用户名: 密码: 验证码:
空气源热泵相变蓄能除霜系统动态特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空气源热泵(Air Source Heat Pump,ASHP)在低温高湿环境运行时,室外换热器结霜会引起热泵供热性能下降,因此需要周期性除霜来保证其正常运行。目前常用的逆循环除霜,由于除霜时缺少低位热源常导致除霜综合性能差,系统不稳定,可靠性差等问题。针对这一问题,提出了基于相变蓄能技术的空气源热泵蓄能除霜系统以提高除霜时的稳定性和可靠性。本文研究了该新系统的动态运行特性,主要研究内容如下:
     研制了空气源热泵相变蓄能除霜系统关键部件——双螺旋盘管相变蓄热器,搭建了空气源热泵相变蓄能除霜系统实验台,开展了空气源热泵相变蓄能除霜实验研究,探索了新系统的多种蓄热模式、供热模式和除霜模式的可行性,并进行了选优工作。实验结果表明:相变蓄热器具有很高的蓄热效率,串联蓄热模式是目前最佳的蓄热模式,运行稳定可靠;在串联供热模式、连通供热模式和非连通供热模式中,串联供热模式的系统性能系数最高;在串联除霜,单独除霜、并联除霜和传统室内机单独除霜四种除霜模式中,蓄热器单独除霜除霜速度最快,压缩机吸气压力最高,并且系统由除霜转为供热时,室内机吹出空气温度最高,几乎没有影响室内的舒适度。
     建立了两侧均有相变发生的双螺旋盘管相变蓄热器的动态数学模型。基于能量守恒的原则,推导出当量对流换热系数,避免了数值求解时邻近螺旋盘管的不规则形状微元的大量网格划分。模拟分析了相变蓄热器的蓄热和释热特性,发现该相变蓄热器具有较快的蓄放热速度,可以满足除霜的要求。
     研究分析了空气源热泵蓄能除霜系统各运行阶段的特点和机理,建立了空气源热泵相变蓄能除霜系统部件在各个运行阶段的数学模型,重点是除霜工况下的室外机除霜模型、供热工况下的室外机结霜模型;通过质量守恒、动量守恒和能量守恒将部件模型有机结合,建立了空气源热泵相变蓄能除霜系统的动态仿真模型,涵盖系统结霜模型、系统释热除霜动态模型和系统蓄热兼供热动态模型。接着,选取典型的反映系统特性的实验参数对动态仿真模型进行了验证,结果表明模型能很好地反映系统各阶段的物理过程。
     基于验证的系统仿真模型,研究了相变蓄能除霜系统除霜过程中室外机翅片管内制冷剂温度和干度沿管长分布的变化、翅片管表面温度分布变化及制冷剂在整系统内的迁移规律等系统的动态特性。发现除霜过程冷凝压力和室外机表面温度先升高后降低、高低压侧的制冷剂质量呈现出类似正弦和余弦的变化。
     基于验证的系统仿真模型,研究了毛细管长度、相变蓄热器换热面积、气液分离器容积、室外空气的温度对除霜的影响。结果表明:毛细管的长度越短,除霜速度越快;增大相变蓄热器换热面积可降低气液分离器内液面高度,减少了压缩机湿压缩的可能性;空气温度对除霜后期室外盘管表面对流换热损失影响较大。
     基于验证的系统仿真模型,研究了除霜过程中各项热量损失值随时间的变化及分配、除霜能量来源及比例。结果表明除霜后期(当干表面积百分比达到70%以上时)室外机和室外空气自然对流所占比例较大,相变蓄热器为除霜提供了大部分能量,发挥了低位热源作用。
     本文的研究工作,为空气源热泵在我国夏热冬冷地区的推广和高效运行提供了重要的理论基础和技术储备,也为我国建筑节能工作提供具有重要应用价值的技术支持。
When air source heat pumps (ASHPs) operate for space heating in the condition with a low ambient air temperature and high humidity in winter, frost formed on the tube surface of its outdoor coil becomes problematic, because it leads to the ASHP’s performance degrading and poor reliabilty, even the shutdown of the unit. So periodic defrosting was needed to help the unit return to its rated performance. However, the existing and most widely used standard reverse-cycle hot gas defrosting method was poorly reliable because it may cause shutting down due to low-pressure cut-off and wet compression may take place, possibly damaging compressor. Study shows that insufficient heat available during defrosting is currently a fundamental problem for present reverse cycle defrosting method. In order to solve this problem, a novel PCM (phase change material) based reverse-cycle hot gas defrosting method for ASHPs was proposed. This paper studied the dynamic characteristics of this novel system and the results and contents are as following:
     As a key component of the PCM based ASHP defrosting system, PCM based double spiral coil heat exchanger was developed. Based on the PCM basd reverse-cycle hot gas defrosting experiment setup, experiments were performed to study three energy storage modes, three heat supply modes and four defrosting modes, respectively, and then selected the best mode among the feasible modes. Experiment results indicated that heat could be stored in PCM heat exchanger efficiently and the series-wound energy storage mode was the best operation mode with high reliability and stability. Series wound heating mode had the highest COP among three heat supply operating modes. Among the series wound defrosting, sole defrosting, parallel defrosting and traditional defrosting method, solo defrosting had the most fast defrosting speed and the compressor had highest suction pressure. Furthermore,when the system restarts for heat supply, the air temperature out of the indoor coil was the highest and the indoor environment was almost not affected. Mathematical model of the PCM-HE (phase change material heat exchanger), in both side of which phase change took place, was developed on the basis of simplification in geometry and heat transfer mechanism. When solving the irregular grid close to the pipe in numerical way, the equivalent heat transfer coefficient based on the law of energy was used to void meshing a large number of grids.The dynamic characteristics of the PCM-HE in heat storage and energy release process were studied and found that energy could be stored into or released efficiently from the PCM-HE and could satisfy the need of defrosting.
     A complete opration process for the PCM based ASHP was analysed. Based on the analyzation of the characteristics and heat transfer mechanism of every operation stage, their corresponding mathematical models of each component were developed, especially the models of outdoor coil defrosting and frosting; Based on the law of mass, the law of energy and law of momentum, the dynamic mathematical model for the PCM based ASHP defrosting system were developed by connecting all those developed components’models, mainly composed of the system’s frosting model, system’s defrosting model and system’s energy storage and heat supply dynamic model. Then, the developed dynamic model of the system was verified by comparing some typical parameters of the simulation results and the experimental results of operating modes in defrositng stage and energy storage and heat supply stage and it could be confirmed that the mathematicl model of the sytem could reflect the physical process in every stage of the system.
     Based on the dynamic model verified, the PCM based ASHP defrosting system’s dynamic characteristics, such as the variation of refirerant’s temperature and dry degree along the pipe, temperature field on the outdoor coil and the transfer of refrigerant in the system, were studied. It was found that the condenser pressure and the outdoor coil temperature increased first and then decreased later. The mass of refrigerant in the low and high pressue side had the changing trend similar to sine wave and cosine wave.
     Based on the dynamic model verified, some influencing factors to the system, such as the length of the capillary tube, the heat transfer area of the PCM-HE, the volume of the gas and liquid separator and the air temperature, were studied and it could be confirmed that the shorter length of the capillary tube, the faster defrosting speed the system had. Enlarging the heat transfer area of the PCM-HE can speed up slightly the evaporation of the water on the out coil in the end of defrosting, but could lower the liquid level in the gas and liquid separator, decreasing the potential of wet compression. By adding the PCM-HE to the ASHP, the volume of the gas and liquid separator affected the defrosting speed no longer. The air temperature affected geeatly the heat loss caused by the natural convection in the end of defrosting.
     Based on the dynamic model verified, the heat consumption during defrosting was analysed. By analyzing the heat consumption and loss in defrosting process, it was found that the main heat loss was caused by natural convection between the outdoor coil and the outdoor air, and took place when the the dry area percentage was more than 70%, so how to reduce this part of heat loss by choosing effective control strategy should be studied further. PCM-HE provided a great percentage of energy for system defrosting and played a role of heat souce.
     The study of project will provide therocical foundation and thechnical storage for the ASHPs’wide use and highly efficient operation in hot-summer and cold-winter zone in our country, and also provide thechonoly support with important significance for our country’s building energy saving.
引文
1中华人民共和国国家统计局.中国统计年鉴.北京:中国统计出版社. 2009:135-135
    2张建中,龚延风.空气源热泵冷热水机组在南京的应用.现代空调. 2001, 3 (3): 141-156
    3钟婷,龙惟定.风冷热泵在若干城市制热运行的调研与分析. 2002年全国暖通空调制冷学术年会论文集.珠海,2002: 410-413
    4姜益强,姚杨,马最良.空气源热泵结霜除霜损失系数的计算.暖通空调. 2000, 30 (5): 24-26
    5黄东,袁秀玲.风冷热泵冷热水机组热气旁通除霜与逆循环除霜性能对比.西安交通大学学报. 2006, 40 (5): 539-543
    6 V.D.Baxter, J.C.Moyers. Field-measured Cycling, Frost and Defrosting Losses for a High Efficiency Air Source Heat Pump. ASHRAE Trans. 1985, 91 (2): 537-554
    7郭宪民,陈轶光,汪伟华等.室外环境参数对空气源热泵翅片管蒸发器动态结霜特性的影响.制冷学报. 2006, 27 (6): 29-33
    8 K. S., M. K., B. A. Voiding HP Evaporator Frost Through the Use of Desiccants. ASME-JSES-JSME International Solar Energy Conference. 1995, Part 1: 25-29
    9 S.W.Wang, Z.Y.Liu. A New Method for Preventing HP from Frosting. Renewable Energy. 2005, 30 (5): 753-761
    10马最良,姚杨,姜益强.暖通空调热泵技术.北京:中国建筑工业出版社. 2008:109-110
    11 J.-S. Byun, J. Lee, C.-D. Jeon. Frost Retardation of an Air-source Heat Pump by the Hot Gas Bypass Method. International Journal of Refrigeration. 2008, 31 (2): 328-334
    12王洋,江辉民,马最良.增大蒸发器面积对延缓空气源热泵冷热水机组结霜的试验与分析.暖通空调. 2006, 36 (7): 83-87
    13谷波,田树波,孙涛.风冷热泵机组的结霜特性研究.暖通空调. 2001, 31 (1): 81-82
    14费千,王宝军.高疏水性涂层在空气冷却器中的应用研究.机电设备. 1997,(6): 12-13
    15王贤林,蒋绍坚,艾元方.疏水表面用于延缓热泵结霜及加快除霜的探讨.节能技术. 2004, (5): 37-38
    16 Ryu.S.G., Lee.K.S. A Study on the Behavior of Brost Formation According to Surface Characteristics in the Fin-tube Heat Exchanger. Air-Conditioning and Refrigerating. 1999, 11 (3): 377-383
    17 S.Jhee, K. S. Lee, W. S. Kim. Effect of Surface Treatments on the Frosting/Defrosting Behavior of a Fin-tube Heat Exchanger. International Journal of Refrigeration. 2002, 25 (8): 1047-1053
    18 T. D. S.M.Sami. Mass and Heat Transfer During Frost Growth. ASHRAE Trans. 1989, 95 (1): 158-164
    19 S.P.Oskarasson, K.I.Krakow. Evaporator Models for Operation with Dry, Wet, and Frosted Finned Surface. ASHRAE Trans. 1990, 96 (1): 373-380
    20 K. T. P. e. D.L.O’Neal. Refrigeration System Dynamics During the Reverse Cycle Defrost. ASHRAE Trans. 1989, 95 (2): 689-698
    21 K. I. Krakow, L.Yan, S.Lin. A Model of Hot-gas Defrosting of Evaporators-Part 1:Heat and Mass Transfer Theory. ASHRAE Trans. 1992, 98 (1): 451-461
    22 K. I. Krakow, L.Yan, S.Lin. A Model of Hot-gas Defrosting of Evaporators-Part 2:Heat and Mass Transfer Theory. ASHRAE Trans. 1992, 98 (1): 462-474
    23黄虎.风冷热泵热水机组动态特性与结霜除霜过程的研究.西安交通大学博士学位论文. 1999:38-47
    24刘志强.空气源热泵机组动态特性及性能改进研究.湖南大学博士学位论文. 2003:14-34
    25李九如,韩志涛,姚杨等.基于实验参数的空气源热泵除霜滞留表面水蒸发模型.上海交通大学学报. 2008, 42 (6): 989-992
    26 D.H.Niderer. Frost and Defrosting Effects on Coil Heat Transfer. ASHRAE Trans. 1976, 82 (1): 467-473
    27 W. F. Stoeker, J. J. Lux. Energy Consideration in Hot-Gas Defrosting of Industrial Refrigeration Coils. ASHRAE Trans. 1983, 89 (2): 549-573
    28 N. K.Al-Mutawa, S.A.Sherif. Determination of Coil Defrosting Loads: Part 1: Experimental Facility Description. ASHRAE Trans. 1998, 104 (1): 268-288
    29 N. K.Al-Mutawa, S.A.Sherif. Determination of Coil Defrosting Loads: Part 3: Testing Procedures and Data Reduction. ASHRAE Trans. 1998, 104 (1): 303-312
    30 N. K.Al-Mutawa, S.A.Sherif. Determination of Coil Defrosting Loads: Part 4: Refrigeration Defrost Cycle Dynamics. ASHRAE Trans. 1998, 104 (1): 313-343
    31 N. K.Al-Mutawa, S.A.Sherif. Determination of Coil Defrosting Loads: Part 5: Analysis of Loads. ASHRAE Trans. 1998, 104 (1): 344-355
    32 N. K.Al-Mutawa, S.A.Sherif. Determination of Coil Defrosting Loads: Part 2: Instrumentation and Data-acquisition Systems. ASHRAE Trans. 1998, 104 (1): 289-302
    33 R.A.Coley. The Cost of Frost. ASHRAE Journal. 1983, (4): 29-31
    34 R.A.Coley. Refrigeration Loads in a Freezer due to Hot Gas Defrost and Their Associated Costs. ASHRAE Trans. 1989, 95 (1): 1149-1154
    35陈旭峰,任乐,袁秀玲.能量分析法在空气源热泵除霜中的应用.制冷空调与电力机械. 2003, 24 (2): 11-14
    36任乐,陈旭峻,袁秀玲.关于风冷热泵除霜问题的研究.制冷. 2003, 22 (3): 13-16
    37罗鸣,谢军龙,沈国民.风冷热泵机组中的热气除霜方法.节能. 2003, (5):
    12-14
    38韩志涛.空气源热泵常规除霜与相变蓄能除霜特性实验研究.哈尔滨工业大学博士学位论文. 2007:121-130
    39 D. L. O’Neal, K. Peterson. A Comparison of Orifice and TXV Control Characteristics during the Reverse-cycle Defrost. ASHRAE Trans. 1990, 96 ( 1): 337-342
    40 D. L. O’Neal, K. Peterson. Effect of Short-Tube Orifice Size on the Performance of an Air Source Heat Pump during the Reverse-Cycle Defrost. Int. J. of Refrigeration. 1991, 14 (1): 52-57
    41吴贵森.热泵除霜特性分析.福建能源开发与节约. 2002, (1): 17-19
    42史剑春.两种不同节流系统对融霜的影响.流体机械. 1994, 22 (7): 60-63
    43黄东,袁秀玲,陈蕴光.节流机构对风冷热泵冷热水机组逆循环除霜时间的影响.西安交通大学学报. 2003, 37 (5): 512-518
    44龚鹰.住宅用热泵中的新式融霜系统.暖通空调. 1991, 21 (3): 23-26
    45仲华,唐双波,陈芝久.轿车空调蒸发器除霜实验研究.流体机械. 2001, 29 (1): 44-46
    46石文星,李先庭,邵双全.房间空调器热气旁通法除霜分析及实验研究.制冷学报. 2000, (2): 29-35
    47 M. G. Y. Ding Y.j., Chai Q.H. and Jing Y Experiment Investigation of Reverse Cycle Defrosting Methods on Air Source Heat Pump with TXV as the Throttle Regulator. 2001, (27): 671-678
    48 D. L. O. N. D. W. Nutter , W. Vance. Impact of the Suction Line Accumulator on the Performance of an Air-source Heat Pump with a Scroll Compressor. ASHRAE Trans. 1996, 102 (1): 284-290
    49唐黎明,董志明.热泵机组充补偿对化霜的改进.制冷空调与电力机械. 2003, 24 (97): 19-22
    50陈汝东,许东晟.制冷装置除霜方法的研究同济大学学报. 1998, 26 (5): 566-569
    51 E. Kuwahara, T. Kawamura, M.Tamazaki. Shortening the Defrost Time on a Heat-pump Air Conditioner. ASHRAE Trans. 1989, 95 (2): 20-29
    52 J. S. S. N.K Anand, D.L.O’Neal. Effect of Outdoor Coil Fan Pre-start on Pressure Transients during the Reverse Cycle Defrost of a Heat Pump. ASHRAE Trans. 1989, 95 (2): 699-704
    53黄东,袁秀玲,张波.风机提前启动对风冷热泵冷热水机组除霜的影响.西安交通大学学报. 2004, 38 (5): 448-451
    54 V. Payne, D.L.O'Neal. Examination of Alternate Defrost Strategies for an Air Source Heat Pump: Multi-stage Defrost. American Society of echanical Engineers, Advance Energy systems Division (publication) AES,recent research in heat pump design,Analysis,and Application. 1992, 28: 71-77
    55 D.L.O’Neal, K.T.Peterson. Refrigeration System Dynamics During the Reverse Cycle Defrost. ASHRAE Trans. 1989, 95 (2): 689-698
    56 K. I. Krakow, S.Lin, L.Yan. An Idealized Model of Reversed-cycle Hot Gas Defrosting-Part 1:Theory. ASHRAE Trans. 1993, 99 (2): 317-328
    57 K. I. Krakow, S.Lin, L.Yan. An Idealized Model of Reversed-cycle Hot Gas Defrosting-Part2: Experimtenal Analysis and Validation. ASHRAE Trans. 1993, 99 (2): 329-338
    58 V. Payne, D.L.O’Neal. Defrost Cycle Performance for an Air Source Heat Pump with a Scroll and a Reciprocating Compressor. Int. J. of Refri. 1995, 18 (2): 107-112
    59黄虎,李志浩,虞维平.风冷热泵冷热水机组除霜过程仿真.东南大学学报. 2001, 31 (1): 52-56
    60刘志强,汤广发,赵福云.风冷热泵除霜过程动态特性模拟和实验研究.制冷学报. 2003, (3): 1-5
    61姬长发,黄东,袁秀玲.风冷热泵冷热水机组结霜与除霜性能的实验研究.西安交通大学学报. 2005, 39 (5): 480-484
    62韩志涛,姚杨,马最良.空气源热泵误除霜特性的实验研究.暖通空调. 2006, 36 (2): 15-19
    63 P. E. R.L.Eckman. Heat Pump Defrost Controls: a Review of Past, Present, and Future Technology. ASHRAE Trans. 1987, 93 (1): 1152-1156
    64雷江杭,丁小江.热泵空调器除霜分析.制冷. 1999, 18 (4): 26-28
    65陈汝东,许东晟.风冷热泵空调器除霜控制的研究.流体机械. 1999, 27 (2): 55-57
    66杨俊华,吴伯谦.风冷热泵除霜方法及其控制.制冷与空调. 2006, 20 (2): 98-101
    67王铁军,刘向农,吴昊.风源热泵模糊自修正除霜技术应用研究.制冷学报. 2005, (1): 29-31
    68 D.-S. Z. Jian-You Long Numerical and experimental study on heat pump water heater with PCM for thermal storage. Energy and Buildings. 2007: 1-7
    69 F. Wang, G. Maidment, J. Missenden, et al. The Novel Use of Phase Change Materials in Refrigeration Plant. Part 1: Experimental Investigation. Applied Thermal Engineering 2007, 27 (17-18): 2893-2901
    70 F. Wang, G. Maidment, J. Missenden, et al. The Novel Use of Phase Change Materials in Refrigeration Plant.Part 2: Dynamic Simulation Model for the Combined System. Applied Thermal Engineering. 2007, 27 (17-18): 2902-2910
    71 F. Wang, G. Maidment, J. Missenden, et al. The Novel Use of Phase Change Materials in Refrigeration Plant. Part 3: PCM for Control and Energy Savings. Applied Thermal Engineering. 2007, 27 (17-18): 2911-2918
    72 Z. Gu, H. Liu, Y. Li. Thermal Energy Recovery of Air Conditioning System–heat Recovery System Calculation and Phase Change Materials Development. Applied Thermal Engineering 2004, 24 (17-18): 2511-2526
    73 Y. Hamada, J. Fukai. Latent Heat Thermal Energy Storage Tanks for Space Heating of Buildings: Comparison between Calculations and Experiments. Energy Conversion and Management 2005, 31 (13): 2025-2041
    74 M. Esen, T. ayhan. Development of a Model Compatible with Solar Assisted Cylindrical Energy Storage Tank and Variation of Stored Energy with Time forDifferent Phase Change Materials. Energy convers. Mgmt. 1996, 37 (12): 1775-1785
    75陈超,欧阳军,王秀丽.空气源热泵机组冬季除霜热量补偿新方法.制冷学报. 2006, 27 (4): 37-40
    76曾文良,梁启明.蓄热热泵空调器.中国专利,ZL01240625.2.2002-03-20.
    77曾文良,高日新.不间断制热的运行方法及空调系统,中国专利01127805.6.2003-03-19.
    78曾文良,曲景年.几种蓄热热泵空调器的性能比较.暖通空调. 2004, 34 (11): 66-68
    79肖国锋.户式蓄能型热泵冷热水机组的研究.哈尔滨工业大学硕士学位论文. 2006:11-21
    80杨灵艳.三套管蓄能型太阳能与空气源热泵集成系统实验与模拟.哈尔滨工业大学博士学位论文. 2009:24-46
    81 A. Sari, K. Kaygusuz. Thermal Energy Storage System Using Stearic Acid as A Phase Change Material. Solar Energy. 2001, 71 (6): 365-376
    82 Ahmet, Sari, Kamil, et al. Thermal Performance of Palmitic Acid as a Phase Change Energy Storage Material. Energy Conversion and Management. 2002, 43: 863-876
    83 S. Uros. Heat Transfer Enhancement in Latent Heat Thermal Storage System for Buildings. Energy and Buildings. 2003, 35 (11): 1097-1104
    84 A. Castell, C. Solé, Marc Medrano, et al. Natural Convection Heat Transfer Coefficients in Phase Change Material (PCM) Modules with External Vertical. Applied Thermal Engineering. 2008, 28 (13): 1-26
    85 A. Karaipekli, A. Sar?, K. Kaygusuz. Thermal Conductivity Improvement of Stearic Acid Using Expanded Graphite and Carbon Fiber for Energy Storage Applications. Renewable Energy. 2007, 32 (13): 2201-2210
    86 E.-B. S. Mettawee, G. M. R. Assassa. Thermal Conductivity Enhancement in a Latent Heat Storage System. Solar Energy. 2007, 81 (13): 839-845
    87陈颖,孙泽权.圆柱形肋管及光管组成的蛇管式相变蓄热器充热性能的实验研究.广东机械学院学报. 1994, 12 (4): 80-86
    88王裕民,孙泽权,彭岚.内纵翅片套管相变蓄热器的性能试验.重庆大学学报. 1994, 17 (4): 121-126
    89曲丰作,于长顺,王岩.三水合醋酸钠体系蓄放热性能的实验研究.大连轻工业学院学报. 2005, 24 (2): 93-95
    90王增义,刘中良,马重芳.热管式相变蓄热器储/放能过程中的传热特性的实验研究.工程热物理学报. 2005, 26 (6): 989-991
    91胡军,董华,周恩泽等.螺旋盘管式相变储热单元储热性能.太阳能学报. 2006, 27 (4): 399-403
    92杜雁霞,程宝义,贾代勇等.融化过程自然对流影响作用的实验研究.实验流体力学. 2006, 20 (3): 48-52
    93 L. W. Hunter, J. R. Kuttler. The Enthalpy Method for Heat Conduction Problems with Moving Boundaries. J. Heat Transfer, Trans. ASME. 1989, 111 (2): 239-242
    94 K. A. R. Ismail, M. M. Goncalves. Thermal Performance of a PCM Storage Unit. Energy Conversion & Management. 1999, (40): 115-138
    95 S. M. Vakilaltojjar, W. Saman. Analysis and Modelling of a Phase Change Storage System for Air Conditioning Applications. Applied Thermal Engineering. 2001, (21): 249-263
    96 Giovanni, Casano, P. Stefano. Experimental and Numerical Investigation of the Steady Periodic Solid-Liquid Phase-Change Heat Transfer. International Journal Of Heat And Mass Transfer. 2002, 45 (20): 4181-4190
    97 N. R. Vyshak, G. Jilani. Numerical Analysis of Latent Heat Thermal Energy Storage System. Energy Conversion and Management. 2007, 48 (7): 2161-2168
    98 F. Frusteri, V. Leonardi, G. Maggio. Numerical Approach to Describe the Phase Change of an Inorganic PCM Containing Carbon Fibres. 2006, 26 (16): 1883-1892
    99 K. Ermis, A. Erek, I. Dincer. Heat Transfer Analysis of Phase Change Process in a Finned-tube Thermal Energy Storage System Using Artificial neural NetworkN. International Journal of Heat and Mass Transfer. 2007, 50 (15-16): 3163-3175
    100康艳兵,张寅平,朱颖秋等.相变蓄热同心套管传热模型和性能分析.太阳能学报. 1999, 20 (1): 20-25
    101侯欣宾,袁修干,杨春信.高温相变蓄热容器传热的隐式求解.太阳能学报. 2001, 22 (4): 431-435
    102朱颖秋,张寅平,江亿.内通传热流体的圆管外相变材料的无量纲储传热准则的研究.太阳能学报. 1999, 20 (3): 244-250
    103吴南路,王立,孔庆瑞.相变平板传热问题的一种精确解法.哈尔滨商业大学学报. 2006, 22 (2): 109-111
    104 E. M. Sparrow, R. R. Schmidt, J. W. Ramsey. Experiments on the Role of Natural Convection in the Melting of Solids. J. Heat Transfer 1978, (100): 11-16
    105 A. G. Bathelt, R. Viskanta, W. Leidenfrost. An Experimental Investigation of Natural Convection in the Melted Region around a Heated Horizontal Cylinder. J. Fluid Mech. 1979, 90 (2): 227-239
    106 H. Rieger, U. Projahn, M. Bareiss, et al. Heat Transfer During Melting Inside a Horizontal Tube. J. Heat Transfer 1983, 105 (2): 226-234
    107 M. M. Farid, R. M. Husian. An Electrical Storage Heater Using the Phase Change Method of Heat Storage. EnergyConvers. Mgmt. 1990, 30 (3): 219-230
    108 M. M. Farid, F. A. Hamad, M. Abu-Arabi. Melting and Solidification in Multi-dimensional Geometry and Presence of More than One Interface. Energy Convers. Mgmt. 1998, 39 ( 8): 809-818.
    109 K. A. R. Ismail, R. Stuginsky. A Parametric Study on Possible Fixed Bed Models for PCM and Sensible Heat Storage. Appl. Thermal Eng. . 1999, (19): 757-788
    110 K. A. R. Ismail, A. B. d. Jesus. Modeling and Solution of the Solidification Problem of PCM around a Cold Cylinder. Numer. Heat Transfer. 1999, 36 (1): 95-114
    111 Abel, Hernandez-Guerrero, S. M. A. Eduardo, et al. Modeling of the Charge and Discharge Processes in Energy Storage Cells. Energy Conversion & Management. 1999, (40): 1753-1763
    112 Piia.Lamberg, L. Reijo, H. Anna-Maria. Numerical and Experimental Investigation of Melting and Freezing Processes in Phase Change Material Storage. International Journal of Thermal Sciences. 2004, 43 (3): 277-287
    113 Pedro, D. Silva, L. C. Goncalves, et al. Transient Behaviour of a Latent-Heat Thermal Energy Store: Numerical and Experimental Studies. Applied Energy. 2002, 1 (73): 83-98
    114 A. F. Regin, S. C. Solanki, J. S. Saini. Latent Heat Thermal Energy Storage Using Cylindrical Capsule: Numerical and Experimental Investigations. Renewable Energy. 2006, 31 (13): 2025-2041
    115 M. Vynnycky, S. Kimura. An Analytical and Numerical Study of CoupledTransient Natural Convection and Solidification in a Rectangular Enclosure. International Journal of Heat and Mass Transfer. 2007, 42 (21): 5204-5214
    116曾艳,田怀璋,余鹏.固液相变蓄能中有效导热系数的数值分析与实验研究.太阳能学报. 2003, 24 (4): 497-503
    117陈敬良,田怀璋,陈林辉.硬脂酸相变蓄能模型的改进.制冷与空调. 2003, 3 (2): 24-31
    118陈林辉,田怀璋,王石.第二类边界条件下硬脂酸固液相变蓄能研究.西安交通大学学报. 2004, 38 (11): 1128-1131
    119张寅平,胡汉平,孔祥东等.合肥:中国科学技术大学出版社. 1996:10-11
    120方修睦,姜永成,张建利.建筑环境测试技术.北京:中国建筑工业出版社. 2002
    121鲁钟琪.两相流与沸腾传热.北京:清华大学出版社. 2002:8-15
    122葛云亭.房间空调器系统仿真模型研究.清华大学清华大学博士学位论文. 1997:1-16
    123姚杨.空气源热泵冷热水机组冬季融霜工况的模拟与分析.哈尔滨工业大学博士学位论文. 2002:29-39
    124 H.Wang, S.Toubor. Distributed and Non-steady Modeling of an Air Cooler. International Journal of Refrigeration. 1991, 14 (5): 158-167
    125 D. G. Prabhanjan, G. S. V. Raghavan. Comparison of Heat Transfer Rates between a Straight Tube Exchanger and a Helically Coiled Heat Exchanger. International Commercial Heat Mass Transfer. 2002, 29 (2): 185-191
    126 M. Turaga, R.W.Guy. Refrigerant Side Heat Transfer and Pressure Drop Estimates for Direct Expansion Coils. International Journal of Refrigeration. 1985, 8 (3): 134-142
    127 A.E.Shah. A General Correlation for Heat Transfer during Film Condensation inside Pipes. International Journal of Heat Mass Transfer. 1979, 22 (4): 547-556
    128 L. Guo, Z. Feng, etal. An Experimental Investigation of the Frictional Pressure Drop of Stem-Water Two-Phase Flow in Helical Coils. International Journal of Heat Mass Transfer. 2001, 44 (9): 2601-2610
    129孔祥谦.有限单元法在传热学中的应用.北京:科学出版社. 1998:199-205
    130陶文铨.数值传热学.西安:西安交通大学出版社. 2001:323-398
    131 S.N.Kondepudi, D.L.O’Neal. A simplified model of pin fin heat exchangersunder frosting conditions. ASHRAE Trans. 1993, 99 (1): 754-761
    132 S.N.Kondepudi, D.L.O’Neal. The Effects of Frost Growth on the Extended Surface Heat Exchanger Performance: a Review. ASHREA Trans. 1987, 93 (2): 258-274
    133 M. A.Madi, R.A.Johns, M.R.Heikal. Perfomance Characteristics Correlation for Round Tube and Plate Finned Heat Exchangers. Intenrational Journal of Refrigeration. 1998, 21 (7): 507-517
    134 J.Martinez-Frias. Effects of Evaporator Frosting on the Performance of an Air to Air Heat Pump. AS.M.Aceves. Asme Trans. 1999, 121 (1): 60-65
    135 S.N.Kondepudi, D.L.O’Neal. Performance of Finned-tube Heat Exchangers under Frosting Conditions:I,Simulation Model. Int.J.of Refrig. 1993, 16 (3): 175-180
    136 S.A.Sherif, S.P.Raju. A Semi-EMpairical Transient Method for Modeling Frost Formation on a Flat Plate. International Journal of Refrigeration. 1993, 16 (5): 321-329
    137彦启森.空气调节用制冷技术.北京:中国建筑工业出版社. 1983:96-99
    138丁国良,张春路.制冷空调装置智能仿真.北京:科学出版社. 2002:21-22
    139 S. J, W. S. Numerical Investigation of Refrigerant Flow through Non-adiabatic Capillary Tubes. Applied Thermal Engineering. 2002, 22 (18): 2015-2032
    140 C. ZH, L. RY, L. S, et al. A Correlation for Metastable Flow of Refrigerant 12 through Capillary Tubes. ASHRAE Transctions. 1990, 96 (1): 550-554
    141 G. M. Feburie V, G. S, S. JM. A Model for Choked Flow through Cracks with Inlet Subcooling. Intenrational Journal of Mutlltiphase Flow. 1993, 19 (4): 541-562
    142陈芝久.制冷系统热动力学.北京:机械工业出版社. 1998:135-138
    143刘焘,丁国良.套管换热器近分相流动分布参数模型的改进算法.上海交通大学学报. 2008, 42 (1): 122-127

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700