用户名: 密码: 验证码:
全尺度光纤布里渊分布式监测技术及其在土木工程的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重大土木工程结构具有体积大、覆盖面广、造价高、服役环境恶劣、设计寿命长等特点,其结构损伤往往表现为机理复杂、耦合影响因素多、时变演化效应显著、损伤位置隐蔽等特性,满足工程需要的高性能全尺度监测手段一直是结构健康监测的客观需求。本文围绕分布式光纤布里渊(Brillouin Optical Time Domain Analysis/Reflectometry,简称BOTDA/R)的感知特性和温度补偿方法、高性能光纤封装传感探头、融合全尺度光纤布里渊和局部高精度光纤光栅(Fiber Bragg Grating)的共线传感网络、基于光纤与FRP(Fiber Reinforce Polymer)复合的全分布式智能结构部品以及基于全尺度分布式监测手段的结构损伤探测等问题展开了较系统研究。主要研究内容包括:
     首先,在介绍光纤布里渊传感工作原理的基础上,理论分析和试验探讨了光纤布里渊温度和应变感知的耦合作用,提出了布里渊应变感知绝对温度补偿方法,并进行了试验验证。
     其次,通过大量对比试验,归纳和总结了目前可能用于布里渊传感的系列封装传感光纤的剪切力学性能、轴向拉伸极限应变、环境适应性及其相应的感知特性,为工程应用传感光纤的选择提供了依据。这些封装光纤包括通信用普通裸光纤、碳涂覆光纤、聚酯封装光纤、FRP封装光纤等。
     第三,提出融合全尺度光纤布里渊测试技术和局部高精度光纤布拉格光栅传感技术的共线集成传感网络系统,分析了光纤光栅对光纤布里渊传感信号的影响;为了提高光纤布里渊测试结果的精度,发展了实测布里渊信号二次信号处理的小波分析和洛伦兹数据拟合方法。此外,探讨了长周期光纤光栅监测腐蚀的可行性及其与光纤布里渊测试技术复合的有效性。
     第四,针对不同布设工艺要求,研制开发出系列可大规模分布的工程化光纤布里渊传感探头和共线传感探头部品。在此基础上,将共线传感探头部品分别与平行钢拉索和钢绞线复合,发展了一套索式结构的全尺度长期监测技术。进而,提出了一种钢绞线的长期预应力损失监测技术,并通过长期试验验证了该技术的有效性。
     最后,利用全尺度分布式监测手段对结构损伤探测问题展开了较系统研究,包括:监测了6根分别布设BOTDA/R探头和共线探头的钢筋混凝土梁在静力加载过程中的裂缝、钢筋滑移和应变分布等信息;试验验证了光纤布里渊传感技术监测输油管在冻胀融沉下变形特性的有效性;将研制开发的全分布式探头在施工过程中分别布设到广州体育西路某人防工程和大庆抽油井套管,监测了工程结构应力热点位置施工过程的应变增量、分布和在役期间的变化情况。
Critical civil infrastrucuture can be characterized by large size and surface area, high cost, harsh environment, long service period, etc. Their damages have complicate mechanism, multi-affecting factors, noticeable time-dependent evolution and they are hard to be localized. To date, qualified full-scale monitoring technique is in urgent need for structural health monitoring of critical civil infrastructure. This dissertation focuses on the topics of full-scale monitoring technique including highly-performanced optical Brillouin sensor, collinear system by combining Fiber Bragg Grating (FBG) and Brillouin Optical Time Domain Analysis/Reflectometry (BOTDA/R) sensing technology, and fully-distributed smart sensor by combining Fiber Reinforce Polymer (FRP) and optical fiber sensor. The content of this work mainly contains:
     Firstly, the principle of optical Brillouin sensing technoloy has been introduced. Its strain-temperature coupling effect has been discussed in details and a novel absolute temperature compensation for strain measurement is put forward and experimentally validated.
     Secondly, the sensing characteristics of BOTDA/R based optical sensors such as their shear strength, axial tensile ultimate strain of series of coating Brillouin sensing optical fiber are investigated by large numbers of comparison tests. The compared optical fiber sensors include common Corning optical fiber, carbon coating optcial fiber, polymide coating high-temperature optical fiber and FRP coating optical fiber. The results provide basic guide for the selection among various kinds of sensing optical fibers in field application.
     Thirdly, a novel intelligent collinear optical sensor system (named BOTDA/R-FBG system) is developed by combining the full-scale distributed Brillouin sensing system and local high-precise Fiber Bragg Gratting (FBG) sensing system. The impact of FBG to Brillouin sensing signal has been studied. To improve the accuracy of the novel sensor, two data processing techniques such as wavelet denoising method and Lorentz fitting algorithm are applied. Besides, the feasibility of long period fiber grating(LPFG) based corrosion sensor and the probability of collinear system by combining LPFG and Brillouin sensing technique has been studied as well.
     Forthly, in regard to various requirments of installation, series of full-scale distributed Brillouin sensors and collinear BOTDR/FBG sensors are developed. Besides, a long-term monitoring method for cable-based structure is developed by combining collinear sensor and the stay cable/steel strand together. Thus, a corresponding long-term prestress monitoring technique has been put forward and validated experimentally.
     Finally, based on the full-scale measuring technique, structural damage detection has been investigated systematically. This work includes: damge mornitoring such as large deforamtion, cracks and steel sliding detection of six RC beams under static loads based on BOTDA/R sensors and collinear sensors; the feasibility study for the mornitoring of in-service oil pipes based on Brillouin sensing technique; the BOTDA/R sensor application in civil defense project in Guanzhou City and casing pipe project in Daqin Oilfield for the monitoring of the strain increment at the hot position and casing damage at construction and in-service stages.
引文
1欧进萍.重大工程结构的累积损伤与安全度评定.走向21世纪的中国力学——中国科协第9次“青年科学家论坛”报告文集.北京:清华大学出版社, 1996: 179~189
    2张启伟.桥梁结构模型修正与损伤识别.同济大学博士论文. 1999:9~15
    3周智.土木工程结构光纤光栅智能传感元件及其监测系统.哈尔滨工业大学博士论文. 2003:8~20
    4欧进萍,肖仪清,黄虎杰等.海洋平台结构实时安全监测系统.海洋工程, 2001,19(2):1~6
    5欧进萍,周智等.黑龙江呼兰河大桥的光纤光栅智能监测技术.土木工程学报, 2004, 37(1):45~49
    6周智,欧进萍.光纤光栅传感器及其在大型结构工程健康监测领域的应用.首届“光纤传感器发展与国际论坛”论文集,中国平湖. 2005, 3~25
    7周智,田石柱,欧进萍.光纤传感器在土木工程中的应用.建筑结构. 2002,32(5):65~68
    8陶宝祺.智能材料结构.北京:国防工业出版社, 1997:124~181
    9黄尚廉.智能结构-工程学科萌生的一场革命.压电与声光. 1993, 15(1):13~15
    10赵延超,黄尚廉,陈伟民.机敏土建结构中光纤传感技术的研究综述.重庆大学学报, 1997,20(5): 104~109
    11欧进萍,关新春.土木工程智能结构体系的研究与发展.地震工程与工程振动,1999, 19(2):21~28
    12李惠,欧进萍.智能混凝土与结构.第16届全国结构工程学术会议,2007,57:76~82
    13匡亚川,欧进萍.智能混凝土损伤自修复全过程分析.功能材料,2007,增刊38:3678-3681
    14崔迪.形状记忆合金及其智能混凝土结构研究.大连:大连理工大学, 2007
    15匡亚川,欧进萍.形状记忆合金智能混凝土梁变形特性的研究.中国铁道科学, 2008,29(4):41~46
    16 T. Kurashima, T. Usu, K. Tanaka, et al. Application of fiber optic distributed sensor for strain measurement in civil engineering. SPIE, 1997, (3241):247~258
    17 P. Kronenberg, N. Casaletta, D. Inaudi, et al. Dam monitoring with fiber optics deformation sensors. SPIE, 1997, (3043): 2~7
    18武湛君,万里冰,张博明.光纤光栅应变传感器监测复合材料层板疲劳过程.复合材料学报, 21(6), 2004:75-81
    19施斌,徐洪钟,张丹等. BOTDR应变监测技术应用在大型基础工程健康诊断中的可行性研究,岩石力学与工程学报, 2004,23(3):493-499
    20张丹,施斌,吴智深等. BOTDR分布式光纤传感器及其在结构健康监测中的应用.土木工程学报, 2003,36(11):83-87
    21杨朝晖,刘浩吾. F-P光纤应变传感器混凝土实验研究.实验力学,1998,13(1): 41~46
    22 T. Kurashima, T. Usu, K. Tanaka,et al. Application of fiber optic distributed sensor for strain measurement in civil engineering. SPIE, 1997, (3241): 247~258
    23 P. Kronenberg, N. Casaletta , D. Inaudi, et al. Dam monitoring with fiber optics deformation sensors. SPIE, 1997, (3043): 2~7
    24 S. Vurpillot, N. Casanova, D. Inaudi, et al. Bridge spatial displacement with 100 fiber optic sensors deformations: sensors network and preliminary results. SPIE, 1997,(3043): 51~57
    25 Z. Zhou, J. P. Ou. Various Types of Optical FBG Sensors and Their Applications SHM. Proceeding of the 2nd International Conference on Structural Monitoring and Intelligent Infrastructures, Shenzhen China, 2005:489~498
    26江毅,陈伟民,杨礼成等.光纤光栅用于应变_温度传感初探.传感技术学报, 1997,3:43~47
    27 K.O. Hill, Y. Fuji, D.C Jonson, et al. Photosensitivity in optical fiber wave guides: Application to reflection filter fabrication. App. Phys. lett., 1978, (32): 647~649
    28 G. Meltz, W.W. Morey and H.Glenn. Formation of Bragg gratings in optical fibers by a transverse holographic method. Opt. Lett., 1989, (14): 823~825
    29 W.W. Morey, G. Meltz and W.H. Glenn. Fibre Optic Bragg Grating Sensors. SPIE, 1989,1169: 98~107
    30李宏男,李东升,赵柏东.光纤健康监测方法在土木工程中的研究与应用进展.地震工程与工程振动. 2002, 22(6):76~83
    31余有龙.光纤光栅及其在传感领域中的应用研究.南开大学博士学位论文. 1999: 34~40
    32梁龙彬.光纤光栅应变传感在建筑结构中的应用研究.北京工业大学硕士学位论文. 2001: 1~17
    33孙曼,植涌,刘浩吾.组合结构界面滑移变形全过程的光纤光栅传感检, 四川大学学报,2005,37(6):42~46
    34张颖.布拉格光纤光栅传感技术研究.南开大学博士论文,2001: 47~61
    35梁磊,姜德生,周雪芳等.光纤Bragg光栅传感器在桥梁工程中的应用.光学与光电技术. 2003,1(2):36~39
    36黄尚廉,陈伟民,饶云江等.光纤应变传感器及其在结构健康监测中的应用.测控技术,2004, 23(5):1~5
    37 C. Wang, Z. Zhou and J.P. Ou. Construction Control of Mass Concrete of Nanjing 3rd Yangtze Bridge Using FRP-packaged FBG Sensors. SPIE,2005,5855:1012~1015
    38 Z. Zhou, J.P. Ou, and B. Wang. Smart FRP-OFGB Bars and Their Application in Reinforced Concrete Beams. Proceedings of the First International Conference on Structural Health Monitoring and Intelligent Structure, 13-15, Nov. 2003, Tokyo, Japan:861~866
    39张通.大跨钢构-连续梁桥的全寿命性能监测与分析.黑龙江:哈尔滨工业大学博士论文,2008:43~54
    40 Z. Zhou J.P. Ou. A New Kind of Smart Bridge Cable Based on FBG Sensors. SPIE ,2004,5502:196~199
    41 Z. Zhou, Z.C. Zhang; J.P. Ou. Applications of FRP-OFBG Sensors on Bridge Cables. SPIE ,2005, 5765:668~677
    42周智,欧进萍.光纤光栅传感器及其在桥梁健康监测中的应用.全国桥梁结构健康监测研讨会论文集,南京,2005,9:154~175
    43周智,李冀龙,欧进萍.埋入式光纤光栅应变传感的界面传递机理与误差修正.哈尔滨工业大学学报, 2006,38(1):12~16
    44欧进萍,周智,王勃. FRP-OFBG智能复合筋及其在加筋混凝土梁中的应用.高技术通讯,2005,4:45~49
    45 H. Li H, J.P. Ou and Z. Zhou. Applications of Optical Fibre Bragg Gratings Sensing Technology-Based Smart Stay Cables. Optics and Lasers in Engineering. 2009:1~8
    46孙守旺,周智.高耐久性光纤光栅压力环的研究与开发.光电子激光,2009,20(7):855~858
    47赵雪峰.结构健康监测的光纤光栅传感网络及其工程应用.黑龙江:哈尔滨工业大学,2007:75~127
    48姜德生,郝义昶,刘胜春.光纤Bragg光栅测力环在系杆拱桥中的应用.仪表技术与传感器. 2006, 2:43~44
    49姜德生,何伟.光纤光栅传感元件的应用概况.光电子激光. 2002, 13(4):420~430
    50穆磊,戴珩,姜德生.光纤光栅传感系统的信号解调方法研究.武汉理工大学学报?信息与管理工程版. 2007, 29(12):31~34
    51张东生,李微,郭丹等.基于光纤光栅振动传感器的桥梁索力实时监测.传感技术学报. 2007, 20(12):2720~2723
    52 Y.Q.Liu, C.F. Ge, D.H. Zhao, et al. High-Sensitivity Long-Period Fiber Grating Temperature Sensor Based on Intensity Measurement. SPIE, 1999, 3740:492~495
    53 Y.J. Rao, Z.L. Ran, X. Liao, et al. Hybrid LPFG/MEFPI Sensor for Simultaneous Measurement of High-Temperature and Strain. SPIE. 2008, 7004(70043H):1~4
    54 S.D. Song, Q.X. Yu. Long-Period Fiber Grating based High Temperature Sensor. SPIE, 2005, 5625:20~23
    55 J.A. Greene, M.E. Jones, T.A. Tran, et al. Grating-based Optical-Fiber-based Corrosion Sensors. SPIE, 1996, 2718:170~174
    56 D.S. Hwang, L.V. Nguyen, D.S. Moon, et al. Intensity based Optical Fiber Strain Sensor Using Long Period Grating and Core Mode Blocker.SPIE,2008, 7004(70044E):1~4
    57刘云启.布拉格与长周期光纤光栅及其传感特性研究.天津:南开大学博士学位论文,2000
    58 A.M. Vengsarkar, P.J.Lemaire, J.B.Judkins, et al. Long-period Fiber Gratings as Band-Rejection Filters. in Tech.Dig. OFC’95, San Diego, CA, 1995, paper PD4-2
    59 V. Bhatia, A.M.Vengsarkkar. Optical Fiber Long-Period Grating Sensors. Opt. Lett., 1996, 21:692~694
    60 D.D.Davis, T.K.Gaylord, et al. Long-Period Ffiber Grating Fabrication with Focused CO2 Laser Pulses. Electron. Lett., 1998, 34(3):302~303
    61饶云江,王义平,朱涛等.光纤光栅基本原来及应用.北京:科学出版社,2006:279~338
    62 Patrick H J, Kersey A D, Bucholtz F. Analysis of the response of long-period fiber gratings to ecternal index of refraction. Electron.Lett., 2000,36(11):966~967
    63王义平,饶云江,曾祥楷. LPFG弯曲特性的耦合模理论分析.光子学报,2002,31(10):1205~1208
    64 Y.P. Wang, Y.J. Rao. A Novel Long Period Fiber Grating Sensor Measuring Curvature and Determining Bend-Direction Simultaneously. IEEE Sensor Journal. 2005, 5(5):839~843
    65童治,魏淮,王目光等.环境折射率变化对长周期光栅特性影响的研究.光学学报, 2002,22(9):9800~9803
    66 A.F. Fernandez, G. Rego, A.Gusarov, et al. Evaluation of Long-Period Fiber Grating Temperature Sensors in Nuclear Environments. SPIE, 2004,5502:88~91
    67 D.Viegas, J.Goicoechea, J. M. Corres, et al. Mumidity Sensor Based on A Long-Period Fiber Grating Coated with A SiO2-Nanosphere Film. SPIE, 2008, 7004(70044O):1~4
    68 K.Wang, D. Klimo, Z. Kolber. Long Period Grating-Based Fiber-Optic PH Sensor for Ocean Monitoring. SPIE, 2007, 6770(677019):1-5
    69 L. A. Brillouin, Phys.(Paris),1922,17:88
    70 T. Horiguchi, T. Kurashima, et al. Tensile Strain Dependence of Brillouin Frequency Shift in Silica Optical Fibers.IEEE Photonics Technology Letters, 1989,1:107~108
    71 D. Culverhouse, F. Farahi, et al. Potential of Stimulated Brillouin Scattering as Sensing Mechanism for Distributed Temperature Sensors. Electronics Letters, 1989,25:913~915
    72 T. Horiguchi, T. Kurashima, M. Tateda. A Technique to Measure Distributed Strain in Optical Fibers. IEEE Photonics Technology Letters,1990, 2:352~354
    73 T. Kurashima, T. Horiguchi, et al. Brillouin Optical-FiberTime Domain Reflectometry. Proceedings of the International Quantum Electronics Conference, 1992:42~44
    74 T. Horiguchi, K. Shimizu, et al. Advances in Distributed Sensing Techniques Using Brillouin Scattering. SPIE, 1995,2507:126~135
    75 X.Y. Bao, D.J. Webb, et al. Characteristics of Brillouin Gain Based DistributedTemperature Sensors. ElECTRONICS LETTERS 19th , 1993,29:1543~1544
    76 X.Y. Bao, D.J.Webb et al. Recent Progress in Experiments on A Brillouin Loss-based Distributed Sensor.10th Optical Fiber Sensors Conference ,1994: 506~509
    77 M.D.DeMerchant, A.W.Brown, X.Y.Bao,et al. Automated System or Distributed Sensing. SPIE, 1998, 3330: 315~322
    78 F. Ravet, X.Y. Bao and L. Chen. Effect of Pulsewidth on Strain Measurement Accuracy in Brillouin-scattering-based Fiber Optic Sensors. SPIE,2004,5579: 187~194
    79 K. Hotate and S.O.S Leng. A Correlation-based Continuous-Wave Technique for Measurement of Dynamic Strain along An Optical Fiber Using Brillouin Scattering with Fully Distributed Ability. SPIE,2002:22~32
    80 S.S.L. Ong and K. Hotate. Correlation-based Brillouin Optical Sensor for Dynamic Strain Monitoring. CFC1.
    81 Y. Mizuno, Z.Y. He and K. Hotate. Brillouin Optical Correlation-Domain Reflectometry with 13-mm Spatial Resolution and 50-Hz Sampling Rate. 2008 OSA/CLEO/QELS.
    82 L.F. Zou, X.Y. Bao, Y.D. Wan, et al. Centimeter Spatial Resolution of Distributed Optical Fiber Sensor for Structural Healthy Monitoring. SPIE, 2004,5579:1~10
    83 K. Kishida, C.H. Li, et al. Pulse Pre-Pump Method for cm-Order Spatial Resolution of BOTDA. SPIE, 2005,5855: 559~562
    84刘迪仁,宋牟平,章献民等.基于连续光抽运的布里渊光时域分析仪新技术.光学仪器, 2005,27(3):70~74
    85胡晓东,胡小唐,陈津平.基于布里渊增益的单端分布式光纤传感技术.光电子.激光, 2000,11(1):86~88
    86何玉钧.基于自发布里渊散射的分布式光纤传感技术的研究.华北电力大学硕士学位论文,2001:11~25
    87施斌,徐洪钟,张丹等. BOTDR应变监测技术应用在大型基础工程健康诊断中的可行性研究.岩石力学与工程学报, 2004, 23(3):493~499
    88张丹,施斌,徐洪钟.基于BOTDR的隧道应变监测研究.工程地质学报, 2004, 12(4):422~426
    89张丹,施斌,吴智深等. BOTDR分布式光纤传感器及其在结构健康监测中的应用.土木工程学报, 2003,36(11):83~87
    90 D. Inaudi and B. Glisic. Development of Distributed Strain and Temperature Sensing Cables. 17th International Conference on Optical Fibre Sensors. SPIE, 2005,5855:222~225
    91 D. Inaudi and B. Glisic. Integration of Distributed Strain and Temperature Sensors in Composite Coiled Tubing. SPIE, 2006,6167:1~9
    92 F. Bastianini, A. Rizzo, et al. Discontinuous Brillouin Strain Monitoring of Small Concrete Bridges Comparison Between Near-to-Surface and Smart FRP Fiber Installation Techniques. SPIE, 2005,5765: 612~623
    93王勃,欧进萍,张新越等.混凝土结构用智能FRP筋的试验研究.功能材料. 2004, 35: 348~353
    94王勃. FRP加筋混凝土梁的力学与自感知性能研究.哈尔滨工业大学博士学位论文. 2004: 34~117
    95张志春.结构新型热固性FRP复合筋及其性能.哈尔滨工业大学博士论文,2008.
    96 Z.C. Zhang, Z. Zhou, C. Wang, et al. Long-term Monitoring FBG-Based Cable Load Sensor. SPIE, 2006,6167:1~4
    97 C.G. Lan, Z. Zhou, S.W. Sun. FBG based Intelligent Monitoring System of the Tianjin Yonghe Bridge. SPIE,2008, 6933(12): 1~9
    98 Z. Zhou, H. Zhou, J.P. Ou. R & D of Smart FRP-OFBG-based Steel Strand and its Application in Monitoring of Prestressing Loss for RC. SPIE, 2008, 6933(13):1~9
    99施斌,徐洪钟,张丹等.BOTDR应变监测技术应用在大型基础工程健康诊断中的可行性研究.岩石力学与工程学报, 2004, 23(3):493~499
    100 Z.S. Wu, B. Xu, K.J. Hayashi, et al. Distributed Optic Fiber Sensing for A Full-scale PC Girder Strengthened with Prestressed PBO Sheets. Engineering Structures , 2006,28:1049~1059
    101 X.Y. Bao, D.J. Webb, et al. Combined Distributed Temperature and Strain sensor Based on Brillouin Loss in an Optical Fiber.Optics Letters, 1994,19:141~143
    102周智.系列光纤传感制品研制与开发及其工程应用.哈尔滨工业大学博士后出站报告, 2006
    103 T. R. Parker, M. Farhadiroushan, et al. A Fully Distributed Simultaneous Strain and Temperature Sensor Using Spontaneous Brillouin Backscatter. IEEE PHOTONICS TECHNOLOGY LETTERS,1997, 9: 979~981
    104 J. Smith, A. Brown, et al. Simultaneous Strain and Temperature Measurement Using a Brillouin-scattering-based Distributed Sensor. SPIE, 1999,3670:366~373
    105 Q.R.Yu, X.Y. Bao, et al. Simultaneous Strain and Temperature Measurement in PM Fibers Using Brillouin Frequency, Power, and Bandwidth. SPIE, 2004, 5391:301~307
    106 A.V. Shahraam, L. Chen, et al. High Accuracy Temperature and Strain Measurement with cm Spatial Resolution for Distributed Brillouin-based Fiber Optic Sensors. SPIE, 2004,5579: 22~30
    107 K. Brown, A. W. Brown, et al. Combined Raman and Brillouin Scattering Sensor for Simultaneous High-resolution Measurement of Temperature and Strain. SPIE, 2006,6167:1~10
    108 Y. Sakairi, H. Uchiyama, et al. A System for Measuring Temperature and Strain Separately by BOTDR and OTDR. SPIE, 2002, 4920:274~284
    109 H. Naruse, K. Komatsu, K. Fujihashi, et al.Telecommunications Tunnel Monitoring System Based on Distributed Optical Fiber Strain Measurement. SPIE,2005,5855:168~171
    110 T. Yari, K. Nagai, T. Shimizu, et al.Overview of Damage Detection and Damage Suppression Demonstrator and Strain Distribution Measurement Using Distributed BOTDR Sensors. SPIE, 2003, 5054:175~183
    111 L. Thevenaz, M. Nikles, et al. Applications of Distributed Brillouin Fiber Sensing. SPIE, 1998, 3407:374~381
    112 A. Shimada, H. Naruse et al. Development of Integrated Damage Detection System for International America's Cup Class Yacht Structures Using a Fiber Optic Distributed Sensor. SPIE ,2000,3986:324~334
    113 S. Kato and H. Kohashi. Study on The Monitoring System of Slope Failure Using Optical Fiber Sensors.ASCE, 2006:1~6
    114 I.B.Kwon, C.Y.Kim, et al. Continuous Measurement of Temperature Distributed on a Building Construction. SPIE,2002, 4696:273~283
    115张俊义,晏鄂川,薛星桥. BOTDR技术在三峡库区崩滑灾害监测的应用分析.地球与环境,2005,33:355~358
    116 Z. Zhou, J.P. He, J.P. Ou. Long-term Monitoring of a Civil Defensive Structure based on Distributed Brillouin Optical Fiber Sensor. Pacific Science Review, 2008, 8:1~6
    117 Z. Zhou, J.P. He, J.P. Ou. Casing Pipe Damage Detection with Optical Fiber Sensors: a Case Study in Oil Well Constructions. Advances in Civil Engineering,2009(Accepted)
    118 M.A.Davis and A.D.Kersey. Separating the Temperature and Strain Effects on Fiber Bragg Grating Sensors Using Stimulated Brillouin Scattering. SPIE, 1996,2718:270~278
    119刘德华.超长距离分布式光纤传感技术及其工程应用.浙江大学博士学位论文,2005:78~97
    120周智,何建平,吴源华等.土木结构的光纤光栅与布里渊共线测试技术.土木工程学报,2010, 43(3).
    121 Gross E. Nature,1930,126(201):400; Gross E. Z.Physik,1930,63:685
    122 M.D. DeMerchant.Distributed strain sensing for civil engineering applications. Doctor of Philosophy of UNB, 1996:23~54
    123刘迪仁.长距离分布式布里渊散射光纤传感技术研究.浙江大学博士论文,2005:33~44
    124余丽苹.布里渊散射分布式光纤传感器的理论分析和相关技术研究.电子科技大学硕士论文, 2006:12~30
    125程光煦.拉曼布里渊散射.北京:科学出版社,2007:461~469.
    126吴玲玲,张建立,寇亚舟.模极大值降噪法在信号降噪中的应用.信号与信息处理,2007,37(6):39~42
    127顾建农,张正宏,吴建国等.基于小波变换模极大值恢复的信号消噪方法.海军工程大学学报,2001,13(2):25~32
    128龙兴明,周静.连续小波变换的一维信号检测.重庆邮电学院学报,2004,16(3):77~80
    129赵玉宝.小波变换在地震去噪中的应用研究.中南大学硕士研究生论文, 2005:36~65
    130邱卫卫,陏青美,张桂涛等.基于小波变换的BOTDR光纤温度传感系统去噪声研究.激光与光电子学进展,2004,41(11):26~29
    131徐洪钟,施斌,张丹等.基于小波分析的BOTDR光纤传感器信号处理方法.光电子.激光,2003, 4(7):737~740
    132飞思科技产品研发中心.小波分析理论与Matlab7实现.北京:电子工业出版社, 2005
    133周智,何建平,吴源华,欧进萍.基于光纤布里渊传感的钢绞线全尺度应力监测.压电与声光, 2009, 31(5):646~648
    134赵翔.拉索损伤对斜拉桥结构性能影响的研究.东南大学博士学位论文.2005: 1~3
    135翁沙羚.文晖大桥健康监测评估系统的研究与开发.浙江大学硕士论文.2004: 1~13
    136常彬彬.斜拉桥拉索损伤机理及预防构造措施研究重庆交通大学硕士论文.2008:1~9
    137吴文明.斜拉索耐久性和安全性探索研究.重庆交通大学硕士论文.2008:3~9
    138 M. Wang, G.M. Lloyd and O. Hovorka. Development of a Remote Coil Magnetoelastic Stress Sensor for Steel Cables. SPIE, 2001, 4337:122~128.
    139 Y. Zhao, M. L. Wang. Fast EM Stress Sensors for Large Steel Cables. SPIE, 2008, 6934(69340R):1~8
    140邓年春,欧进萍,周智.一种新型平行钢丝智能拉索.公路交通科技,2007, 24(3):82~85
    141李东生,邓年春,周智.拱桥吊杆的光纤光栅监测与健康诊断.光电子激光,2007,18(1):81~84
    142 Z. Zhou, X.F. Zhao, C.Wang, et al. A New Kind of Smart Bridge Cable Based on FBG sensors. SPIE,2004:23-27
    143周智,何建平,欧进萍.平行钢丝束拉索的布里渊全尺度测试技术研究.光电子激光, 2009, 20(6):766~770

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700