratory (COAL) site[R]. Gas Research Institute Topical Report No. GRI-91/0377, Chicago lllinois, 1991.
    [29] Meyers R A. Coal structure[M]. New York: Academic Press, 1982: 78-83.
    [30] Moffat D H, Weale K E. Sorption by coal of methane at high pressure [J]. Fuel, 1955, 34: 417-428.
    [31] O' Sullivan T P, Smith N D. The solubility and patial mola volume of nitrogen and methane in water and in aqueous sodium chloride from 50 to 125 and 100 to 600 atm [J].The Jour and Physical Chemistry, 1970, 74(7): 1460-1466.
    [32] Pang X, Ian Lerche. Constraints on hydrocarbon migration from the Qingshahou Source rock in the west of the North Shongliao Basin [M]. China: Petroleum Geoscience, 1997, 3: 73-94.
    [33] Pashin J C, Chandler R V, Mink R M. Geologic controls on occurrence and produeibility of coalbed methane, Oak Grove Field, Black Warrior Basin, Alabama [C]. Proeeedings-International CoalbedMethane SymPosium.1989, 203-209.
    [34] Pratt T J., Mavor M J., Debruyn R P. Coal gas resource and production potential of subbituminous coal in the Powder River Basin[C]. In: International Coalbed Methane Symposium, 1999, 23-34.
    [35] Reucroft P J., Patel H. Gas induced swelling in coal [J]. Fuel, 65, 1986: 816-820.
    [36] Robert S E. North American coalbed methane development moves forward [J]. 2005, 226(8): 57-59.
    [37] Ruppel T.C et.al. Adsoption of methane mixtures on dry coal at elevated pressure [J]. Fuel, 1972, (51).
    [38] Scott A R, Kaiser W R, Ayers W B. Thermogenic and secondary biogenic gases, San Juan Basin, Colorado and Nex Mexico: Implications for coalbed gas producibility [J]. AAPG Bulletin, 1994, 78(8): 1186-1209.
    [39] Smith D.M., Williams F.L. A new technique for determining the methane content of coal [J]. Proceedings of the 16th Intersociety Energy Conversion Engineering Conference, 1981: 1267-1272.
    [40] Smith J W, Pallasser R J. Microbial origin of Australian Coalbed methane [J]. AAPG Bulletin, 1996, 80(6): 891-897.
    [41] Thomas D, O′Sullivan, Smith N O. The solubility and patial molar volume of nitrogen and methane in water and in aqueous sodium chloride from 50 to 125 and 100 to 600 atm.[J]. The Journal of Physical Chemistry, 1970,74(7): 1460-1466.
    [42] Vasyuchkov Y F. A study of porosity, permeability and gas release of coal as it is saturation with water and acid solutions [J]. Soviet mining science, 1985, (1): 81-88.
    [43] Walker P L. Densities, porosities and surface area of coal macerals as measured by their interaction with gases, vapours and liquids [J]. Fuel, 1988, 67(10): 1615-1623.
    [44] Walter B, Ayers J. Coalbed gas systems, resources, and production and a review of contrasting cases from the San Juan and Powder River Basins [J]. AAPG, 2002, 86 (11): 1855-1890.
    [45] Yang, R.T et.al. Adsorption of gases on coals and heat-treated coals at elevated temperature and pressure I adsorption from hydrogen and methane as single gases [J]. Fuel, 1985, (64).
    [46] Yee D., Seidle J.P., Hanson W.B. Gas sorption on coal and measurement of gas content [J]. Hydrocarbons from Coal. AAPG, Tusa., Oklahoma, 1993: 203-218.
    [47]ΧoдoтBB.宋世钊,王佑安译.煤与瓦斯突出[M].北京:中国工业出版社,1966:27-30.
    [48]АЛ巴卡耶娜.煤炭成分对煤吸附甲烷容量及其天然气含甲烷量的影响[J].煤成气译文专辑,1980:73-88.
    [49]ЗтингерИЛ,ЯовскаяМФ.Физико-химическиепродессывгазоноснныхуголъныхпласгах[J].Уголъ,1981,(7):11-13.
    [50]КлюкинГК.Квопросуосущносгемвнезапныхвыбросов[J].Уголъ,1976,(7):19-22.
    [51]ЛидинГД,ЗтингерИЛ,ШулъманНВ.Овсвможносгитеоретичоскогорасчётапотенциалънойметан-осносносгиуголъныхпласговнаболъшихглубинах[J].Уголъ,1973,(5):13-15.
    [52]ЛйруниЛТ.煤矿瓦斯动力学现象的预测和预防[M].唐修义等译.北京:煤炭工业出版社,1992.
    [53]Н.В.Корценштеин,刘成吉译.地下水圈中的溶解天然气资源及对可预见的将来其开发可行性的评价原则[J].地质科报动态,1991,9-11.
    [54]艾鲁尼.AT.唐修仪,宋德淑等译.煤矿瓦斯动力现象的预测和预防[M].北京:煤炭工业出版社,1992.
    [55]白凌仁,刘凤歧.煤质分析[M].煤炭工业出版社,1982:572.
    [56]鲍卫仁,常丽萍,谢克昌.煤层甲烷含气量预测的研究现状[J].太原理工大学学报,2000,31(3):267-270.
    [57]陈昌国.煤的物理化学结构和吸附(解吸)甲烷机理的研究[D].重庆:重庆大学,1995.
    [58]陈家良,邵震杰,秦勇.能源地质学[M].徐州:中国矿业大学出版社,2004.
    [59]陈鹏.中国煤炭性质、分类和利用[M].北京:化学工业出版社,2001.
    [60]陈振宏.高、低煤阶煤层气藏主控因素差异对比研究[D].广州:中国科学院研究生院,2007.
    [61]戴和武,谢可玉.褐煤利用技术[M].北京:煤炭工业出版社,1999.
    [62]冯三利,胡爱梅,霍永忠,王竹平,龙宝林.美国低阶煤煤层气资源勘探开发新进展[J].天然气工业,2003,23(2):124-126.
    [63]付晓泰,王振平,卢双舫.气体在水中的溶解机理及溶解度方程[J].中国科学B辑,1996,26(2):124-130.
    [64]傅小康,霍永忠,胡爱梅,范志强.美国低阶煤煤层气的勘探开发现状[J].中国煤炭,2006a,32(5):75-76.
    [65]傅小康,霍永忠,叶建平.低阶煤煤层气富集模式初探[J].中国煤层气,2006b,3(3):24-27.
    [66]傅小康.中国西部低阶煤储层特征及其勘探潜力分析[D].北京:中国地质大学北京,2006c.
    [67]傅雪海,焦宗福,秦勇,张万红,韩训晓.低煤级煤平衡水条件下吸附实验[J].辽宁工程技术大学学报,2005a,24(2):161-164.
    [68]傅雪海,秦勇,Geoff G. X. Wang,韦重韬,Victor Rudolph,等主编.煤层气储层与开发工程研究进展(2009亚洲太平洋国际煤层气会议暨2009年全国煤层气学术研讨会论文集)(上、下卷)[A].江苏徐州:中国矿业大学出版社,2009.
    [69]傅雪海,秦勇,李贵中.沁水盆地中-南部煤储层渗透率影响因素分析[J].地质力学学报,2001,7(1):45-52.
    [70]傅雪海,秦勇,王万贵,张万红,范炳恒,周荣福.煤储层水溶气研究及褐煤含气量预测[J].天然气地球科学,2005b,16(2):153-156.
    [71]傅雪海,秦勇,韦重韬.煤层气地质学[M].徐州:中国矿业大学出版社,2007.
    [72]傅雪海,秦勇,杨永国,彭金宁,韩训晓.甲烷在煤层水中溶解度的实验研究[J].天然气地球科学,2004,15(4):345-348.
    [73]傅雪海,秦勇,张万红,等.基于煤层气运移的煤孔隙分形分类及自然分类研究[J].科学通报,2005c(增):51-55.
    [74]傅雪海,秦勇.多相介质煤层气储层渗透率预测理论与方法[M].徐州:中国矿业大学出版社,2003:56-66.
    [75]傅雪海,秦勇等.现代构造应力场中煤储层孔裂隙应力分析与渗透率研究[J].地球学报,20(增刊),1999:623-627(中国地质学会第四届全国青年地质工作者学术讨论会优秀论文).
    [76]傅雪海,张万红,范炳恒,周荣福,韩训晓.吐哈盆地与粉河盆地煤储层物性对比分析[J].天然气工业,2005d,25(4):38-39.
    [77]高军,郑大庆,郭天民.高温高压下甲烷在碳酸氢钠水溶液中溶解度测定及模型计算[J].高校化学工程学报,1996,10(4):345-350.
    [78]韩德馨,任德贻,王延斌,金奎励,毛鹤龄,秦勇.中国煤岩学[M].徐州:中国矿业大学出版社,1996.
    [79]胡英主编.物理化学(上册)[M].北京:高等教育出版社,1999.
    [80]黄第藩,华阿新,王铁寇,秦匡宗,黄晓明.煤成油地球化学新进展[M].北京:石油工业出版社,1992.
    [81]金庆焕,杨木壮,梁金强.21世纪可能的新能源——天然气水合物.中国科学技术前沿,中国工程院版,第5卷[M].北京:高等教育出版社,2002.
    [82]康晏.生物气生成的地球化学因素分析[J].矿物岩石地球化学通报,2004,23 (4),350-354.
    [83]孔祥言.高等渗流力学[M].合肥:中国科学技术大学出版社,1999.
    [84]李保国.浅析哈密三道岭矿区低阶煤层含气性[J].西部探矿工程,2001,(6):124-126.
    [85]李本亮,王明明,冉启贵,彭秀丽,张道伟,王金鹏.地层水含盐度对生物气运聚成藏的作用[J].天然气工业,2003,23(5):16-20.
    [86]李本亮.地层水含盐度对生物气运聚成藏的作用[J].天然气工业,2003,23 (5):16-20.
    [87]李贵中.粉河盆地煤层气地质特征[R].河北:中国石油勘探开发研究院廊坊分院,2009.
    [88]李明潮,张五济.中国主要煤田的浅层煤成气[M].北京:科学出版社,1990.
    [89]李瑞明,尹淮新.准南煤田乌鲁木齐河东、河西矿区煤层气资源评价[C].2006年煤层气学术研讨会论文集.北京:地质出版社,2006:275-280.
    [90]李小彦,解光新.煤层吸附时间特征及影响因素[J].天然气地球科学,2003,14(6):502-505.
    [91]李正根.水文地质学[M].北京:地质出版社,1980.
    [92]李志明,张金珠.地应力与油气勘探开发[M].北京:石油工业出版,1997.
    [93]刘朝露,李剑,方家虎,胡国艺,严启团,李志生,马成华,孙庆武.水溶气运移成藏物理模拟实验技术[J].天然气地球科学,2004,15(1):32-36.
    [94]刘朝露,夏斌.天然气中氮气成因与塔里木盆地油气勘探风险分析[J].天然气地球科学,2005,16(2):224-228.
    [95]刘洪林,刘春涌,王红岩,杨泳,李景明.西北低阶煤中生物成因煤层气成藏模拟实验[J].新疆地质,2006,26(4):149-152.
    [96]刘洪林.中国煤层气资源评价[R].河北廊坊:中国石油勘探开发研究院廊坊分院,2006.
    [97]毛节华,许惠龙.中国煤炭资源预测与评价[M].北京:科学出版社,1999.
    [98]煤炭部地质局.中国主要煤矿资源图集[M].河北涿县:煤炭部地质制图印刷厂,1983.
    [99]庞雄奇,金之钧,姜振学,宫广胜,王洪玉.深盆气成藏门限及其物理模拟实验[J].天然气地球科学,2003,14(3):207-214.
    [100]钱凯,赵庆波,汪泽成.煤层甲烷勘探开发理论与实验测试技术[M].北京:石油工业出版社,1997.
    [101]钱凯,赵庆波.煤层甲烷气勘探开发理论与实验测试技术[M].北京:石油工业出版社,1996:122.
    [102]秦长文,庞雄奇,蒋兵.吐哈盆地煤层气富集的地质条件[J].天然气工业,2004,24(2):8-11.
    [103]秦胜飞,唐修义,宋岩,王红岩.煤层甲烷碳同位素分布特征及分馏机理[M].中国科学(D辑),2006,36(12):1092-1097.
    [104]秦勇,宋党育,王超.山西南部晚古生代煤的煤化作用及其控气特征[J].煤炭学报,1997,22(3):230-235.
    [105]秦勇,徐志伟.高煤级煤孔径结构的自然分类及其应用[J].煤炭学报,20(3),1995:266-271.
    [106]秦勇.煤层甲烷储层评价及生产技术[M].徐州:中国矿业大学出版社,1996.
    [107]秦勇.中国高煤级煤的显微岩石学特征及结构演化[M].徐州:中国矿业大学出版社,1994.
    [108]秦勇.中国煤层气勘探开发所面临的的若干科学问题[J].见:中国煤层气研究与勘探进展(二).赵庆波,张建博主编.徐州:中国矿业大学出版社,2003.
    [109]桑树勋,秦勇,傅雪海,等著.陆相煤层气地质——以准噶尔、吐哈盆地为例[M].徐州:中国矿业大学出版社,2001:49-58.
    [110]宋全友.深部煤层气成藏条件及开发潜势研究[D].徐州:中国矿业大学,2004.
    [111]宋全友.深部煤层气成藏条件及开发潜势研究[D].徐州:中国矿业大学,2004.
    [112]宋岩,张新民,柳少波.中国煤层气基础研究和勘探开发技术新进展[J].天然气工业,2005a,25,l:1-7.
    [113]宋岩,赵孟军,柳少波,王红岩,陈振宏.构造演化对煤层气富集程度的影响[J].科学通报,2005b,10(50):1-5.
    [114]宋岩.准噶尔盆地天然气聚集区带地质特征[M].北京:石油工业出版社,1995.
    [115]苏现波,陈江峰,孙俊民,程昭斌,等.煤层气地质学与勘探开发[M].北京:科学出版社.2001.
    [116]苏现波,刘保民.煤层气的赋存状态及其影响因素[J].焦作工学院学报,1999,18(3):157-160.
    [117]苏现波,张丽萍,林晓英.煤阶对煤的吸附能力的影响[J].天然气工业,2005,25(1):19-21.
    [118]孙万禄.中国煤层气盆地[M].北京:地质出版社,2005.
    [119]唐书恒.煤储层渗透性影响因素探讨[J].中国煤田地质,2001,13(l):28-30.
    [120]童景山,李敬.流体热物理性质的计算[M].北京:清华大学出版社,1982.
    [121]王勃,姜波,王红岩,刘洪林,陈振宏,李贵中.低煤阶煤层气藏水动力条件的物理模拟实验[J].新疆石油地质,2006,27(2):176-177.
    [122]王勃,李谨,张敏.煤层气成藏地层水化学特征研究[J].石油天然气学报(江汉石油学院学报),2007,29(5):66-68.
    [123]王国勇,付晓云.小龙湾地区煤层气地质特征分析[J].特种油气藏,2001,8(3):22-24.
    [124]王红岩,李景明,刘洪林,李贵中,李隽.煤层气基础理论、聚集规律及开采技术方法进展[J].石油勘探与开发,2004a,31(6):14-16.
    [125]王红岩,刘洪林,赵庆波.煤层气富集成藏规律[M].北京:石油工业出版社,2005.
    [126]王红岩,钱凯.煤层气勘探研究进展[J].中国煤层气,2004b,7(1):34-36.
    [127]王红岩.中国煤层气富集成藏规律[J],天然气工业,2003,24(5):11-13.
    [128]王锦山,王力,刘明远,曾志刚,姚素玲.水溶解煤层气的特征及规律试验研究[M].辽宁工程技术大学学报,2006,25(1):14-16.
    [129]王凯雄,姚铭.亨利定律及其在环境科学与工程中的应用[J].浙江大学学报,2004,4(6):85-89,93.
    [130]王璐琨.天然气组分在含醇水溶液中溶解度的测定及模型化研究[D].北京:石油大学,2002.
    [131]王生维,陈钟惠,张明.煤基岩块孔裂隙特征及其在煤层气产出中的意义[J].地球科学-中国地质大学学报,20(5),1995:557-561.
    [132]王生维,陈钟惠.煤储层孔隙、裂隙系统研究进展[J].地质科技情报,14(1),1995:53-59.
    [133]王生维,张明,陈钟惠.煤储层裂隙形成机理及其研究意义[J].地球科学,21(6),1996:637-640.
    [134]王屿涛,谢妹,刘全艳,何玲娟,孟庆华.准噶尔盆地低阶煤煤层气资源及勘探潜力分析[J].新疆石油学院学报,2002,3(14):5-7.
    [135]蔚远江.准噶尔盆地低煤级煤储层及煤层气成藏初步研究[D].北京:中国地质大学,2002.
    [136]吴俊.中国煤成烃基本理论与实验[M].北京:煤炭工业出版社,1994:121-154.
    [137]武晓春,庞雄奇,于兴河,王明.水溶气资源富集的主控因素及其评价方法探讨[J].天然气地球科学,2003,14(5):416-421.
    [138]鲜学福,辜敏.有关间接法预测煤层气含量的讨论[J].中国工程科学,2006,8(8):15-22.
    [139]鲜学福.我国煤层瓦斯渗流力学的研究现状进一步发展和应用的展望[R].重庆:重庆大学矿山工程物理研究所,1997.
    [140]谢勇强.低阶煤煤层气吸附与解吸机理实验研究[D].西安:西安科技大学,2006.
    [141]新疆油气区石油地质志编写组.中国石油地质志(卷十五)[M].北京:石油工业出版社,1993.
    [142]徐世芳,李博.地震学词典[M].北京:地震出版社,2000.
    [143]许江,尹光志,鲜学福,唐建新.煤与瓦斯突出潜在危险区预测的研究[M].重庆:重庆大学出版社,2004.
    [144]严继民,张启元.吸附与凝聚[M].北京:北京科学出版社,1979.
    [145]杨起,韩德馨.中国煤田地质学(上册)[M].北京:煤炭工业出版社,1980.
    [146]杨起.煤地质学进展[M].北京::科学出版社,1987.
    [147]杨申镳.水溶性天然气勘探与开发[M].北京:石油大学出版社,1997.
    [148]杨远聪,李绍基,朱江.水溶气-四川盆地新的天然气资源[J].西南石油学院学报,1993,15(1):16-22.
    [149]叶建平,秦勇,林大扬.中国煤层气资源[M].徐州:中国矿业大学出版社,1998.
    [150]叶欣.中国西北低煤阶煤层气成藏地质特征研究[D].成都:成都理工大学,2007.
    [151]员争荣,韩玉芹,李建武,郑玉柱,董敏涛.中外低煤阶盆地煤层气成藏及资源开发潜力对比分析——以中国吐哈盆地和保德河盆地为例[J].煤田地质与勘探,2003,31(5):27-29.
    [152]袁三畏.中国煤质评论[M].北京:煤炭工业出版社,1999.
    [153]张慧,李小彦,郝琪,等.中国煤的扫描电子显微镜研究[M].北京:地质出版社,200.
    [154]张建博,陶明信.煤层甲烷碳同位素在煤层气勘探中的地质意义——以沁水盆地为例[J].沉积学报,2000a,18(4):611-614.
    [155]张建博,王红岩,赵庆波.中国煤层气地质[M].北京:地质出版社,2000b.
    [156]张培河.低变质煤的煤层气开发潜力——以鄂尔多斯盆地侏罗系为例[J].煤田地质与勘探,2007,35(1):29-33.
    [157]张群,杨锡禄.平衡水条件下煤对甲烷的等温吸附特性研究[J].煤炭学报,1999,24(6): 566-570.
    [158]张晓宝,徐永昌,刘文汇,沈平,吉利明,马立元.吐哈盆地水溶气组份与碳同位素特征形成机理及意义[J].沉积学报,2002,20(4):705-709.
    [159]张新民,韩保山,李建武.褐煤煤层气储集特征及含气量确定方法[J].煤田地质与勘探,2006,34(3):28-31.
    [160]张新民,张遂安,钟玲文.中国煤层甲烷[M].西安:陕西科学技术出版社,1991.
    [161]张新民,庄军,张遂安.中国煤层气地质与资源评价[M].北京:科学出版社,2002.
    [162]张云峰.温、压控制水溶气释放的模拟实验方法[J].石油实验地质,2002,24(1):77-81.
    [163]张子枢.水溶气浅论[J].天然气地球科学,1995,6(5):29-34.
    [164]赵孟军,宋岩,苏现波,柳少波,秦胜飞,洪峰.决定煤层气地球化学特征的关键地质时期[J].天然气工业,2005,25(1):51-54.
    [165]赵庆波.中国煤层气勘探[M].北京:石油工业出版社,2001.
    [166]赵振新,朱书全,马名杰,张恒,王路宁,颜淑娟,杜晓静.中国褐煤的综合优化利用[J].洁净煤技术,2008,14(1):28-31.
    [167]钟玲文,张新民.煤的吸附能力与其煤化程度和煤岩组成间的关系[J].煤田地质与勘探,1990,(4):29-35.
    [168]钟玲文,郑玉柱,员争荣,雷崇利,张慧.煤在温度和压力综合影响吸附性能及气含量预测[J].煤炭学报,2002,27(6):581-585.
    [169]周荣福,傅雪海,秦勇.我国煤储层等温吸附常数分布规律及其意义[J].煤田地质与勘探,2000,28(5):23-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700