用户名: 密码: 验证码:
带附加气室空气弹簧动力学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以空气弹簧为弹性元件的空气悬架系统表现出了诸多的优越性,如果在此基础上再增加一附加气室组成带附加气室空气弹簧系统,还可以进一步提高悬架系统的减振性能。不仅对公路车辆,对于作业环境、行驶路况更为复杂的农用车辆、工程车辆、林用车辆等非公路车辆来说,应用带附加气室空气悬架可有效地提高它们对不同路况、不同作业环境的适应能力。
     本文以Firestone公司生产的1T15M-2膜式空气弹簧为弹性元件,通过管路和节流孔接入附加气室建立了带附加气室空气弹簧系统。结合目前国内外相关的研究结论,利用理论分析与实验相结合的方法对带附加气室空气弹簧系统的动力学特性进行了系统地研究,对此系统动力学特性的影响因素和影响规律进行了详细地分析,分析了带附加气室空气悬架的设计方案。所完成的工作及取得的结论归纳如下:
     1.基于刚体动力学、热力学及空气动力学理论建立了带附加气室空气弹簧系统的非线性动力学理论模型,在Matlab/Simulink环境下建立了系统振动仿真模型,仿真分析了不同节流孔开度和不同附加气室容积下系统簧上质量位移阶跃响应特性和位移幅频响应特性。仿真结果表明,附加气室能够显著降低系统固有频率,合理设置节流孔开度可以有效衰减振动。
     2.通过空气弹簧静特性实验建立了空气弹簧静刚度、空气弹簧内压及有效面积随弹簧拉伸、压缩变形时与弹簧高度之间的变化关系。基于系统非线性模型创建了带附加气室空气弹簧系统动刚度理论模型。建立了系统动刚度实验测试系统,结合实验对系统动刚度理论模型进行了验证并分析了系统动刚度的影响因素。研究结果表明,空气弹簧初始气压的增加、振动频率的升高和振幅的增大均会增大系统动刚度;随节流孔开度的增大,系统动刚度由最大值逐渐减小到最小值;附加气室容积的增大也有利于降低系统的动刚度,但当附加气室容积超过弹簧容积2~3倍以后,附加气室容积的变化对系统动刚度的影响不再明显。动刚度理论计算结果与实验结果比较吻合,验证了动刚度理论模型的正确性。
     3.为了简化模型,有利于对悬架系统的分析和控制,利用小偏差线性化的方法在小振幅的条件下对带附加气室空气弹簧系统的数学模型进行了线性化处理,分别获得了系统的动刚度线性化模型和系统线性运动微分方程,由线性微分方程得出了簧上质量位移传递函数。
     4.基于复刚度建立了带附加气室空气弹簧系统的等效刚度、等效阻尼比以及固有频率的理论计算模型;构建了等效力学模型特性参数的实验测试系统,实验研究了节流孔开度、附加气室容积、簧上质量等因素对等效力学特性参数的影响关系,并对等效力学参数模型进行了验证。研究结果表明,附加气室容积为主气室容积2倍时,节流孔由小变大过程中,可以使系统等效刚度降低60%左右,系统固有频率降低0.45Hz,系统等效阻尼比呈现先增大后减小的趋势。附加气室容积的增大使得系统等效刚度和固有频率降低,但当附加气室容积大于主气室容积2~3倍后,附加气室容积的增大对系统的等效刚度和固有频率影响便不再明显。当节流孔完全打开时,增大附加气室容积只略微增大系统等效阻尼比,当节流孔开度处在最大阻尼状态时,增大附加气室容积可明显增大系统的等效阻尼比。在保持空气弹簧静态工作高度不变的前提下,增加簧上质量会增大弹簧等效刚度,但簧上质量的变化对弹簧的等效阻尼比和固有频率影响不大。比较理论计算结果和实验结果表明,系统等效刚度、等效阻尼比和固有频率的计算模型在一定范围内保持了较高的精度。
     5.构建了带附加气室空气弹簧振动响应特性实验系统,实验研究了节流孔直径、附加气室容积以及激振频率对振动系统的位移传递率、最大动载荷以及簧上质量响应加速度的影响。实验结果表明,节流孔直径由小到大的变化过程中,系统在共振频率点的位移传递率、最大动载荷和响应加速度均方根值的变化规律基本相同,三者均首先迅速降低,在节流孔直径d=6mm左右,降低到最小值,之后随节流孔继续增大,各指标又开始缓慢回升。改变附加气室容积对系统的位移传递率、动载荷及响应加速度也具有显著的影响,在附加气室容积小于主气室容积2倍的范围之内时,附加气室容积的增大能够显著降低系统在共振频率点的位移传递率、加速度均方根值以及最大动载荷,但当附加气室容积超过主气室容积2倍时,附加气室容积的增大对以上三个指标的影响不再明显。
     6.提出并分析了带附加气室被动空气悬架和半主动空气悬架的设计方案。建立了刚度、阻尼可调半主动空气悬架1/4车辆振动模型,基于振动模型在Matlab/Simuink环境下建立了车辆平顺性仿真模型,通过在不同路面和不同车速下仿真,比较分析了带附加气室刚度、阻尼可调半主动空气悬架与传统无附加气室被动空气悬架的平顺性性能指标。研究结果表明,通过适当调节节流孔开度和减振器阻尼系数,带附加气室刚度、阻尼可调半主动空气悬架在大多路况下能够降低车身加速度均方根值30%以上,在保证有效降低车身加速度的前提下,对动载荷的改善并不明显.
     通过本课题的研究,可以进一步完善带附加气室空气悬架动力学理论体系,为带附加气室空气悬架系统的设计和控制提供理论依据和技术支持,对促进带附加气室空气弹簧系统在车辆减振系统中的应用,改善车辆悬架系统的减振性能具有重要的理论意义和实用价值。
Although the suspensions with air springs as their elastic elements have many advantages, the performance of suspension would be further improved if an auxiliary chamber is appended to air spring. Not only for the road vehicles, but for the off-road vehicles such as agriculture vehicles, construction vehicles, forestry vehicles, the application of air suspension to them would help to improve their adapting ability to running road condition and working environment.
     Based on 1T15M-2 type diaphragm air spring produced by Firestone company, the air spring with auxiliary chamber system was established through a tube and a orifice. According to related studies at home and abroad in present, the dynamic characteristics of air spring with auxiliary chamber system was systematically researched using the methods of theoretical analysis combining with experiments, and influential factors and influential laws on the system's dynamic characteristics have been analyzed in detailed, and design schemes of air suspension with auxiliary chamber system were presented. The completed work and achieved results are generalized as follows:
     1. The non-linear dynamics theoretical model of air spring with auxiliary chamber was established based on rigid dynamics, thermodynamics and fluid dynamics. Simulation model of system was established under Matlab/Simulink environment. Displacement step respond characteristics and amplitude frequency characteristics of the system were simulating analyzed. The results showed that, natural frequency of the system would be reduced under the function of auxiliary chamber, and vibration of the system would be greatly attenuated by properly adjusting the open size of orifice.
     2. Relation between static stiffness of air spring and air spring deformation and relation between effective area of air spring and air spring deformation were established according to the static characteristics experiments. The dynamic stiffness theoretical model of system was established, and the experimental system for dynamic stiffness of system was established. The dynamic stiffness theoretical model was verified to be correct by experiments, and the influential factors on dynamic stiffness were analyzed. The results showed that, dynamic stiffness of system increases with the increasing of air spring pressure, vibration frequency and vibration amplitude, and dynamic stiffness of system drops from the maximum to minimum with the increasing of orifice diameter. Increasing volume of auxiliary chamber is help to decrease dynamic stiffness of system, but when the volume of auxiliary is more 2-3 times than that of air spring, changing volume of auxiliary chamber has little affect on dynamic stiffness. The results of dynamic stiffness theoretical model and the results of experiments are close on the whole, which proved that dynamic stiffness theoretical model are correct.
     3. In order to simply the model and help to analyze and control suspension, the mathematical model of air spring with auxiliary chamber system was linearized with small deviation linear method under the condition of little amplitude. The linear dynamic stiffness model of system and linear kinematics difference equation were obtained, and transfer function of sprung mass displacement was reduced from linear difference equation.
     4. Effective stiffness calculating model, effective damp ratio calculating model and natural frequency calculating model of air spring with auxiliary chamber system were established based on complex stiffness. Test system for mechanical parameters of effective model was established, and the influential laws of orifice open, auxiliary chamber volume, sprung mass on the mechanical parameters of effective model, at the same time the effective mechanical parameters calculating models were verified by test. The study results showed that, when the volume of auxiliary chamber was 2 times that of air spring, with the increasing of orifice open, effective stiffness of system could be decreased by 60%, and natural frequency could be decrease by 0.45Hz, and effective damp ratio was increased first, then decreased. By increasing volume of auxiliary chamber can decrease effective stiffness and natural frequency, but when the volume of auxiliary chamber was more than 2-3 times that of air spring, increasing volume of auxiliary chamber has little effect on effective stiffness and natural frequency of system. When orifice open widely, by increasing the volume of auxiliary chamber only increased damp ratio of system a little, while orifice open at the condition of maximum damp, by increasing volume of auxiliary chamber could obviously increased effective damp ratio of system. Keeping the static operational high of air spring unchanged, effective stiffness would increase with the increasing of sprung mass, but the change of sprung mass has little effect on effective damp ratio and natural frequency of system. Comparing calculation results of model with test results showed that the calculation model of effective stiffness, effective damp ration and natural frequency keep a high accuracy within a certain limit range.
     5. Experimental system for vibration response characteristic of air spring with auxiliary chamber was established, Effect of orifice diameter, volume of auxiliary chamber and excitation frequency on displacement transmissibility, maximum dynamic load and response acceleration was studied by experiments. Experiments showed that, during the course of increasing orifice open from close to wide, the change laws of displacement transmissibility, maximum dynamic load and response acceleration of system were about the same, they all fell rapidly at first, they fell to the minimum value when orifice diameter increase to about 6mm, and then they all increased slowly with the continue increase of orifice diameter. Change of auxiliary chamber volume also has obvious effect on displacement transmissibility, maximum dynamic load and response acceleration of system. By increasing volume of auxiliary chamber could depress the tree indexes mentioned above, but when the volume of auxiliary chamber was more than 2 times that of air spring, increase of auxiliary chamber has little effect on the tree indexes.
     6. Design schemes of passive air suspension with auxiliary chamber and semi-active air suspension with auxiliary were presented and analyzed. A quarter-vehicle vibration model with adjustable stiffness and adjustable damp suspension was established, and the simulation model for vehicle ride was established under Matlab/Simulink environment based on the vibration model. Ride performance indexes of passive air suspension and semi-active suspension with adjustable stiffness and adjustable damp were compared and analyzed through simulation of vehicle running on different pavements with different velocity. The results showed that, acceleration root mean square vehicle body with semi-active suspension increased more than 30% on the most pavements. But the dynamic load of tire has little improvement under the precondition of effectively decreasing acceleration of vehicle body.
     Through the research in this project, the dynamics theory system of air spring with auxiliary chamber will be further improved, which will provide a theoretical basis and technical support for design and control of air suspension with auxiliary chamber. And this research is of important theoretical significance and practical value to promote the application of air spring with auxiliary chamber system to vehicle and to improve the performance of vehicle suspension system.
引文
1 I. Hostens, H.Ramon. Descriptive analysis of combine cabin vibrations and their effect on the human body[J]. Journal of Sound and Vibration,2003,266:453-464
    2 Backman AL. Health Survey of processional drivers[J]. Scand J Work Environ Health,1983, (9):30
    3 Helmut Sranate H. Long-term effects of whole body vibration[J]. Int Arch Occup Environ Health, 1986,58:1
    4 Kevin Waish. Occupational causes of low-back pain [J]. Scand J Work Environ Health,1989,15:54
    5 骆知俭,毛晓全.全身振动对人体腰椎的影响[J].职业医学,1989,16(5):7-9
    6 巴福森.长时间全身振动对作业人员胃的影响的跟踪研究[J].航天医学与医学工程,1993,6(4):274-281
    7 张祥春,程宏,张新生等.全身振动对人体脊柱的损害[J].中华劳动卫生职业病杂志,1993,11(6):321-324
    8 熊敏如,吴维生,何兴轩等.全身振动对农用拖拉机驾驶员心血管系统影响的研究[J].职业医学,1994,21(3):24-26
    9 J. Lines. M. Stiles, R. Whyte. Whole Body Vibration during tractor driving[J] Journal of Low Frequency Noise and Vibration,1995(14):87-95
    10 寇发荣,方宗德.汽车可控悬架系统的研究进展[J].汽车工程,2007,29(5):426-432
    11 陈兵.车辆智能悬架系统发展趋势研究[J].起重运输机械,2005,(6):1-6
    12 Crosby M. J, Karmopp D.C. The active damper—a new concept for shock and vibration control[J]. The shock and vibration bull,1973,43(4):119-133
    13 Karnopp D.C, Crosby M.J. and Harwood RA. Vibration control using semi-active force generators[J].ASME Journal of Engineering for Industry,1974,96(2):619-626
    14 Hroval D. Survey of advanced suspension developments and related optimal control application[J]. Automatic,1997,33(10)
    15 姚嘉伶,蔡伟义.汽车半主动悬架系统发展现状[J].汽车工程,2006,28(3):276-280
    16 John Lewis. Car spring[P]. US Patent No.4965,1847-2-10
    17 William R Fee. Pneumatic spring[P]. US Patent No.19764,1858-03-30
    18 Alsop Gorge M. Carriage spring[P]. US Patent No.24184,1859-5-31
    19 Hoagland I W. Carriage spring[P].US Patent No.32848,1861-07-16
    20 Annable W W. Pneumatic spring for vehicle[P].US Patent No.673011,1901-04-03
    21 Bancroft George. Pneumatic cushion for vehicle [P].US Patent No.980138,1910-12-27
    22 Gieck Hack. Ride on air a history of air suspension [M]. New York SAE Inc,1999
    23 Benjamin Bell. Pneumatic spring[P].US Patent No.971583,1910-10-04
    24 Jack Gieck. Riding on air:a history of air suspension[M]. SAE, Inc,1999
    25 Evans J. R. Rail vehicle dynamic simulation using VAMPIRE[J]. Vehicle System Dynamic Supplement,1999(31)
    26 Alf Homeyer等(德).采用现代方法设计空气弹簧系统[J].国外铁道车辆,1999(3):35-38
    27 A. Murata, Y. Kume, F. Hashimoto. Application of catastrophe theory to forced vibration of a diaphragm air spring. Journal of sound and vibration,1987,11(1):31-44
    28 Jon Bunne, Roger Jable. Air suspension factors in driveline vibration[C]. SAE paper No.962207
    29 John Woodrooffe. Heavy truck suspension dynamics:Methods for evahrating suspension road friendliness and ride quality[C]. SAE paper No.962152
    30 Donald Margolis. The stability of trailing air suspension in heavy trucks[J]. Int. J. Vehicle design,2001(3):211-229
    31 Takuya Yuasa. The application of CAE in the development of air suspension beam[C]. SAE paper, New York:SAE Inc,1997,SAE973232
    32 Erin C, Wilson B. Zappee J. An improved model of pneumatic vibration isolator:theory and experiment[J]. Journal of Sound and Vibration,1998,218:81-101
    33 Malin Presthus. Derivation of air spring model parameters for train simulation[D]. Lulear University of Technology,2002.
    34 Chance B K.1984 continental mark 7/Lincoln continental electronically-controlled air suspension system[A]. SAE Paper[C]. New York:SAE Inc,1984, SAE840342
    35 Theo Meller. Self-energizing leveling systems their progress in development and application[A]. SAE paper [A]. New York:SAE Inc,1999, SAE1999-01-0042
    36 Masashi Yasuda, Takahide Osaka, Masao Ikeda. Feedforward control of a vibration isolation system for disturbance suppression[J]. Proceedings of 35th Conference on Decision and Control, Japan, Dec,1996
    37 Shiichiro Sarai Masao Ikeda Takahiro Miura. Decentralized position and attitude control of a vibration isolation system[C]. Proceedings of the 2001 IEEE international Conference on Control Application, Sep,2001,5-7
    38 Yagiz N, Yuksek I, Sivenoglu S. Robust control of active suspensions for a full vehicle model using sliding mode control [J]. JSME International Series C,2000,43 (2):253-258
    39 Shinji Wakui. Incline compensation control using an air spring type active isolated apparatus[J]. Precision Engineering,2003,27:170-174
    40 郭孔辉.空气弹簧特性理论初步研究(上)[J].汽车与拖拉机,1959,(22):6-11
    41 郭孔辉.空气弹簧特性理论初步研究(中)[J].汽车与拖拉机,1959,(23):7-14
    42 郭孔辉.空气弹簧特性理论初步研究(下)[J].汽车与拖拉机,1959,(24):14-17
    43 长春汽车研究所.空气悬挂在汽车上的应用[R].长春:长春汽车研究所,1961.
    44 郭荣生.空气弹簧悬挂设计与计算[R].青岛:四方车辆研究所,1973:50-65
    45 四方车辆研究所.空气弹簧横向特性试验研究[J].铁道车辆,1974(6):15-21
    46 长春汽车研究所悬架组.大客车的空气悬架[J].汽车技术,1980(6):12-24
    47 朱德库.空气弹簧及其控制系统[M].济南:山东科学技术出版社,1989
    48 董学锋.膜片空气弹簧的设计计算[J].汽车技术.1990(3):3-9
    49 赵轶才,陶家念.汽车悬挂用空气弹簧的设计研究[J].中国公路学报,1992,5(3):86-92
    50 丁良旭.空气弹簧悬挂特性的计算机模拟[J].中国公路学报,1997,10(1):97-104
    51 王树林,黄会荣.空气弹簧的形变特性[J].中国机械工程,1995,第6卷学刊:64-67
    52 赵洪伦,张广世.高速客车空气弹簧非线性横向刚度特性研究[J].铁道学报,1999,21(6):30-33
    53 张广世.有限元法研究空气弹簧参数对横向特性的影响[J].铁道车辆,2000,38(9):13-16
    54 周劲松,赵洪伦.空气弹簧应力与模态分析[J].机械科学与技术,2000,19(4):587-589
    55 赵洪伦,沈钢,张广世.基于空气弹簧非线性横向刚度的高速客车动力学仿真[J].同济大学学报(自然科学版),2002,30(1):1388-1392
    56 张建文.空气弹簧非线性有限元分析和空气悬架大客车隔振性能的研究.吉林大学博士学位论文,2003
    57 庄德军.膜式空气弹簧非线性特性有限元分析.吉林大学硕士学位论文,2003
    58 刘宏伟 庄德军 陈燕虹等.空气弹簧非线性弹性特性有限元分析[J].农业机械学报,2004,35(5):201-204
    59 吴善跃,黄映云.有限元法计算长方型橡胶空气弹簧隔振器的垂向刚度[J].噪声与振动控制,2002(5):16-18
    60 黄映云,吴善跃,朱石坚.囊式空气弹簧隔振器的特性计算研究[J].振动工程学报,2004,17(2):249-252
    61 郑红霞,谢基龙,王文静等.高速客车空气弹簧垂向特性的非线性有限元仿真[J].北方交通大学学报,2004,28(4):93-97
    62 刘增华,李芾,黄运华.空气弹簧系统垂向刚度特性的有限元分析[J].西南交通大学学报,2006,41(6):700-704
    63 叶珍霞,朱海潮,鲁克明等.囊式空气弹簧刚度特性的非线性有限元法研究[J].振动与冲击,2006,25(4):94-97
    64 周孔亢,吴琳琪,安登峰等.车用膜式空气弹簧囊体帘线受力有限元分析[J].江苏大学学报(自然科学版),2007,28(1):21-24
    65 陈燕虹 黄治国 刘宏伟等.基于神经网络控制的半主动空气悬架仿真研究[J].汽车技术,2004(6):7-10
    66 陈燕虹,刘宏伟,黄治国等.基于空气悬架客车1/2模型的模糊控制仿真[J].吉林大学学报(工学版),2005,35(3):254-257
    67 张军.轿车主动空气悬架系统3种方案仿真分析[J].北京理工大学学报,2007,27(9):779-782
    68 陈燕虹.半主动空气悬架智能控制算法的仿真及试验研究.吉林大学,2005
    69 程悦.电控空气悬架系统匹配设计.吉林大学硕士学位论文,2005
    70 王宏杰.基于模糊控制的半主动空气悬架系统的仿真与试验研究.吉林大学硕士学位论文,2005
    71 王辉,朱思洪.车辆半主动悬架神经网络自适应控制的研究[J].公路交通科技,2006,23(1):155-158
    72 王辉,朱思洪.半主动空气悬架神经网络的自适应控制[J].农业机械学报,2006,37(1):28-31
    73 朱思洪,吕宝占,王辉等.汽车半主动空气悬架的神经网络控制方法[J].交通运输工程学报,2006,6(4):66-70
    74 刘增华.铁道车辆空气弹簧动力学特性及其主动控制研究[D].西南交通大学,2007
    75 姜立标,王登峰,谢东.电控空气悬架载荷平衡系统仿真.汽车工程,2007,39(3):234-237
    76 方瑞华,解跃青,雷雨成.空气悬架理论及其关键技术[J].同济大学学报,2003,31(9):1072-1076
    77 郑明军,陈潇凯,林逸.空气弹簧力学模型与特性影响因素分析[J].农业机械学报,2008,39(5):10-14
    78 袁春元,周孔亢,王国林等.车用空气弹簧力学性能仿真及试验研究[J].农业工程学报,2008,24(3):38-41
    79 张利国,张嘉钟,贾力萍等.空气弹簧的现状及其发展[J].振动与冲击,2007,26(2):146-151
    80 张建文,庄德军,林逸等.汽车用空气弹簧悬架系统综述[J].公路交通科技,2002,19(6):151-155
    81 钱德猛.汽车空气悬架系统的参数化建模、分析及设计理论方法研究[D].合肥工业大学,2005
    82 方瑞华.汽车空气悬架非线性振动理论和试验[J].农业机械学报,2007,38(7):13-15
    83 吕志强,赵应龙,胡宗成.回转型空气弹簧设计、仿真及实验研究[J].武汉理工大学学报(交通科学与工程版),2008,32(1):55-58
    84 Cavannugh, R. D. Air suspension and servo-controlled pneumatic isolation systemes: Shock and vibration handbook[M]. Mcgraw-Hill B. C.,1961, chapter 33
    85 Gee-Clough, D.,Waller, R. A. An improved self-damped pneumatic isolator[J]. Journal of Sound and Vibration,1968,8(3):364-376
    86 Esmailzadeh, E. Compact self-damped pneumatic isolators for road vehicles[J]. Trans. ASME, J. Dyn. Sys. Meas. Cont,1980(102):270-277
    87 Bachrach, B. I., Rivin E. Ananlysis of a damped pneumatic spring[J]. Journal of Sound and Vibration,1983,86(2):191-197
    88 Hundal M S. Passive pneumatic shock isolator:analysis and design[J]. Journal of Sound and Vibration,1982,84(1):1-9
    89 Hundal M S. Literature review-pneumatic shock absorbers and isolators[J]. Shock and Vibration Degest,1980,12(9):364-376
    90 Bhave, S. Y. Effect of connecting the front and rear air suspensions of a vehicle on the transmissibility of road undulation inputs[J]. Vehicle system dynamic,1992(21):225-245
    91 Katsuya Toyofuku, Chuuji Yamada, Toshiharu Kagawa, Toshinori Fujita. Study on dynamic characteristic analysis of air spring with auxiliary chamber[J]. JSAE Review,1999 (20):349-355
    92 Mats Berg. Three-dimensional air spring model with friction and orifice damping[J]. Vehicle System Dynamics,2000,33(suppl):528-539
    93 Quaglia, G. and Sorli.M. Air suspension:nonlinear analysis and design considerations[C].2nd IFK Int. Fluidtechnisches Kolloquium, Dresden,March 2000
    94 Quaglia, G. and Soli, M. Experimental and Theoretical Analysis of an Air Spring with Auxiliary Reservoir[C]. Proc of the 6th Internatioales symposium on Fluid Control Measurement and Visualization. Sherbrooke, Canada, Aug,2000.
    95 Quaglia, G. and Soli, M. Air Suspension Dimension Analysis and Design Procedure[J]. Vehicle System Dynamics,2001,35(6):443-475.
    96 I. Hostens, K. Deprez, H. Ramon. An improved design of air suspension for seats of mobile agricultural machines. Journal of sound and vibration,2004 (276):141-156
    97 Kenji Kawashima,Tomonori Kato.Koichi Sawamoto,Toshiharu Kagawa. Realization of virtual sub chamber on active controlled pneumatic isolation table with pressure differentiator [J]. Precision Engineering,2007(31):139-145
    98 Jeung-Hoon Lee, Kwang-Joon Kim. Modeling of nonlinear complex stiffness of dual-chamber pneumatic spring for precision vibration isolations[J]. Journal of Sound and Vibration,2007 (301):909-926
    99 郭荣生.空气弹簧悬挂的振动特性和参数计算(上)[J].铁道车辆,1992(5):1-5
    100 郭荣生.空气弹簧悬挂的振动特性和参数计算(下)[J].铁道车辆,1992(6):8-14
    101 陆正刚.空气弹簧振动系统阻尼特性及改进措施[J].铁道车辆,1994(6):5-9
    102 李芾,付茂海,黄运华等.车辆空气弹簧动力学参数特性研究[J].中国铁道科学,2003, 24(5): 91-95
    103 原亮明,宫相太,刘爽堃等.铁道车辆空气弹簧垂向动态特性分析方法的研究[J].中国铁道科学,2004,25(4):37-41
    104 原亮明,宫相太,王渊等.铁道车辆空气弹簧-可变节流阀垂向动态特性的研究[J].铁道学报,2005,27(1):40-44.
    105 张广世,沈钢.带有连接管路的空气弹簧动力学模型研究[J].铁道学报,2005,27(4):36-41
    106 吴善跃,朱石坚,黄映云.带辅助气室橡胶空气弹簧的冲击特性分析[J].振动工程学报,2005,18(2):248-251
    107 吴善跃,黄映云,朱石坚.空气弹簧冲击载荷特性的试验研究[J].振动与冲击,2006,25(2):113-116
    108 尹万建,杨绍普,申永军等.空气弹簧悬架的振动模型和刚度特性研究[J].北京交通大学学报,2006,30(1):71-74
    109 应杏娟,李郝林,倪争技.空气弹簧隔振器的动力特性研究[J].上海理工大学学报,2006,28(6):164-168
    110 Zhu Sihong, Wang Jiasheng, Zhang Ying. Research on theoretical calculation model for dynamic stiffness of air spring with auxiliary chamber[C].2008 IEEE Vehicle Power and Propulsion Conference, VPPC 2008, Harbin China, Sep,2008.
    111 周永清,朱思洪.带附加空气室空气弹簧动刚度试验研究.机械强度,2006,28(1):13-15
    112 贺亮,朱思洪.带附加空气室空气弹簧垂直刚度和阻尼实验研究[J].机械强度,2006,28(8):33-36
    113 贺亮,周永清,朱思洪.基于激振法的空气弹簧垂向刚度和阻尼特性研究[J].振动与冲击,2008,27(7):167-170
    114 王家胜,朱思洪.带附加气室空气弹簧动刚度的线性化模型研究[J].振动与冲击,2009,28(2):72-76
    115 刘彦,谭久彬,王雷等.辅助气室连通的空气弹簧隔振系统隔振特性研究[J].振动与冲击,2008,27(4):98-100
    116 Chance B K.1984 continental mark 7/Lincoln continental electronically-controlled air suspension system[A]. SAE Paper[C]. New York:SAE Inc,1984,SAE840342
    117 洪慕绥,刁国华.中外名牌汽车维修图解大全:电控悬架装置手册[M].上海:上海交通大学出版社,2001
    118 菅原,能生等(日).利用空气弹簧可控阻尼力降低车体的垂向振动[J].国外铁道车辆,2008,45(4):24-29
    119 盛英,赵建文,仇原鹰.空气弹簧参数对减振性能的影响[J].噪声与振动控制,2006(3):22-25
    120 高书移,梁为.EQ6850KE高级客车空气弹簧悬架设计开发[J].客车技术与研究,2003,25(4):10-13
    121 陈耀明.混合式空气悬架的设计[J].汽车技术,1994(1):8-15
    122 丁玉庆.汽车悬架及司机座椅动态参数优化[J].振动与冲击,2003,22(2):57-60
    123 张士义,张先彤,张庆春.超精密加工中的隔振技术研究[J].仪器仪表学报,1995(1):379-384
    124 Xubin Song, Mehdi Ahmadian. Study of semi-active adptive control algorithms with magneto-rheological seat suspension[J]. SAE International,2004(1):1648-1661
    125 Daniel L Dufner, Troy E Schick. John Deere active seat:a new level of seat performance[J]. Agericultural Engeering,2002,02-IE-002
    126 Ein Mikroprozess or steuert die Kennlinienanpassung inFahrersitzen. Die aktiv geregelte luftfederung fur den traktorsitz[J]. Landtechnik 2006(3):132-133
    1 Bell Benjamin. Pneumatic spring[P]. US Patent No.971583,1910-10-04
    2 许崇桂.大学物理教程:热学[M].北京:国防工业出版社,1997
    3 李岳林.工程热力学与传热学[M].北京:人民交通出版社,1999
    4 张三慧.大学物理(第二册)[M].北京:清华大学出版社,2001
    5 邓永和,容青艳.变质量系统的多方过程、绝热过程及等温过程[J].湖南工程学院学报,2006,16(2):61-62
    6 薛兵.工程热力学[M].西安:陕西科学技术出版社,2005
    7 张祉祜,石秉三.制冷及低温技术[M].北京:机械工业出版社,1982
    8 刘桂玉,刘志刚,阴建民等.工程热力学[M].北京:高等教育出版社,1998
    9 ISO6358:1989:Pneumatic fluid power components using compressible fluids determination of flow-rate characteristics[S]
    10 JIS B 8390:2000:空气压-压缩性流体用元件-流量特性的试验方法
    11 D. R. Purdue, D. Wood, M. J. Townsley. The design of pneumatic circuits[J]. Fluid Power Internatioal,1969(4)
    12 F. E. Sanville. A new method of specifying the flow capacity of pneumatic valves[R]. Proc.2nd Fluid Power Symposium, BHRA,1972
    13 ISO 8778:1990:Pneumatic fluid power-standard reference atmosphere[S]
    14 JIS B8393:2000:空气压-标准参考空气[S]
    15 腾燕,李小宁.针对ISO6358标准的气动元件流量特性表示式的研究[J].液压与气动,2004(2):6-9
    16 费国忠,彭光正,赵彤等.气管道流量特性参数理论分析与实验研究[J].工程设计学报,2004,(2):77-80
    17 郑治国,顾仁康.轻工液压传动与气压传动[M].北京:中国轻工出版社,1994
    18 黄沛天,马善钧,胡利云.变加速动力学和三阶微分方程[J].江西师范大学学报,2003,27(4):338-340
    19 杨学山,齐霄斋,李兆治等.基于测量加速度微分量的传感器[J].振动与冲击,2008,27(12):143-146
    20 张志涌.精通Matlab6.5版教程[M].北京:北京航天航空大学出版社,2003
    21 王正林,王胜开,陈国顺.Matlab/Simulink与控制系统仿真[M].北京:电子工业出版社,2005
    22 Quaglia G. and Soli M. Experimental and theoretical analysis of an air spring with auxiliary reservoir[J]. Proc of the 6th Internationals symposium on Fluid Control Measurement and Visualization, Sherbrooke, Canada, Aug,2000
    23 Quaglia G. and Soli M. Air suspension dimension analysis and design procedure[J]. Vehicle System Dynamics,2001, Vol 35, No.6:443-475.
    1 GB/T13061-1991:汽车悬架用空气弹簧试验方法[S]
    2 王进,林达文,彭立群等.轨道车辆用空气弹簧的刚度特性试验[J].世界橡胶工业,2006,33(11):40-43
    3 江洪,祁晨宇,汪栋等.空气弹簧特性试验研究[J].机床与液压,2008,36(9):204-208
    4 黎吉明.橡胶空气弹簧静态特性曲线测绘[J].橡胶工业,2003,50:700.
    5 刘爽堃,原亮明,刘金朝.TY550型空气弹簧静态刚度特性分析[J].铁道机车车辆,2003,23(5):29-32
    6 郭文观,石柏军.空气悬架的发展和试验方法研究[J].机床与液压,2008,36(5):351-354
    7 何锋,杨贵春.商用车膜式空气弹簧及其特性分析[J].新技术新工艺,2005(8):31-33.
    8 ContiTech Holding GmbH. ContiTech air spring for commencial vehicles[R]. Hannover: ContiTech Holding GmbH.2000(5).
    9 Quaglia G. and Soli M. Experimental and theoretical analysis of an air spring with auxiliary reservoir[J]. Proc of the 6th Internationals symposium on Fluid Control Measurement and Visualization, Sherbrooke, Canada, Aug,2000
    10 Zhu Sihong, Wang Jiasheng, Zhang Ying. Research on Theoretical Calculation Model for Dynamic Stiffness of Air Spring with Auxiliary Chamber[C]. IEEE VPPC 2008, Harbin, China, Sep,2008
    11 Katsuya Toyofuku, Chuuji Yamada, Toshiharu Kagawa, Toshinori Fujita. Study on dynamic characteristic analysis of air spring with auxiliary chamber[J]. JSAE Review 1999 (20):349-355
    12 周永清,朱思洪.带附加空气室空气弹簧动态特性的试验研究[J].机械强度,2006,28(1):13-15
    13 陈燕虹,杨兴龙,王勋龙.大客车空气弹簧动态特性的试验分析[J].汽车技术,2002(10):19-20
    14 莫荣利,谢建藩,杨军.汽车空气弹簧垂向动态性能及试验方法探讨[J].客车技术与研究,2004,24(6):10-12
    15 杨一峰.空气弹簧的特性试验[J].铁道车辆,1993(3):24-29
    1 郑大钟.线性系统理论(第二版)[M].北京:清华大学出版社,2002
    2 韩茂安,顾圣士.非线性系统的理论和方法[M].北京:科学出版社,2001
    3 孟范伟,何朕,王毅等.非线性系统的线性化[J].电机与控制学报,2008,12(1):89-92
    4 李文秀.自动控制原理[M].哈尔滨:哈尔滨工程大学出版社,2001
    5 杨建玺,徐莉萍.控制工程基础[M].北京:科学出版社,2008
    6 刘豹.现代控制理论(第二版)[M].北京:机械工业出版社,2004
    7 同济大学数学教研室.高等数学(上下册,第四版)[M].北京:高等教育出版社,1996
    8 余家荣.复变函数(第四版)[M].北京:高等教育出版社,2007
    9 蒋文均,金相男.节流装置在气路中的应用[J].液压与气动,2008(11):47-50
    10 宋锦春.液压与气压传动[M].北京:科学出版社,2006
    11 Quaglia, G. and Soli, M. Air Suspension Dimension Analysis and Design Procedure[J]. Vehicle System Dynamics,2001,35(6):443-475
    12 Katsuya Toyofuku, Chuuji Yamada, Toshiharu Kagawa, Toshinori Fujita. Study on dynamic characteristic analysis of air spring with auxiliary chamber [J]. JSAE Review,1999 (20): 349-355
    13 郭荣生.空气弹簧悬挂的振动特性和参数计算(上)[J].铁道车辆,1992(5):1-5
    14 陈后金,胡健,薛健.信号与系统(第二版))[M].北京:清华大学出版社,2005
    15 Zhu Sihong, Wang Jiasheng, Zhang Ying. Research on theoretical calculation model for dynamic stiffness of air spring with auxiliary chamber[C].2008 IEEE Vehicle Power and Propulsion Conference, VPPC 2008, Harbin China, Sep,2008.
    16 郑明军,陈潇凯,林逸.空气弹簧力学模型与特性影响因素分析[J].农业机械学报,2008,39(5):10-14
    1 敖宏瑞,姜洪源,闫辉等.基于复刚度模型的金属橡胶隔振系统的研究[J].哈尔滨工业大学学报,2005,37(12):1615-1617
    2 靳晓雄,张立军,江浩.汽车振动分析[M].上海:同济大学出版社,2002
    3 黄方林,何旭辉,陈政清等.识别结构模态阻尼比的一种新方法[J].土木工程学报,2002,35(6):20-23
    4 贺亮,朱思洪.带附加空气室空气弹簧垂直刚度和阻尼实验研究[J].机械强度,2006,28(8):33-36
    5 曲维德,康恒龄.机械振动手册[M].北京:机械工业出版社,2000
    6 哈尔滨工业大学理论力学教研组.理论力学(第五版)(下册)[M].北京:高等教育出版社,1997
    7 Erin C, Wilson B. Zappee J. An improved model of pneumatic vibration isolator:theory and experiment[J]. Journal of Sound and Vibration,1998,218:81-101
    8 Quaglia, G. and Soli, M. Experimental and Theoretical Analysis of an Air Spring with Auxiliary Reservoir[C]. Proc of the 6th Internatioales symposium on Fluid Control Measurement and Visualization. Sherbrooke, Canada, Aug,2000.
    1 余志生.汽车理论(第四版)[M].机械工业出版社,2006
    2 Dave Crolla(英),喻凡.车辆动力学及其控制[M].北京:人民交通出版社,2003
    3 贺亮,周永清,朱思洪.基于激振法的空气弹簧垂向刚度和阻尼特性研究[J].振动与冲击,2008,27(7):167-170
    4 周同国.机械工程测试技术[M].北京:北京理工大学出版社,2003
    5 杨乐平,李海涛,肖凯等.虚拟仪器技术概述[M].北京:电子工业出版社,2003
    6 张易知,肖啸,张喜斌等.虚拟仪器的设计与实现[M].西安:西安电子科技大学出版社,2002
    7 秦树人.虚拟仪器[M].北京:中国计量出版社,2004
    8 崔红梅.面向测试系统的虚拟仪器设计与应用研究[D].内蒙古农业大学,2007
    9 (美)Robert H. Bishop. LabVIEW 6i实用教程[M].北京:电子工业出版社,2003
    10 王磊,陶梅.精通LabVIEW 8.0[M].北京:电子工业出版社,2007
    11 肖忠祥.数据采集原理[M].西安:西北工业大学出版社,2001
    12 郭虹,艾延延,盛元生.数据采集与处理[M].北京:航空工业出版社,1999
    13 Jon Bune, Roger Jable. Air suspension factors in driveline vibration[C]. SAE Paper No.962207
    14 Quaglia, G. and Soli, M. Experimental and Theoretical Analysis of an Air Spring with Auxiliary Reservoir[C]. Proc of the 6th Internatioales symposium on Fluid Control Measurement and Visualization. Sherbrooke, Canada, Aug,2000.
    15 郭文观,石柏军.空气悬架的发展和试验方法研究[J].机床与液压,2008,36(5):350-354
    16 吕彭民,和丽梅,尤晋闽.基于舒适性和轮胎动载的车辆悬架参数优化[J].
    17 方瑞华.汽车空气悬架非线性振动理论和试验[J].农业机械学报,2007,38(7):13-15
    1 王望予.汽车设计[M].北京:机械工业出版社,2004
    2 高书移,梁为.EQ6850KR高级客车空气弹簧悬架设计开发[J].客车技术与研究,2003,25(4):10-13
    3 郭延辉.低地板城市客车空气悬架设计[J].客车技术与研究,2008(6):15-17
    4 Dave Crolla,喻凡.车辆动力学及其控制[M].北京:人民交通出版社,2003
    5 Mizuguchi M., Suda T., Chikamori S., Koboyashi K. Chassis electronic control system for the Mitsubishi 1984 Galant[J]. SAE paper 840258,1984
    6 Konishi J., Shiraishi Y., Katada K. Development of electronically controlled air suspension system[J]. SAE paper 881770,1988
    7 Citroen. Hydractive suspension system, Technical leaflet,1989
    8 余志生.汽车理论(第四版)[M].机械工业出版社,2006
    9 H-P威鲁麦特(德).车辆动力学模拟及其方法[M].北京:北京理工大学出版社,1998
    10 张永林,钟毅芳.车辆路面不平度输入的随机激励时域模型[J].农业机械学报,2004,35(2):9-12
    11 檀润华,陈鹰,路甬祥.路面对汽车激励的时域模型建立及计算机仿真[J].中国公路学报,1998,11(3):96-102
    12 Michelberger P., Palkovics L., Bokor J. Robust design of active suspension system[J]. Int. J. of Vehicle design,1993,14(2/3):145-165
    13 P. E. Uys, P. S. Els, M. Thoresson. Suspension settings for optimal ride comfort of off-road vehicles traveling on roads with different roughness and speeds [J]. Journal of Terramechamics,2007(44):163-175
    14 Shinji Wakui. Incline compensation control using an air-spring type active isolated apparatus[J]. Precision Engineering,2003(27):170-174
    15 陈龙,汪若尘,江浩斌等.车辆半主动悬架系统的设计与试验研究[J].农业工程学报,2005,21(8):61
    16 任勇生,周建鹏.汽车半主动悬架技术研究综述[J].振动与冲击,2006,25(3):162-165

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700