用户名: 密码: 验证码:
鄂尔多斯盆地0.3毫达西类储层特征及开发对策研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鄂尔多斯盆地待开发区块和新发现区块主要是小于0.5×10-3μm2储层,如何实现该类储层经济开发对油田的长远发展至关重要。近几年围绕该类储层作了大量的攻关试验,取得了一定的成果,但是由于储层的复杂性,仍然需要开展更细致的工作。
     针对低渗透储层的特殊性质,论文提出并论证了主流喉道半径、可动流体饱和度、启动压力梯度作为储层评价参数的必要性,同时引入地下原油粘度和粘土含量,形成了低渗透储层评价参数体系。给出了低渗透储层单参数分类界限。建立了低渗透储层模糊综合评价模型。根据综合评价值,将低渗透储层分为四类,一、二类在目前的技术条件下能够实现有效的开发,三类是目前正在攻关的储层,四类是目前技术难以动用的储层。鄂尔多斯盆地0.3×10-3μm2类储层主要指综合值小于0.6的二类下限和三类储层,从而明确了长庆油田攻关储层的类型。
     鄂尔多斯盆地0.3×10-3μm2类储层主要分布在延长统东北沉积体系的安塞三角洲及西南沉积体系的西峰三角洲的前缘,与1×10-3μm2相比,该类储层碎屑颗粒更细、分选更差、胶结作用更强。孔道大小与一般低渗透率储层相差不大,但储层喉道小,主流喉道半径小于1μm,喉道的大小决定该类储层渗流能力更差。
     低渗透油藏渗流属于非线性渗流,油藏可分为三个渗流区即井筒周围的易流区、近井地带低速高阻区和远井不流动区三种流动区间。实验及理论分析表明,渗透率越低非线性越强,井筒周围易流区域越小,开发也就越困难。
     论文对0.3×10-3μm2类储层的产能、压力系统和井网进行了评价,探讨了压裂五点井网有效压力系统评价方法及建立对策。特低渗透油藏采用菱形反九点井网转矩形五点井网较为合理,针对不同的储层,给出了庄19等五个区块建立有效驱动的极限排距;
     0.3×10-3μm2类油藏实施超前注水,压力系数达到1.1-1.2,有助于有效补充能量,建立有效的驱动,提高开发效果。
     通过分析,初步形成了0.3×10-3μm2类油藏开发原则、层系划分、产能评价、井网井距、水平井、注水方式、压力保持水平等系列技术。
The reservoirs's permeability of being-developed and new-discovered regions in Ordos Basin are mainly less than 0.5×10-3μm2, so how to explore these oilfields effectively and economically is of utmost importance to the long-term development. There are some achievments bye lots of key tests, despite of that, it is still necessary to do more meticulous work because of the reservoirs' complexity.
     Based on the characteristics of low-permeability reservoir, the thesis first proposes and analyzes the necessity of reservoirs evaluation parameters, such as main flow throat radius, movable fluid saturation, and threshold pressure gradient; the parameter system also includes viscosity of underground crude oil and clay contents. Fuzzy comprehensive evaluation for low permeability reservoirs is established. According to the comprehensive value, there are four kinds of low-permeability reservoirs:the first two kinds have been effectively developed under present technical qualification, the third is in research now and the forth is out of recent technology. The 0.3×10-3μm2 reservoirs in Ordos Basin mainly refer to the ones with comprehensive value under 0.6, which belongs to the lower limit of the second and the third. All above makes it known which category of reservoirs in Changqing oilfield belongs to.
     The 0.3×10-3μm2 reservoirs in Ordos Basin locate in Ansai Delta, Yanchang Series, Northeast Depositional System, and the front of Xifeng Delta, Southwest Depositional System. Compared with 1×10-3μm2 reservoirs, the 0.3×10-3μm2 reservoirs have thinner kernels, stronger cementation, and are more poorly sorted. The channel diameter is almost the same with common low-permeability reservoirs', but its throat is smaller. Otherwise, the main flowable throat radius is less than 1μm, which means low seepage ability of that kind of reservoirs.
     It is more difficult to develop 0.3×10-3μm2 reservoirs because of the strong pressure sensitivity and non-linear flow effect. Because of the existence of non-linear flow, there are easy-flowing area, low-velocity and high-resistance area, and non-flow area around the well. The results of experiments and theoretical analysis demonstrate that the lower the permeability is, the stronger the non-linear effect is and the smaller the easy-flowing area is. Additionally, the pressure sensitivity effect, which is stronger than common low-permeability reservoirs', decreases the seepage ability around the well and influences the development result.
     The thesis evaluates the 0.3×10-3μm2 reservoirs' productivity, pressure system, and well pattern. There is a good linearity relationship between output in early stage and testing rate. The productivity is controlled by the thickness, size of permeability, well spacing, producing pressure drop, and scale of fracturing. In early stage, output is high and decreases quickly. Soon after water flooding response, water break through. The output and dimensionless oil productivity index fall down quickly, which means no ability to increase the output. So, the key points of effective development are the declining rate in early stage and lengthening the time of low-to-moderate water-cut stage. It is also very important to establish an effective displacement pressure system for effective development of 0.3×10-3μm2 reservoirs. Based on the fluid mechanics in porous medium, the thesis discusses how to evaluate the effective pressure system of fracturing effect in five-spot pattern and establishing strategy. The well pattern is controlled by the fracture development level. Generally, diamond shaped nine-spot pattern is fit for super low permeability reservoirs, and five-spot pattern is fit for natural fracture developed reservoirs. In addition, oil and water wells which are fractured at the same time, long axis which follows the direction of sand body lay and parallels the main direction of fracture development, all above mean the good development effect.
     0.3×10-3μm2 reservoirs should be fractured firstly, then advanced flooding. For the advanced flooding blocks, we should pay attention on the swept volume and advancing recovery efficiency. Finally, the thesis discusses the developing strategy from six aspects.
引文
[1]杨华,金贵孝等.低渗透油气田研究与实践[M],北京:石油工业出版社,2003:279-283
    [2]蒋凌志,顾家裕,郭彬程.中国含油气盆地碎屑岩低渗透储层的特征及形成机理[J].沉积学报,2004,22(1);13~18
    [3]裘怿楠.低渗透砂岩油藏开发模式[M].北京:石油工业出版社,1997
    [4]张学文,尹家宏.低渗透砂岩油藏油水相对渗透率曲线特征[J].特种油气藏,1999,6(2):27-311
    [5]史成恩,李健等.特低渗透油田井网形式研究及实践[J].石油勘探与开发,2002,29(5):59~61
    [6]曾大乾,李淑贞.中国低渗透砂岩储层类型及地质特征[J].石油学报,1994,15(1);38-45
    [7]常波涛,单玄龙等.大北油田萨尔图油层特低渗储层宏观非均质性研究[J].世界地质,2005,24(2);168-172
    [8]李中锋,何顺利等.低渗透储层垂直缝延伸规律研究[J].大庆石油地质与开发,2005,24(5);24~26
    [9]杨正明,张英芝等.低渗透油田储层综合评价方法[J].石油学报,2006,27(2);64-67
    [10]杨满平,任宝生等.低流度油藏分类及开发特征研究[J].特种油气藏,2006,13(4);48-50
    [11]赵靖舟,吴少波等.论低渗透储层的分类与评价标准~以鄂尔多斯盆地为例[J].岩性油气藏,2007,19(3);28-31
    [12]曾联波,李忠兴等.鄂尔多斯盆地上三叠统延长组特低渗透砂岩储层裂缝特征及成因[J].地质学报,2007,81(2);174-178
    [13]宋子齐,程国建.特低渗透油层有效厚度确定方法研究[J].石油学报,2007,27(6);103-106
    [14]宋子齐,王静等.特低渗透油气藏成岩储集相的定量评价方法[J].油气地质与采收率,2006,13(2);21-23
    [15]宋子齐,潘玲黎等.一种特低渗透非均质储层连片统计分析方法[J].断块油气田,2005,12(4);39~41
    [16]马占旗,任晓娟等.特低渗储集层砂岩孔隙结构的分形研究—以安塞油田Y区块和Z区块为例[J].新疆石油学报,2007,28(1);88-91
    [17]郝明强,刘先贵等.微裂缝性特低渗透油藏储层特征研究[J].石油学报,2007,28(5);93-98
    [18]史成恩,赵继勇等.鄂尔多斯盆地超低渗透油层开发特征[J].成都理工大学学报(自然科学版),2007,34(5);538~541
    [19]王文环.特低渗透油藏驱替及开采特征的影响因素[J].油气地质与采收率,2006,13(6);73-75.
    [20]王文环,袁向春等.特低渗透油藏分类及开采特征研究[J].石油钻探技术,2007,35(1);72-75
    [21]徐冰青,刘强等.低渗透和特低渗透气藏提高采收率综述[J].天然气勘探与开发,2007,30(2);47-49
    [22]陈俊革,韩新宇等.卫81块特低渗油藏提高采收率技术及应用[J].石油天然气学报(江汉石油学院学报),2005,27(2);382~384
    [23]唐建东,刘同敬等.低渗透油藏超前注水合理时机理论研究[J].新疆地质,2007,25(2);192-195
    [24]杨满平.低渗透变形油藏合理生产压差研究[J].油气地质与采收率,2004,11(5);41-43
    [25]王瑞飞,陈明强.储层沉积-成岩过程中孔隙度参数演化的定量分析[J].地质学报,2007,81(10);1432-1437
    [26]闫存章,李秀生等.低渗透油藏小井距开发试验研究[J].石油勘探与开发,2005,32(1);105~107
    [27]曹仁义,程林松等.低渗透油藏井网优化调整研究[J].西南石油大学学报,2007,29(4);67~69
    [28]王建华.低渗透油田超前注水研究[J].断块油气田,2005,12(3);53~54
    [29]于银华,喻高明等.裂缝性砂岩特低渗油藏合理井网研究[J].石油天然气学报(江汉石油学院学报),2006,28(4);332-333
    [30]张翠萍,李庆印等.鄂尔多斯盆地三叠系特低渗油藏优化注采井网[J].石油天然气学报(江汉石油学院学报,2005,27(4),669~670
    [31]万海乔.合作开发区块特低渗透油藏开发技术研究[J].吐哈油气,2007,12(3);263-265
    [32]何志祥.坪北低压特低渗裂缝性油藏有效开发方法研究[J].石油天然气学报(江汉石油学院学报),2005,27(3);498~499
    [33]李民勇,肖勇军等.坪北低渗透油藏局部强化注水的实践[J].江汉石油科技,2006,16(4);23~25
    [34]刘仁明,刘尧文等.安塞油田坪北区特低渗透油藏油水渗流规律研究[J].石油天然气学报(江汉石油学院学报),2006,28(6);124~126
    [35]刘海庆,李宾元等.特地渗透油田井网密度研究[J].钻采工艺,2005,28(1);61~63
    [36]赵刚,杨学云等.提高特低渗透油藏注水开发效果方法研究[J].2007,9;84~86
    [37]曹维政,肖鲁川等.特低渗透储层油水两相非达西渗流特征[J].大庆石油地质与开发,2007,26(5);61-63
    [38]李永太,宋晓峰等.安塞油田三叠系延长组特低渗透油藏增产技术[J].石油勘探与开发,2006,33(5);638-642
    [39]郝斐,程林松等.特低渗透油藏启动压力梯度研究[J].西南石油学院学报,2006,28(6);29-32
    [40]林玉保,刘春林.特低渗透储层油水渗流特征研究[J].大庆石油地质与开发,2005,24(6);42-44
    [41]Sun W. Qu Z, Tang G. Characterization of water injection in low permeability rock using sandstone micromobles[J].JPT,2004,56(5):71-72
    [42]Zeng LianBo, Qi JiaFu, The Relationship between Fractures and Tectonic Stress Field in the Extra Low-Permeability Sandstone Reservoir at the South of Western Sichuan Depression [J]. Journal of China University of Geosciences,2007,18 (3); 224~229
    [43]Steven D.Hood,Campbell S.Nelson,and Petter J.J.Kamp:Modification of fracture porosity by
    multiphase vein mineralization in an Oligocene nontropical carbonate reservoir, Taranaki Basin, New Zealand [J].AAPG Bulletin,2003,87(10); 1575-1597
    [44]U.SEEMANN AND M.SCHERER:VOLCANICLASTICS AS POTENTIAL HYDROCARBON RESERVOIRS[J].Clay Minerals,(1985)9; 457-470
    [45]D.C.BEARD and P.K.WEYL:Influence of Texture on Porosity and Permeability of Unconsolidated Sand[J].AAPG Bulletin,1973,57(2); 349-369
    [46]M.SCHERER:Parameters Influencing Porosity in Sandstones:A Model for Sandstone Porosity Prediction[J].AAPG Bulletin,1987,71(5); 485-491
    [47]BREWSTER BALDWIN and CRISPIN O.BUTLER:Compaction Curves[J].AAPG Bulletin,1985, 69(4); 622-626
    [48]A.B.France,L.M.Araujo,J.B.Maynard,and P.E.Potter:Secondary porosity formed by deep meteoric leaching:Botucatu eolicanite, southern South America[J].AAPG Bulletin,2003,87(7); 1073-1082
    [49]Richard G.Hoy and Kenneth D.Ridgway:Seimentology and sequence stratigraphy of fan-delta and river-delta deposystems,Pennsylvanian Minturn Formation, Colorado[J].AAPG Bulletin,2003,87(7); 1169-1191
    [50]Peter J.Boult,Quentin Fisher, Simon R.J.clinch,Rod Lovibond,and C.David Cockshell:Geomechanical, microstructural, and petrophysical evolution in experimentally reactivated cataclasites:Applications to fault seal prediction:Discussion[J].AAPG Bulletin,2003,87(10); 1681-1683
    [51]Yongtai Yang,Wei Li, and Long Ma:Tectonic and stratigraphic controls of hydrocarbon systems in the Ordos basin:A multicycle cratonic basin in central China[J].AAPG Bulletin,2005,89(2); 255-269
    [52]David W. Houseknecht:Assessing the Relative Importance of Compaction Processes and Cementation to Reduction of Porosity in Sandstones [J].AAPGBulletin,1987,17(6):633-642
    [53]M.Scherer:Parameters Influencing Porosity in Sandstones:A Model for Sandstone Porosity Prediction [J].AAPG Bulletin,1987,71; 485-491
    [54]Schembre,J.M.and A.R.Kovscek:Thermally Induced Fines Mobilization:Its Relationship to Wettability and Formation Damage.SPE 86937
    [55]V.Ramlal:The Cruse'E'Expansion Steamflood:Technical,Economic and Environmental Perspectives.SPE 81063
    [56]Dutton S P, Diggs T N:Evolution of porosity and permeability in the lower Cretaceous Travis Peak Formation, East Texas [J].AAPG Bulletin,1992,76(2):252-269
    [57]S.N.Ehrenberg and P.H.Nadeau:Sandstone vs.carbonate petroleum resevoirs:A global perspective on porosity-depth and porosity-permeability relationships[J].AAPG Bulletin,2005,89(4):435-445
    [58]赵澄林,胡爱梅,陈璧珏,等.中华人民共和国石油天然气行业标准,油气储层评价方法(SY/T6295-1997)[S].北京;石油工业出版社,1998;16
    [59]张蕾.低渗透油田开发现状[J].中外科技情报,2006,(1);4-11
    [60]M.JI.苏尔古伊耶夫,Ю.В.热托夫等.低渗透油田开发的问题和原则.北京;低渗透油气藏勘探开发技术,1993
    [61]黄延章.低渗透油层渗流机理[M].北京;石油工业出版社,1998
    [62]李道品,等著.低渗透砂岩油田开发[M].北京;石油工业出版社,1997
    [63]罗蛰潭,王允成.油气储集层的孔隙结构[M].北京;科学出版社,1986
    [64]唐曾熊.油气藏的开发分类及描述[M].北京;石油工业出版社,1994
    [65]裘怿楠.油气储层评价技术[M].北京;石油工业出版社,1997;20-43
    [66]刘为付,刘双龙,孙立新,等.大港枣园油田孔二段储层综合评价[J],2000,24(3);5-7
    [67]B.A. Aman, T. W. Nichols, R. L. Snyder, e t. Integrated Reservoir Evaluation Revives Nearly Abandoned Illinois Basin Field, SPE 57437,1999
    [68]J.M. Hawkins, Petromation. Integrated Formation Evaluation With Regression Analysis. SPE 28244,1994
    [69]Zeng Lianbo, Wang Zhangguo and Zhang Guibin. A Comprehensive Evaluation Method for Low-permeability Reservoirs[J].Petroleum Science,2005,4(2):9-13
    [70]杨秋莲,李爱琴,孙燕妮,等.超低渗储层分类方法探讨[J].岩性油气藏,2007,19(4);51-56
    [71]张连元.安塞油田坪北区低渗透储层评价[J].江汉石油职工大学学报,2005,18(4);8-11
    [72]杜栋,庞庆华.现代综合评价方法与案例精选[M].北京;清华大学出版社,2005;1-205
    [73]杨纶标,高英仪,编著.模糊数学原理及应用[M].广州;华南理工大学出版社,2005;1-99
    [74]朱大奇,史慧.人工神经网络原理及应用[M].北京;科学出版社,2006;1-64
    [75]许树柏.层次分析法原理[M].天津;天津大学出版社,1998,166-180
    [76]马立文.用Q型聚类分析与判别函数法进行储层评价——以冀东老爷庙油田庙28X1区块东一段为例[J].西北大学学报(自然科学版),2003,33(1)83-86
    [77]宋子齐,谭成仟.灰色理论油气储层评价[M].成都;石油工业出版社,1995
    [78]Pritchard KCG, Use of Uncertainty Analysis In Evaluating Hydrocarbon Pore Volume In The Rainbow-ZAMA Area, Canadian Well Logging Society Reprint Volumes V3,1992 (SPE-2584)
    [79]胡志明,把智波,熊伟,等.低渗透油藏微观孔隙结构分析[J].大庆石油学院学报,2006,30(3);51-53
    [80]孙玉平.低渗透储层综合评价方法研究[D].北京:中国科学院研究生院,2008..
    [81]沈平平.油层物理实验技术.北京;石油工业出版社,1995
    [82]王为民,郭和坤,叶朝辉.利用核磁共振可动流体评价低渗透油田开发潜力[J].石油学报,2001,22(6);4044
    [83]彭仕宓,熊琦华,王才经,等.储层综合评价的主成分分析法[J].石油学报,1994,增刊(15);188-194
    [84]罗蛰潭,王允诚.油气储集层的孔隙结构[M].北京;科学出版社,1986
    [85]强平,曾伟,陈景山.利用主成分分析对储层进行分类和评价[J].西南石油学院学报,19(1);26-31
    [86]杨胜来,魏俊之.油层物理学[M].北京;石油工业出版社,2006;159-168
    [87]赵福麟.油田化学[M].石油大学出版社,2000;5-15
    [88]Wang W, Miao S, Liu W, et al.Using NMR Technology to Determine the Movable Fluid Index of Rock Matrix in Xiaoguai Oil-field[C].SPE50903,1998:255-263
    [89]Wang Guangyuan. Fuzzy Optimum Design of Structures[J]. Engineering Optimization,1985(4)
    [90]冯其红,陈月明,姜汉桥,等.模糊数学在区块整体调剖选井中的应用[J].石油勘探与开发,1998,25(3):76-79
    [91]程顶胜,刘松,吴培红.塔里木盆地石炭系生烃潜力的模糊数学综合评价[J].石油学报,2000,20(1):34-39
    [92]杨昌明,王美丽.模糊数学综合评判法在圈闭地质评价中的应用探讨[J].中国地质矿产经济,1999,(1);26-28
    [93]李中峰,何顺利.模糊数学在长庆气田碳酸盐岩储层评价中的应用[J].天然气工业,2005,25(3);55-57
    [94]张迎朝,石志强.用灰色相对变率关联度分析法确定影响油气井产量因素的权重[J].石油勘探与开发,1998,25(2);73-74
    [95]王建东,刘吉余,于润涛,等.层次分析法在储层评价中的应用[J].大庆石油学院学报,2003,27(3):12-14
    [96]冯其红,王树义,吴妍,等.变权方法在区块整体调剖模糊选井中的应用[J].石油大学学报(自然科学版),2002,26(4);45-47
    [97]姜延武,严桂林,孔郁琪,等.人工神经网络系统在储层评价中的应用[J].录井技术,2008,12(2);8-12
    [98]徐凤银,朱兴珊,颜其彬,等.储层定量评价中指标权重的计算途径[J].石油学报,1996,17(2),29~34
    [99]Goncalves C A, Use of Discriminant Analysis And an Artificial Neural Network In Formation Evaluation:A Comparison Study,31ST INT GEOL CONGR,2000
    [100]Yuan Aiwu, Zhang Xiaosong, Wang Dongcheng. Prediction of Injection Production Ratio with BP Neural Network[J]. Petroleum Science,2004,4(1):62-65
    [101]冉启全,李士伦.模糊神经网络及其在储基层油气评价中的应用[J].钻采工艺,1997,20(1);32-36

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700