用户名: 密码: 验证码:
岩石厚壁圆筒高压卸载环状劈裂及其相关力学行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以深部围岩分区断裂为工程背景与研究主题,利用厚壁圆筒岩样加、卸载试验,紧紧围绕厚壁圆筒壁内环状断裂机制(能量峰值不稳态分布及其能量判断准则),厚壁圆筒高压卸载轴向劈裂机制两个着重点进行研究,并对岩石破坏的尺度效应、卸载破坏的冲击倾向性及岩石破坏的结构效应等与厚壁圆筒卸载破坏相关的力学行为进行拓展研究,以期能够有效地揭示分区破裂力学产生机制,为此类破坏巷道实现结构性稳定提供理论支持。
     研究内容及研究方法如下:
     (1)首先对岩石微结构面和岩石基本物理力学性质进行描述与测试,同时开展单轴抗压强度尺度效应研究,为准确描述岩石物理力学性质及后续真三轴能量破坏准则建立提供准确参数服务。
     (2)采用厚壁圆筒试件,根据深部巷道开挖围岩受力特点(加载、卸荷),对厚壁圆筒岩样进行加、卸载,实验研究厚壁圆筒壁内环状现象。
     (3)利用厚壁圆筒壁内断裂时的三向应力,建立和验证可考虑中间主应力对能量释放影响的真三轴能量破坏准则。
     (4)考虑卸荷损伤对厚壁圆筒三向应力变化,根据岩石破坏的能量原理,研究厚壁圆筒壁内环状断裂机制。
     (5)根据加、卸载受力变化特点,依据Griffith理论,研究厚壁圆筒高压卸载轴向劈裂机制。
     (6)根据岩石强度破坏两种基本模式耗能情况,研究岩石卸荷破坏的冲击倾向性。
     (7)根据岩石破坏的结构效应特点,探讨厚壁圆筒完整承载结构与出现环形断裂关系;利用RFPA2D进行深部围岩破裂演化结构效应数值模拟,得到围岩深处远场裂纹的发生位置及产生前提条件。
     研究得到如下创新性成果:
     (1)在高压卸载条件下,获得了与单、三轴压缩破坏情况截然不同的,具有张拉破坏性质的厚壁圆筒壁内环状断裂现象;从实验角度证明了灰岩厚壁圆筒只有在卸荷条件下才会发生有规律的壁内环状断裂。
     (2)初步建立和验证了可考虑中间主应力对能量释放影响的真三轴能量破坏准则,获得了灰岩厚壁圆筒中间主应力能量释放影响系数。
     (3)对厚壁圆筒壁内能量峰值不稳定分布状态以及峰值处能量是否满足能量破坏准则进行了判断,并根据最小耗能原理及Griffith理论,有效揭示了厚壁圆筒高压卸载壁内环状劈裂机制。
     (4)基于岩石卸荷劈拉破坏特性以及张拉破坏最小耗能特点,从岩石冲击破坏产生的刚度条件和能量条件两个角度,阐明了岩石卸荷破坏的冲击倾向性。
     (5)根据岩石破坏的结构效应特点,解释了厚壁圆筒内壁完整承载结构对壁内出现环形断裂的影响;利用RFPA2D对深部围岩破裂演化结构效应进行了数值模拟,获得了围岩深处远场裂纹的发生位置及产生前提条件;远场裂纹发生位置符合规律( )为巷道半径),与分区破裂位置规律一致。
Zonal disintegration in deep underground surrounding rock mass is the engineering background and research subject of this dissertation. Based on the unloading experiments of thick-walled cylinder rock samples after high compression, this research is focused on ringlike failure mechanism in thick wall (unstable distribution at energy peak-value point and energy judgment criteria) and axial splitting failure mechanism of rock cylinders under unloading condition after high compression. It also studied the related mechanical behavior about the unloading failure of rock cylinder after high compression such as scale effect of rock failure, rock burst tendency of unloading failure and structural effect of rock failure. The research results can supply reasonable explanation of zonal fracturing mechanism and theoretical foundation for the supporting of similar roadways to keep the structural stability.
     Research contents and methods are as follows:
     (1) The description of rock structural plane and the measurement of basic physical and mechanical behavior were firstly performed. The scale effect of uniaxial compressive strength was also studied. These results were the basis of description of rock physical and mechanical behavior and supply accurate mechanical parameters for setting up the real triaxial energy criteria in the following.
     (2) Based on the stress change characteristics of surrounding rock mass in deep underground engineering (loading to unloading), the unloading experiment of rock cylinders after high compression was performed. Ringlike failure in thick wall of rock cylinder was studied by this experimental method.
     (3) The real triaxial energy criteria taking account of the influence of intermediate principal stress on energy release was set up and validated by the three principal stresses of ringlike failure in rock cylinders.
     (4) Taking account of the influence of unloading damage on the variation of three principal stresses, ringlike fracturing mechanism was studied based on the energy principles.
     (5) Based on the stress variation, axial splitting mechanism of rock cylinders under unloading condition after high compression was studied by the Griffith theory.
     (6) Based on the energy release condition of two basic failure modes of rock strength failure, rock burst tendency of rock unloading failure was studied.
     (7) Based on the structural effect of rock failure, the relation of intact loading structure of rock cylinders and the occurrence of ringlike failure was discussed. Based on RFPA2D, the fracturing structural effect after deep surrounding rock failure was studied by numerical simulation. Producing location and formation condition of remote cracks in the middle part of rock was studied.
     The main innovative achievements were obtained as follows:
     (1) Ringlike failure pattern with highly tensile behavior was obtained under unloading condition; this failure pattern is obviously different from uniaxial, triaxial compressive failure. It was validated by experiments that the ringlike failure occurred only under the unloading condition.
     (2) The real triaxial energy criteria (in the following) taking account of the influence of intermediate principal stress on energy release was preliminarily set up and validated. The influential coefficient of intermediate principal stress on energy release of limestone cylinders was obtained.
     (3) The unstable distribution of energy peak-value in thick wall of rock cylinders and whether the energy at peak-value point conforms to the energy failure criteria were judged. Based on the principles of minimum energy dissipation and Griffith strength theory, the ringlike axial failure mechanism was effectively discovered.
     (4) Based on the splitting fracturing characteristics of rock unloading failure and minimum energy dissipation characteristic of tensile failure, from the two viewpoints of stiffness and energy conditions, rock burst tendency of rock unloading failure was effectively illuminated
     (5) Based on the structural effect characteristics of rock failure, it was clarified the influence of intact loading structure of rock cylinder on the occurrence of ringlike failure. Based on RFPA2D, Producing location and formation condition of remote cracks in the middle part of rock was studied by numerical simulation. The producing location of remote cracks conforms to thedenotes the radius of circle roadways), which are in relatively consistent with the fracturing location of zonal disintegration.
引文
[1]周宏伟,谢和平,左建平.深部高地应力岩石力学行为研究进展[J].力学进展, 2005, 35(1): 91-99
    [2]何满潮,谢和平,彭苏萍,等.深部开采岩体力学研究[J].岩石力学与工程学报, 2005, 24(16): 2803-2813
    [3] Durrheim R J, Handley M R, Haile A, et al. Rockburst damage to tunnels in a deep south African gold mine caused by a M=3.6 seismic event. In: Gibowicz S J and Lasocki S, eds. Rockburst and Seismicity in Mines. Rotterdam: A A Balkema, 1997, 223-226
    [4]缪协兴,浦海,白海波.隔水关键层原理及其在保水采煤中的应用研究[J].中国矿业大学学报, 2008, 37(1): 1-4
    [5]杨天鸿,唐春安,谭志宏,等.岩体破坏突水模型研究现状及突水预测预报研究发展趋势[J].岩石力学与工程学报, 2007, 26(2): 268-277
    [6]窦林名,何学秋.煤矿冲击矿压的分级预测研究[J].中国矿业大学学报, 2007, 36(6) : 717-722
    [7]钱七虎.非线性岩石力学的新进展——深部岩体力学的若干问题[C]//中国岩石力学与工程学会编.第八次全国岩石力学与工程学术大会论文集.北京:科学出版社, 2004: 10-17
    [8] Adams G R, Jager A J. Petroscopic observations of rock fracturing ahead of stope faces in deep-level gold mines [J]. Journal of the South African Institute of Mining and Metallurgy,1980,80:204–209.
    [9] Shemyakin E. I., Fisenko G. L., Kurlenya M. V, et al. Zonal disintegration of rocks around underground workings. Part I: Data of in situ observation [J]. Rock Mechanics and Rock Pressure, 1986, 22(4): 157-168.
    [10]贺永年,蒋斌松,韩立军等.深部巷道围岩间隔性区域断裂研究.中国矿业大学学报, 2008, 37(3): 300-304
    [11]李世平.权台煤矿煤巷锚杆试验观测报告-兼论煤巷锚杆特点与参数选择新观点[J].中国矿业学院学报,1979, (4): 19-57.
    [12]贺永年.软岩巷道围岩松动带及其状态分析[J].煤炭学报,1991,16(2):63-69.
    [13]方祖烈.软岩巷道维护原理与控制措施[C]. //何满潮.中国煤矿软岩巷道支护理论与实践.徐州:中国矿业大学出版社, 1996.
    [14] Shemyakin E. I., Fisenko G. L., Kurlenya M. V, et al. Zonal disintegration of rocks around underground workings. Part II: Rock fracture simulated in equivalent materials[J]. Rock Mechanics and Rock Pressure, 1986, 22(4): 223-232.
    [15] Guzev M A,Paroshin A A. Non-euclidean model of the zonal disintegration of rocks around an underground working[J]. Journal of Applied Mechanics and Technical Physics,2001,42(1):131–139.
    [16] Reva V N. Stability criteria of underground workings under zonal disintegration of rocks[J]. Fiz. Tekh. Probl. Razrab. Polezn. Iskop.,2002,(1):35–38.
    [17]王明洋,宋华,郑大亮,陈士林.深部巷道围岩的分区破裂机制及“深部”界定探讨[J],岩石力学与工程学报,2006,25(9):1771-1776.
    [18]李英杰,潘一山,李忠华.岩体产生分区碎裂化现象机理分析[J].岩土工程学报,2006,28(9):1124-1128.
    [19]周小平,钱七虎.深埋巷道分区破裂化机制[J].岩石力学与工程学报, 2007, 26(5): 877-885
    [20]李术才,王汉鹏,钱七虎等.深部巷道围岩分区破裂化现象现场监测研究[J].岩石力学与工程学报, 2008, 27(8): 1545-1553.
    [21]许宏发,钱七虎,王发军,李术才,袁亮.电阻率法在深部巷道分区破裂探测中的应用[J].岩石力学与工程学报, 2008, 28(1): 111-119.
    [22]冯长根.深部岩石工程围岩分区破裂化效应[M].北京:中国科学技术出版社,2008: 76-81.
    [23]许东俊,耿乃光,岩体变形和破坏的各种应力路径,岩土力学,1986,7(2):17~24
    [24]尹光志,李贺,鲜学福.工程应力变化对岩石强度特性影响的试验研究.岩土工程学报, 1987, 9(2): 20-27
    [25]陈颙,姚孝新,耿乃光.应力途径对岩石脆性和延性的影响.地球物理学报, 1980, 23(3), 312-319.
    [26]耿乃光、许东俊,应力途径讨砂岩力学性质的影响,地球物理学报,1983,26(4):401~403
    [27] Hoskins E R. The failure of thick-walled hollow cylinders of isotropic rock [J]. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, 1969, 6(1): 99-116.
    [28] Wawersik W R, Carlson L W, Holcomb D J, et al. New method for true-triaxial rock testing[J]. International Journal of Rock Mechanics and Mining Science, 1997, 34(3-4): 330. e1-330.e14
    [29] Alsayed M I. Utilising the Hoek triaxial cell for multiaxial testing of hollow rock cylinders [J]. International Journal of Rock Mechanics and Mining Science, 2002, 39(3) 355–366.
    [30] Adams F. D. An experimental contribution to the question of the depth of the zone of flow in the earth’s crust[J]. The Journal of Geology, 1912, 20(2):97-118
    [31] Gay N C. Fracture growth around openings in thick-walled cylinders of rock subjected to hydrostatic compression[J]. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, 1973, 10(3): 209-218.
    [32] Ewy R T, Cook N G W. Deformation and fracture around cylindrical openings in rock—I. Observations and analysis of deformations [J]. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, 1990, 27( 5): 387-407.
    [33] Ewy R T, Cook N G W. Deformation and fracture around cylindrical openings in rock—II. Initiation, growth and interaction of fractures[J]. 1990, 27(5): 409-427.
    [34] King L.V. On the limiting strength of rocks under conditions of stress existing in the earth’s interior[J]. The Journal of Geology, 1912, 20(2):119-138
    [35]陈顒、姚孝新、耿乃光,应力途径、岩石的强度和体积膨胀,中国科学,1979,11:1093~1100
    [36]李天斌,王兰生,卸荷应力状态下玄武岩变形破坏特征的试验研究.岩石力学与工程学报, 1993, 12(4), 321-327.
    [37]哈秋舲.岩石边坡工程与卸荷非线性岩石(体)力学[J].岩石力学与工程学报, 1997, 16(4): 386-391
    [38] Linkov A M. Rock burst and instability of Rock masses [J]. International Journal of Rock Mechanics and Mining Science, 1996, 33(7): 727-733.
    [39]李建林.卸荷岩体力学[M].北京:中国水利水电出版社, 2003
    [40]周维垣,杨若琼,剡公瑞.岩体边坡非连续非线性卸荷及流变分析[J].岩石力学与工程学报, 1997, 16(3): 210-216
    [41]何江达,谢红强,范景伟等.卸载岩体脆弹性模型在高边坡开挖分析中的应用[J].岩石力学与工程学报, 2004, 23(7): 1082-1086.
    [42]赵明阶,许锡宾,徐蓉.岩石在三轴加卸荷过程中的一种本构模型研究[J].岩石力学与工程学报, 2002, 21(5): 626-631.
    [43]王在泉,张黎明,贺俊征.岩石卸荷本构关系的BP神经网络模型[J].岩土力学, 2004, 25(suppl.): 119-121.
    [44] Swanson. S. R., Brown W. An Observation of Loading Path Independence of Fracture Rock[J]. Int . J. Rock Mech. Min. Sci, 1971, 8(3), 277-281.
    [45] Crouch S. L. A note on post-failure stress-strain path dependence in Norite[J]. Int . J. Rock Mech. Min. Sci, 1972, 9(2), 277-281.
    [46]吴玉山.应力路径对凝灰岩力学特性的影响[J].岩土工程学报, 1983, 2(1): 112-115
    [47]陈旦熹,戴冠一.三向应力状态下大理岩压缩变形试验研究[J].岩土力学, 1982, 1:
    [48]单辉祖.材料力学[M].北京:高等教育出版社, 2003, 237-240
    [49]郑颖人.岩土塑性力学原理[M].北京:中国建筑工业出版社, 2002, 41-51
    [50]俞茂宏.岩土类材料的统一强度理论及其应用[J].岩土工程学报, 1994, 14(2): 1-10.
    [51]李铀, Mathew Mauldon.岩土工程中的二个理论问题的探讨[J].岩石力学与工程学报,1999,18(2):227-229
    [52]李铀,李锶,白世伟.理想弹塑性厚壁圆筒弹塑性应力场再研究.岩石力学与工程学报. 2002, 21(6):897-899
    [53]俞茂宏,何丽南,宋凌宇.双剪强度理论及其推广[J].中国科学(A缉),1985,28(12):1113-1120
    [54]谢和平,鞠杨,黎立云.基于能量耗散与释放原理的岩石强度与整体破坏准则[J].岩石力学与工程学报,2005,24(17):3003-3010
    [55]谢和平,彭瑞东,周宏伟,等.基于断裂力学与损伤力学的岩石强度理论研究进展[J].自然科学进展, 2004, 14(10): 1086~1092
    [56]ТарасовБ.Г..Прочностные,упрогиеидеформационныесвойствагорныхпородкакфункцияструктурныхособенностейматериала[J].ФТПРПИ, 2002,(2): 30~39
    [57]石根华.一般自由面上多面节理生成、节理块切割与关键块搜寻方法[J].岩石力学与工程学报, 2006, 25(11): 2161-2170
    [58]焦玉勇,张秀丽,刘泉声,等.用不连续变形分析方法模拟岩石裂纹扩展[J].岩石力学与工程学报, 2007, 26(4): 682-691
    [59] R.E.古德曼.不连续岩体中的地质工程方法[M].北方交通大学隧道与地质教研室译.北京:中国铁道出版社, 1980: 78-101
    [60] Cundall P. A. A computer model for simulating progressive large scale movements in block systems. Proc. of the symp. of the int. soc. of rock mech. Nancy, France, 1971,Vol.1, No.II-8
    [61]胡波,王思敬,刘顺桂等.基于精细结构描述及数值试验的节理岩体参数确定与应用[J].岩石力学与工程学报, 2007, 26(12): 2458-2466
    [62]谷德振.岩体工程地质力学基础[M].北京:科学出版社, 1979: 120-153
    [63]孙广忠.岩体结构力学[M].北京:地质出版社, 1988:56-95
    [64]中华人民共和国行业标准编写组.工程岩体试验方法标准(GB/T50266-99).北京:中国计划出版社,1999:30-50.
    [65]中华人民共和国行业标准编写组.水利水电工程岩石试验规程(SL264-2001).北京:中国水利水电出版社,2001:33-48.
    [66] Chen C. S., Pan E. N., Amadei B. Determination of Deformability and Tensile Strength of Anisotropic rock using Brazilian Tests[J]. International Journal of Rock Mechanics and Mining Science, 1998, 35(1): 43-61.
    [67] Jonsén P. H?ggblad H.-?. Fracture energy based constitutive models for tensile fracture of metal powder compacts [J]. International Journal of Solids and Structures, 2007, 44: 6398-6411.
    [68]朱万成,唐春安,黄志平,逄铭璋.静态和动态载荷作用下岩石劈裂破坏模式的数值模拟[J].岩石力学与工程学报, 2005, 24(1): 1-7.
    [69] Cai M., Kaiser P. K., Y. Tasaka. et al. Generalized crack initiation and crack damage stress thresholds of brittle rock masses near underground excavations[J]. International Journal of Rock Mechanics and Mining Science, 2004, 41(5): 833-847.
    [70]肖树芳,杨淑碧.岩体力学[M].北京:地质出版社, 1986.
    [71]徐松林,吴文,王广印等.大理岩等围压三轴全过程研究I:三轴压缩全过程和峰前、峰后卸围压全过程实验[J].岩石力学与工程学报, 2001, 20(6): 763-767.
    [72]倪玉山,张琦.混凝土断裂尺寸效应的研究进展[J].力学进展,1997, 27(1): 97-105
    [73]郭幕孙,胡英,李静海.物质转化过程中的多尺度效应[M].黑龙江:黑龙江教育出版社,2002, 5-16
    [74] Wittmann F.H. Structure of concrete with respect to crack formation[C]. Fracture Mechanics of Concrete,London/New York:Elsevier Publishers, 1983:43-74
    [75] Neville A.M. Properties of concrete(Third Edition)[M]. London:Pitman Publishing Ltd. 1981
    [76]唐春安,朱万成.混凝土损伤与断裂—数值试验[M].北京:科学出版社,2002: 1-8
    [77] Budiansky B. Micromechanics[J]. Computers and Structures. 1983, 16(1-4):3-12
    [78]杨卫.固体破坏理论的若干问题[J].上海力学, 1998, 19(4): 289-296
    [79]刘宝琛,张家生,杜奇中,涂继飞.岩石抗压强度的尺寸效应[J].岩石力学与工程学报, 1998, 17(6):611-614
    [80]徐世烺,赵国藩.混凝土断裂韧度的概率模型研究[J].土木工程学报,1988, 21(4): 9-23
    [81]高峰,谢和平.脆性材料的分形统计强度理论[J].固体力学学报,1996, 17(3): 239-245
    [82]钱觉时,黄煜镔.混凝土强度尺寸效应的研究进展[J].混凝土与水泥制品, 2003, 3: 1-5
    [83]黄煜镔.混凝土脆性与力学参数的尺寸效应及其相互关系的研究[D].重庆:重庆大学, 2002:8-9
    [84]王文标,黄晨光,赵红平,等(译).结构破坏的尺度律[J].力学进展, 1999, 29(3): 383-433
    [85] Carpinteri A. Ferro G. Size effects on tensile fracture properties:Aunified explanation based on disorder and fractality of concrete microstructure[J]. Materials and structures.1994, (27): 563-571
    [86] Barenblatt G.I. Mathematical theory of equilibrium cracks in brittle fracture[J]. Advances in Applied Mechanics, 1962, 7: 55-129
    [87] Hillerborg A., Modeer M., Petersson P.E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements[J]. Cement Concrete Reseach, 1976, 6: 773-782
    [88] Gustafsson P.J., Hillerborg A. Improvements in concrete design achieved through the application of fracture mechanics, In application of fracture mechanics to cementitious composites[C]. eds. S.P.Shah, Northwestern University, 1984.
    [89] Cervenka V. Pukl R. SBETA analysis of size effect in concrete structure[C]. In: Mihashi H, Okamura H, Bazant ZP eds. Size effect in Concrete Structure, London: E&NF Spon. 1994, 323-333
    [90] Ozbolt J, Bazant ZP. Numerical smeared fracture analysis: Nonlocal microcrack interaction approach[J]. Int. J. Numer. Methods Eng., 1996, 39:635-661
    [91] Bazant ZP, Belytschko TB, Chang TP. Continuum model for strain softening[J]. Journal of Engineering mechanics, 1984, 110(12):1666-1692
    [92] Kachanov M. Simple technique of stress analysis in elastic solids with many cracks[J]. Int. J. Fracture, 1985, 28: 11-19
    [93] Kachanov M. Elastic solids with many cracks: a simple method of analysis[J]. Int. J Solids Structure, 1987, 23: 23-43
    [94] Bazant ZP, Size effect in blunt fracture: concrete, rock, metal[J]. J. Eng. Mech., 1984, 110: 518-535
    [95] Feenstra PH. A composite plasticity model for concrete[J]. International Journal of Solids and Sturctures, 1996, 33: 707-730
    [96] Ulfkjaer J P, Krenk S and Brincker R. Analytical model for fictitious crack propagation in concrete beams[J]. Journal of Engineering Mechanics, 1995, 121(1): 7-15
    [97] Rokugo K., Uchida Y., Katoh H., and Koyanagi W. Fracture mechanics approach to evaluation of flexural strength of concrete[J]. ACI Materials Journal, 1995, 92(5): 561-566
    [98]张彤,孟庆元,王富耻.无序材料微裂缝分形几何与尺寸效应的微观机理[J].材料研究学报,2004,18(5):549-555
    [99]张彤,孟庆元.脆性材料微裂缝无序度与尺寸效应[J].材料科学与工艺,2004,12(3):312-316
    [100]戚承志,钱七虎.岩体构造层次及其力学行为[J].世界地震工程,2004,20(2):35-38
    [101] Tang C A. Numerical studies of the influence of microstructure on rock failure in uniaxial compression, part I: effect of heterogeneity [J]. Int. J. Rock Mech. Min. Sci.,2000,37(4):555–569.
    [102]尤明庆,邹友峰.关于岩石非均质性与强度尺寸效应的讨论[J].岩石力学与工程学报,2000,19(3):391-395
    [103]吕兆兴,冯增朝,赵阳升.岩石的非均质性对其材料强度尺寸效应的影响[J].煤炭学报,2007, 32(9):917-920
    [104]朱道建,杨林德,蔡永昌.柱状节理岩体各向异性特征及尺寸效应研究[J].岩石力学与工程学报,2009,28(7):1405-1414
    [105]倪红梅,杨圣奇.单轴压缩条件下岩石材料尺寸效应的数值模拟[J].煤田地质与勘探,2005, 33(5):
    [106]潘一山,魏建明.岩石材料应变软化尺寸效应的实验和理论研究[J].岩石力学与工程学报, 2002, 21(2): 215~218.
    [107]王学滨,潘一山,宋维源.岩石试件尺寸效应的塑性剪切应变梯度模型[J]岩土工程学报, 2001, 23(6): 711~713.
    [108]梁正召,唐春安,张娟霞等.岩石三维破坏数值模型及形状效应的模拟研究[J].岩土力学,2007,28(4):
    [109]山口梅太郎,西松裕一.岩石力学基础[M].黄世衡译.北京:冶金工业出版社, 1982, 104-105
    [110]冯增朝,赵阳升.岩体裂隙尺度对其变形与破坏的控制作用[J].岩石力学与工程学报, 2008, 27(1): 78-83.
    [111]杨根兰,黄润秋,蔡国军等.岩石破坏前后曲线分类及脆-延转换围压研究——蚀变岩常规三轴压缩试验I[J].岩土力学, 2008, 29(10): 2759-2763.
    [112] Song G., Stankus J. Control mechanism of a tensioned bolt system in the laminated roof with a large horizontal stress[C]. 16th Int. Conf. on Ground Control in Mining, Morgantown, West Virginia, 1997.
    [113] Siddall R. G., Gale W. J. Strata Control—A New Science for an Old Problem [C]. The Annual Joint Meeting of the Institution of Mining Engineers and the Institution of Mining and metallurgy at The Majestic Hotel. Harrogate, 1992.
    [114] Matthews S M. Horizontal stress control in underground coal mines[C]. 11th International Conference on Ground Control in Mining, The University of Wollongong, N.S.W., 1992.
    [115]刘泉声,张华,林涛.煤矿深部岩巷围岩稳定与支护对策[J].岩石力学与工程学报,2004,23(21):3 732–3 737.
    [116]寥椿庭.金川矿区应力测量与构造应力场[M].北京:地质出版社, 1985.
    [117]张百红,韩立军,韩贵雷,王延宁.深部三维地应力实测与巷道稳定性研究[J].岩土力学, 2008, 29(9): 2547-2550.
    [118]朱焕春,陶振宇.地应力研究新进展[J].武汉水利电力大学学报, 1994, 27(5): 542-547.
    [119]朱焕春,陶振宇.地形地貌与地应力分布的初步分析[J].水利水电技术, 1994(1): 29-33.
    [120]刘红岗.岩石卸荷破坏特性的三轴试验研究[博士论文].徐州:中国矿业大学建筑工程学院,2007.
    [121] Holzhausen G. R., Johnson A. M. Analyses of longitudinal splitting of uniaxially compressed rock cylinders,International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, 1979,16(3):163-177
    [122] Santarelli F J, Brown E T. Failure of three sedimentary rocks in triaxial and hollow cylinder compression tests[J]. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, 1989, 26(5): 401-413.
    [123] Bêsuelle P., Desrues J., Raynaud S. Experimental characterization of the localization phenomenon inside a Vosges sandstone in a triaxial cell[J]. International Journal of Rock Mechanics and Mining Science, 2000, 37(8): 1223-1237.
    [124]尤明庆,苏承东,缑勇.大理岩孔道试样的强度及变形特性的试验研究[J].岩石力学与工程学报, 2007, 26(12): 2420-2429.
    [125] Wawersik W.R. and Fairhurst C. A study of brittle rock fracture in laboratory compression experiments[J]. Int. J. Rock Mech. Mining Sci. & Geomechanics Abstracts, 1989, 26(5): 401-413.
    [126] Kranz. R.L. Microcracks in rocks: a review[J]. Tectonophysics, 1983, 100(1-3): 449-480.
    [127]朱维申,李术才,白世伟,刘泉声.施工过程力学原理的若干发展和工程实例分析[J].岩石力学与工程学报, 2003, 22(10):1586-1591.
    [128]陶振宇.试论岩石力学的最新进展[J].力学进展, 1992, 22(2): 161-172.
    [129]尤明庆.岩石试样的强度及变形破坏过程[M].北京:地质出版社,2000
    [130]张后全,贺永年,韩立军等.岩石微裂纹演化规律有限元统计分析[J].中国矿业大学学报,2007, 36(2): 166-171
    [131]张后全,唐春安,贺永年等.岩石微破裂进程的自组织临界特征探讨[J].西北地震学报, 2006, 28(1): 1-5
    [132] Zhang H.Q. He Y.N., et al. Microfracturing characteristics in brittle material containing structural defects under biaxial loading. Computational Materials Science, 2009, 46(3): 682-686
    [133]张后全,贺永年,刘志强等.泥质细砂岩材料破坏与强度衰减研究[J].中国矿业大学学报, 2008, 37(1): 129-133.
    [134]徐秉业,陈森灿.塑性理论简明教程[M].北京:清华大学出版社,1981, 295-334
    [135]宋振骐.实用矿山压力控制[M].徐州:中国矿业大学出版社,1988:40-58.
    [136]高磊.矿山岩体力学[M].北京:冶金工业出版社,1979,93-130.
    [137]赵兴东,李元辉,袁瑞甫,杨天鸿,张建勇,刘建坡.基于声发射定位的岩石裂纹动态演化过程研究[J].岩石力学与工程学报, 2007, 26(5): 944-950.
    [138]刘秉正,彭建华.非线性动力学[M] .北京:高教出版社, 2004.
    [139] Hoek E, Brown E. Empirical strength criterion for rock masses[J]. Journal of the Geotechnical Engineering Division. 1980, 106(GT9): 1013–35.
    [140] Hoek E, Brown E. Practical estimates of rock mass strength[J]. Int. J. Rock Mech Min. Sci. 1997, 34(8): 1165–86.
    [141] Mogi K. Effect of the intermediate principal stress on rock failure[J]. J Geophys Res 1967, 72: 5117–5131.
    [142] Mogi K. Fracture and flow of rocks under high triaxial compression[J]. J Geophys Res 1971, 76: 1255–1269.
    [143] Lade P. Elasto-plastic stress-strain theory for cohesionless soil with curved yield surfaces[J]. Int J Solids Struct. 1977, 13: 1019–1035.
    [144] Lade P, Duncan J. Elasto-plastic stress-strain theory for cohesionless soil[J]. Journal of the Geotechnical Engineering Division, 1975,101:1037–53.
    [145] Wiebols G, Cook N. An energy criterion for the strength of rock in polyaxial compression[J]. Int J Rock Mech Min Sci 1968,5: 529–549.
    [146] von Mises R, Mechanik der festen K?rper im plastisch deformablen Zustand, Nachrichten von der K?niglichen Gesellschaft der wissenschaften zu G?ettinger, Mathematisch-physikalische Klasse, 1913:582–592.
    [147] Drucker D, Prager W. Soil mechanics and plastic analysis or limit design[J]. Q Appl. Math. 1952,10: 157–165.
    [148] Murrell SA. A criterion for brittle fracture of rocks and concrete der triaxial stress and the effect of pore pressure on the criterion under confining pressure, Rock Deformation, Geol. Soc. Am. Mem., 1963,79:245–274.
    [149]俞茂宏.双剪理论及其应用[M].北京:科学出版社,1998.
    [150]俞茂宏.强度理论百年总结[J].力学进展,2004,34(4):529-560
    [151]许东俊,幸志坚,李小春,章光等. RT3型岩石高压真三轴仪的研制[J].岩土力学,1990,11(2):1-14
    [152]李铀.塑性力学的一种新方法及在应力强度因子研究中的应用[J].岩土力学,1992,13(2~3):128-134
    [153]昝月稳,俞茂宏,王思敬.岩石的非线性统一强度准则[J].岩石力学与工程学报, 2002, 21(10): 1435-1441.
    [154]尤明庆.统一强度理论的试验数据拟合及评价[J].岩石力学与工程学报, 2008, 27(11): 2193-2204.
    [155]周筑宝.最小耗能原理及其应用[M].北京:科学出版社, 2001.
    [156]林鹏.含裂纹与孔洞缺陷介质的脆性破坏行为[D].沈阳:东北大学,2002
    [157]苗金丽,何满潮,李德建,曾凡江,张茜.花岗岩应变岩爆声发射特征及微观断裂机制[J].岩石力学与工程学报, 2009, 28(8): 1593-1603.
    [158] Hudson,J. A., Harrison J.P. Rock mechanics interactions and rock engineering systems[J]. Engineering Rock Mechanics, 1997, 223-237.
    [159] Griffith, A. A., The theory of rupture. Proceeding of 1st International congress applied Mechanics, 1st Delft, 1924, 55-63.
    [160] Griffith, A. A., The phenomena of rupture and flow in solids. Phil.Trans.Royal Soc. London, Series A, 1921, 163-197.
    [161]周维垣.高等岩石力学[M].北京:水利水电出版社,1990, 362-403.
    [162]华东水利学院.岩石力学[M].北京:水利电力出版社,1986, 49-56.
    [163]任建喜,葛修润,蒲毅彬,马巍,朱元林.岩石卸荷损伤演化机理CT实时分析初探[J].岩石力学与工程学报, 2000, 19(6): 697-701.
    [164]任建喜,葛修润,蒲毅彬.节理岩石卸载损伤破坏过程CT实时检测[J].岩土力学,2002, 23(5): 575-578.
    [165] Zhang H.Q., Zhao Z.Y., Tang C.A., Song L. Numerical Study on Shear Behavior of Intermittent Rock Joints with Different Geometrical Parameters[J]. Int. J. Rock. Mech. Min. Sci., 2006, 43(5): 802-816
    [166]章梦涛.冲击地压失稳理论与数值模拟计算[J].岩石力学与工程学报, 1987, 6(3): 197-204.
    [167] Cook N. G. W., Hoek. E., Pretorius J. P. G., et al. Rock mechanics applied to the study of rock burst[J]. Journal of the South African Institute of Mining and Metallurgy, 1966, 435-528.
    [168] Jaeger J.C. and Cook N.G. W. Fundamentals of Rock Mechanics, London: Chapman & Hall, 1979: 593-610
    [169]蔡美峰.岩石力学与工程[M].北京:科学出版社,2002,57-60.
    [170]潘岳,王志强.岩体动力失稳的功、能增量——突变理论研究方法[J].岩石力学与工程学报, 2004, 23(9): 1433-1438.
    [171]潘岳,王志强,吴敏应.岩体动力失稳终止点、能量释放量解析解与图解[J].岩土力学,2006, 27(11): 1915-1921.
    [172] Maury V. Observations, researches and recent results about failure mechanisms around single galleries[C]. English Version of Proc. Sixth Int. Congr. on Rock Mech., Montreal, Balkema, Rotterdam, 1987, 1119-1128.
    [173] Cai M. Influence of intermediate principal stress on rock fracturing and strengthnear excavation boundaries—Insight from numerical modeling[J]. Int. J. Rock. Mech. Min. Sci., 2008, 45(5): 763-772.
    [174] Read RS, Martin CD. Technical summary of AECL’s Mine-by experiment, phase 1: excavation response. AECL; 1996. p. 169.
    [175] Fulvio Tonon. Sequential excavation, NATM and ADECO: What they have in common and how they differ[J]. Tunnelling and Underground Space Technology, 2010, 25(3): 245-265.
    [176] Lunardi, P. Design and Construction of Tunnels[M]. Springer, 2008.
    [177] Struthers M A, Turner M H, McNabb K and Jenkins P A. Rock Mechanics Design and Practice for Squeezing Ground and High Stress Conditions at Perseverance Mine[C]. in Proceedings Massmin of The Australasian Institute of Mining and Metalurgy 2000, pp 755-764.
    [178]贺永年,张后全.深部围岩分区破裂化理论和实践的讨论[J].岩石力学与工程学报, 2008, 27(11): 2369-2375.
    [179] Lajtai E.Z.,Carter B.J. and Duncan E.J.S. Mapping the state of fracture around cavities. Engineering Geology,1991,31: 277-289.
    [180]李晓静.深埋洞室劈裂破坏形成机理的试验和理论研究[D].济南:山东大学,2007:88-105.
    [181]王崇革,宋振骐,石永奎,郑文华.近水平煤层开采上覆岩层运动与沉陷规律相关研究[J].岩土力学, 2004, 25(8):1343-1346.
    [182] Hoek E., Brown E. T. Underground Excavations in Rock[M]. London: The Institution of Ming and Metallurgy, 1980
    [183] Lajtai E. Z., Lajtai V. N. The collapse of cavities[J]. Int. J. Rock, Min. Sci. & Geomech. Abst. 1975, 12(1): 81~86
    [184] Carter B. J., Lajtai E. Z. Stress and time-dependent fracture around cavities in physical models of Potash salt rock[C]. In Hudson J. A. ed. Proc. ISRM Symposium: Eurock’92, Chester, Rock characterization. London: Imperial College, 1992, 269~274
    [185] Martin C. D. Seventeenth Canadian geotechnical colloquium: the effect of cohesion loss and stress path on brittle rock strength [J]. Can. Geotech. J. 1997, 34(5): 159~168
    [186]张晓春,杨挺青,缪协兴.岩石裂纹演化及其力学特性的研究进展[J].力学进展,1999, 29(1): 97~103
    [187]傅宇方,黄明利,任凤玉等.不同围压条件下孔壁周边裂纹演化的数值模拟分析[J].岩石力学与工程学报, 2000, 19(5): 577~583.
    [188] URL Puzzle answers, Why does it crack [J]. ISRM News Journal, 1993, 1(2): 68~71.
    [189]韩绪山,张景考.声波扫描成像在灾害防治及环境保护中的应用[J].中国煤田地质, 2003, 15(2):59-62.
    [190] Zhang H.Q., Zhao D.S., Tang C. A., et al. Numerical Study on Fracture in Rock Surrounding a Circular Tunnel under Different Confining Pressure, In: Ohnishi Y, Aoki K, eds. Contribution of Rock Mechanics to the New Century[C]. Rotterdam: Millpress, 2004. 537-540
    [191]黄明利,唐春安.非均匀因素对I型裂纹扩展、相互作用影响的数值分析[J].岩石力学与工程学报,2002, 21(1): 1111~1114
    [192]唐春安,刘红元.非均匀性对岩石介质中裂纹扩展模式的影响[J].地球物理学报,2000, 43(1): 116~119
    [193] Brady B H G, Brown E T. Rock Mechanics for Underground Mining[M]. London: Chapama & Hall Press, 1993
    [194]КУРЛЕНЯМ.В.,ОПАРИНВ.Н.Проблемынелинейнойгеомеханики[J].Ч. I.ФТПРПИ,1999,(3):12–23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700