用户名: 密码: 验证码:
协同攻击任务规划认知演化计算研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
巡航导弹协同攻击是一种重要的协同作战样式,随着巡航导弹攻击对象从单目标、多目标到体系目标演变,其相应的打击方式也发生了重要的变化。针对不同的攻击目标,弹与弹之间的协同,以至弹群与弹群之间的协同,都成为在对抗条件下完成复杂使命的必要手段。协调多枚巡航导弹的作战从而提高对具备体系特征的目标的打击效能,具有十分重要的意义。
     巡航导弹协同攻击体系目标战术任务规划问题(MMSCA-SoST)由于对抗过程的复杂性,传统的基于专家的、基于案例的以及基于运筹学的方法在求解该类问题时存在诸多困难。本文将仿真引入MMSCA-SoST问题求解,把作战效能评估看作知识生成的过程,把仿真优化看作利用知识求解复杂军事问题的活动,并将二者结合起来进行研究。在人机结合的思想指导下,用认知心理学、创新计算和数据挖掘的相关理论方法来丰富仿真优化这种复杂军事问题的求解模式。针对国内外相关技术在本文研究背景下的不足,论文主要研究内容和成果如下:
     (1)建立了MMSCA-SoST问题模型,提出了问题求解框架。定义了多弹协同攻击体系目标战术任务规划的相关概念,用对其中的关键元素进行数学建模。将MMSCA-SoST归结为一个集目标选择、调度、指派和参数优化为一体的多约束、强耦合的复合组合优化与决策问题。针对仿真求解的需求,建立了协同攻击效能仿真模型基本框架,以此作为建立仿真系统的基础。分析了问题的复杂性以及仿真引入带来的复杂性。在全面总结基于仿真的复杂问题求解模式,对已有的模式进行对比的基础上,提出了“仿真+数据挖掘+基于认知行为的智能算法”的新模式。分析了多弹协同攻击体系目标效能产生机理,基于效能产生结构提出了MMSCA-SoST分层求解框架,将其分解并抽象为弹群使命优化和弹群行动优化两个子问题,相应地将总体目标和约束条件分散到各子问题中,降低了问题的求解难度。
     (2)提出了一种模拟人类创造性思维问题求解过程和行为的智能算法——认知演化算法(CEA)。该算法以知识为核心,将问题求解看成一个基于知识的创造性思维过程,对发散思维、收敛思维、记忆、执行、学习和价值测度六个关键模块进行建模,充分发挥了知识演化和基于知识的创造性思维技巧在问题求解中的作用。通过一个扩展的路径优化问题分析了CEA各参数对算法性能的影响,并将CEA与经典的智能算法进行了比较。实验结果表明,针对计算密集型和知识密集型优化问题,该算法能够以较少的目标评价次数得到问题的较优解。
     (3)建立了巡航导弹协同攻击两层效能知识模型,并分别提出了建立两层知识模型所需的仿真数据挖掘算法。针对弹群使命层知识的表示,提出了基于贝叶斯网络(BN)的概率规则表示方法:针对基于仿真数据的概率规则构建方法,重点研究了非确定先验信息条件下的BN结构学习算法,提出了一种基于改进最小描述长度测度和模拟退火的结构学习算法,有效地克服了传统方法无法有效地利用不确定先验信息的缺点。提出了基于BN的弹群行动层知识模型——BOEM,给出了BOEM的模型结构和建模流程。为了快速产生BOEM建模所需数据,提出了基于概率规则元模型的行动层仿真(PRMS),该方法能够在不过多损失仿真精度的条件下,有效地提高仿真效率。为提高BOEM的推理能力,对建模过程中的连续变量离散化问题进行研究,提出了基于推理信息量的BN连续变量离散化方法。
     (4)在两层效能知识模型的基础上,利用CEA解决MMSCA-SoST问题,提出了协同攻击分层认知演化模型及其实现算法。具体包括:在MMSCA-SoST问题分层求解框架所定义的求解逻辑流程基础上,将CEA与效能知识模型进行集成,具体实现了其中每个组件的行为,形成基于知识的协同攻击分层认知演化模型,这是一个可计算的模型。提出了弹群使命优化和弹群行动优化两个子问题的具体求解算法。
     (5)以潜射反舰导弹协同打击水面舰艇编队为例,应用所提出的方法对问题求解,验证了方法的可行性和有效性。
Cooperative attacking of cruise missiles is an important style of cooperative operation. The target of cruise missiles engagement has evolved from single target, multiple targets to system of systems target. In this condition, cooperation among single missile or even among missiles groups becomes a significant manner to finish complex missions. How to coordinate operations of multiple missiles to maximize the combat effectiveness has become a crucial problem with great theoretical significance and practical value.
     As the engagement process becomes more complex, the traditional methods, i.e. experts based method, case based method and operational research theory based method, are difficult to address the need of tactical mission planning for Multiple Missiles Static Cooperative Attacking System of Systems Target (MMSCA-SoST). This dissertation will take the operational effectiveness evaluation as a knowledge generation process and the simulation optimization as a knowledge based problem solving activity, and to combine the study. In the thought of human-computer cooperation, take cognitive psychology, creative computation and data mining as complementary to simulation optimization theory which is a complex military problem solving model. Considering the actual background of cruise missile cooperative attacking, and aiming at the defects of existing research results, studies made in the dissertation are as follows:
     (1) The basic mat hematic model for MMSCA-SoST problem and the general solving framework are presented. The concepts relevant to MMSCA-SoST are defined and the mathematical model of MMSCA-SoST is established. MMSCA-SoST is a combination optimization problem with multi-constraints and strong coupling which comprised of four sub problems, i.e. target selection problem, scheduling problem, assignment problem and parameters optimization problem. The basic framework of simulation models is established as the foundation of simulation systems construction to fulfill the needs of simulation based problem solving. The complexity of MMSCA-SoST itself and the complexity induced by simulation are analyzed. A novel simulation based problem solving model, i.e. "simulation + data mining + cognition behaviors based intelligent algorithm" , is presented. According to the effectiveness analysis of cooperative operation of multiple missiles, a hierarchical MMSCA-SoST solving framework based on the effectiveness generation model is presented in which MMSCA-SoST is divided into two sub problems, i.e. missiles group mission planning problem and missiles group operation planning problem. The framework can prevents us from bogging down by resolving the over-complicated model.
     (2) Cognition Evolutionary Algorithm (CEA) towarding simulation optimization is put forward. Inspired by the process of human creative thinking, cognition evolutionary algorithm, a novel intelligent algorithm based on cognition science and computational creativity, is proposed, which simulates the creative thinking based problem solving process and behaviors. The algorithm is comprised of six components, i.e. divergent thinking, convergent thinking, memory, and execution, learning and value measures. Taking the problem-solving as knowledge based creative thinking process, knowledge evolution and knowledge based creative thinking skills play important roles in the algorithm. We explore the impact of the parameters of cognition evolutionary algorithm through an extended path optimization problem. The results show that the novel algorithm can reduce object score evaluation times for solving optimization problems which are compute-intensive and knowledge-intensive compared to other classic intelligent algorithms.
     (3) The two-level effectiveness knowledge models of cruise missiles cooperative attacking as well as the corresponding simulation data mining algorithms are presented. Missiles group mission level knowledge representation based on Bayesian Networks (BN) is proposed. A Structure learning method of Bayesian network is presented to solve the problem of structure learning with uncertain prior information. An improved MDL measure named SMDL is proposed to fuse the prior information in learning process. Simulated annealing method is used to solve the problem. The experimental results on the Asia network show' that the proposed algorithm is more accurate than classical ones with fewer samples. A BN based knowledge model, i.e. BOEM, is proposed to model missiles group operation level knowledge. The specification and the modeling process of BOEM is detail studied. The concept of probability rule surrogate model based simulation is given to rapidly generate data samples for BOEM construction. Continuous variables discretization, the key component of BOEM learning algorithm, is studied, and a discretization algorithm based on reasoning information is proposed.
     (4) Cooperative attacking hierarchical cognition evolutionary computing model (CHCEM) and its algorithms are presented to resolve MMSCA-SoST based on two-level effectiveness knowledge model and CEA. The behaviors of components in hierarchical MMSCA-SoST solving framework are implemented based on the integration of CEA and effectiveness knowledge following the logic process defined in the same framework. CHCEM which is a computable model is established. The algorithms for resolving MGMP and MGOP are putting forward.
     (5) The process of the proposed method is given and the validity is proven with a case study of submarine-launched anti-ship missiles against surface fleet.
引文
[1]赵江,徐世录.反巡航导弹的现状与发展趋势[J].飞航导弹.2005(5):52-55.
    [2]汤善同,黄玲雅.攻防对抗防空导弹飞行力学建模和计算机仿真研究[J].中国科学.2009,39(3):579-582.
    [3]叶嫒嫒.多IJCAV协同任务规划方法研究[D].国防科学技术大学,2005.
    [4]彭星光,高晓光,魏小丰.基于贝叶斯优化算法的UCAV编队对联合目标的协同攻击研究[J].系统仿真学报.2008,20(10):2693-2696.
    [5] Butterfield M L. Pearlman J S, Vickroy S C. A system-of-systems engineering GEOSS: Architectural approach[J]. IEEE Systems Journal. 2008, 2(3): 321-332.
    [6]刘桐林.花岗岩——世界智能化飞航导弹的先驱[J].飞航导弹.2005(9):14-18.
    [7]丁光超,吕卫民,彭瑾,等.反舰导弹对航母编队突防策略研究[J].飞航导弹.2008(10):36-38.
    [8]宋福志.对抗航母——巡航导弹优于弹道导弹[J].战术导弹技术.2006(4):9-15.
    [9]方有培,汪立萍,赵霜,等.突破航母编队防御的导弹技术研究[J].航天电子对抗.2006(3):4-8.
    [10]任敏,胡红娟,沈林成.战术任务规划决策支持技术研究[C].Proceedings of the 26th Chinese Control Conference.湖南张家界:2007:320-323.
    [11]胡海,刘翔.反舰导弹任务规划系统需求分析[J].战术导弹技术.2001(6):14-17.
    [12]姜礼平,姚毅,邹明.威胁联网下低空突防航路规划研究[J].海军工程大学学报.2008,20(4):51-55.
    [13]符小卫,高晓光,何建华.威胁联网下的飞行路径规划[J].飞行力学.2003,21(3):67-69.
    [14] Swisher J R, Jacobson S H, Yucesan E. Discrete-event simulation optimization using ranking,selection, and multiple comparison procedures[J]. ACM Transactions on Modeling and Computer Simulation. 2003. 13(2): 134-154.
    [15] Ahmed M A. Alkhamis T M. Simulation-based optimization using simulated annealing with ranking and selection[J]. Computers and Operations Research. 2002(29): 387-402.
    [16] Sriver T A, Chrissis J W. Combined Pattern Search And Ranking And Selection For Simulation Optimization[C].Proceedings of the 2004 Winter Simulation Conference. Washington D.C.: ACM Press, 2004: 645-653.
    [17]杨峰,李群,王维平,等.基于仿真的探索性评估方法论[J].系统仿真学报.2003,15(11):1561-1564.
    [18]刘明辉,吴红.基于SVR的反舰导弹作战效能元模型仿真评估方法[J].计算机仿真.
    [19] Holmes L M. Huynh T. Kline J. et al. Conceptual Systems of Systems Enabling Maritime Dominance in the Littorals[R]. MEYER institute of systems engineering,Naval postgraduate school, 2004.
    [20]杨峰.面向效能评估的平台级体系对抗仿真跨层次建模方法研究[D].国防科技大学,2003.
    [21] Brady T F. Yellig E. Simulation data mining: a new form of computer simulationoutput [C].Proceedings of the 37th conference on Winter simulation. Orlando.Florida : Winter Simulation Conference, 2005: 285-289.
    [22] Barry P. Zhang J. Mcdonald M. Architect ing a knowledge discovery engine formilitary commanders utilizing massive runs of simulations [C].Proceedings of theninth ACM SIGKDD international conference on Knowledge discovery and datamining. Washington, D.C. : ACM, 2003: 699-704.
    [23] Yachao W. Data Mining from Simulation of Six Sigma in Manufacturing Company[C].Proceedings of the 2008 International Conference on Computer Science andSoftware Engineering. IEEE Computer Society, 2008: 423-426.
    [24] Yin J. Li D. Peng Y. Knowledge acquisition from metal forming simulation[J]. IntJ Adv Manuf Technol. 2006, 29: 279-286.
    [25] Zhang J. Bala J. Barry P S, et al. Mining Characteristic Rules for UnderstandingSimulation Data [C].Proceedings of the 14th IEEE International Conference onTools with Artificial Intelligence. IEEE Computer Society, 2002: 381-386.
    [26] Alexander R. Kazakov D. Kelly T. System of systems hazard analysis usingsimulation and machine learning[J]. Lecture Notes in Computer Science. 2006,4166: 1.
    [27] Kabirian A. Olafsson S. Allocation of simulation runs for simulation optimization[C].Proceedings of the 39th conference on Winter simulation. Washington D.C. :IEEE Press, 2007:363-371.
    [28] Barton R R. Designing simulation experiments [C].Proceedings of the 36thconference on Winter simulation. Washington. D.C. : IEEE Press, 2004: 73-79.
    [29] Van Beers W. Kleijnen J. Kriging for interpolation in random simulation[J].Journal of the Operational Research Society. 2003, 54{3): 255-262.
    [30] Chang K H. Hong L J. Wan H. Stochastic trust region gradient-free method(strong)-a new response-surface-based algorithm in simulationopt imization[C].Proceedings of the 2007 Winter Simulation Conference.Washington, D.C: IEEE Press, 2007: 346-354.
    [31] Choo C S, Chua C L, Tay S V. Automated red teaming: a proposed framework formilitary application [C].Proceedings of the 9th annual conference on Genetic andevolutionary computation. London. England : ACM, 2007: 1936-1942.
    [32] Chua C L, Sim C W C, Choo C S, et al. Automated red teaming: anobjective-based data fanning approach for red teaming [C].Proceedings of the 40thConference on Winter Simulation. Miami. Florida : IEEE Press, 2008: 1456-1462.
    [33] Xu Y, Low M Y H, Choo C S. Enhancing automated red teaming with evolvablesimulation [C].Proceedings of the first ACM/SIGEVO Summit on Genetic andEvolutionary Computation. Shanghai. China : ACM Press, 2009: 687-694.
    [34]李明.基于仿真模型与遗传算法的最优火力分配模型[J].军事运筹与系统工程.2005(4):45-47.
    [35] Seng C C, Lian C C, Spencer L K M, et al. A co-evolutionary approach for militaryoperational analysis [C].Proceedings of the first ACM/SIGEVO Summit on Genetic and Evolutionary Computation. Shanghai. China : ACM Press, 2009: 67-74.
    [36]董文永,李元香.演化仿真优化的若干问题研究[J].武汉大学学报(理学版).2002,48(1):37-42.
    [37]陈英武,邢立宁,沈雪石,等.基于正交遗传算法和灵敏度分析的体系仿真优化方法[J].系统工程理论与实践.2007,27(9):97-106.
    [38] Bodt B, Forester J. Hansen C,et al.An Experimental Testbed for BattlePlanning[R]. organization, 2000.
    [39] Jang J S R, Sun C T, Mizutani E. Neuro-Fuzzy and Soft Computing[M]. PrenticeHall Inc, 1997.
    [40] Zadeh A L.Fuzzy Logic and Soft Computing:Issues,Contentions andPerspectives[C].lizuka.Japan: 1994: 1-2.
    [41] Bonissone P P, Subbu R, Eklund N, et al. Evolutionary algorithms+ domainknowledge= real-world evolutionary computation[J]. IEEE Transactions onEvolutionary Computation. 2006, 10(3): 256-280.
    [42]董占球,刘岩.一类智能计算思想:按自然法则计算[J].计算机科学.1996,23(03):14-16.
    [43]钱学森.创建系统学[M].太原:山西科技出版社,2001.
    [44]于景元.钱学森综合集成体系[J].西安交通大学学报:社会科学版.2006,26(6):40-47.
    [45] Hussain A. Cognitive Computation: An Introduction[J]. Cognitive Computation.2009, 1(1): 1-3.
    [46] Haikonen P O A. The Role of Associative Processing in Cognitive Computing[J].Cognitive Confutation. 2009, 1(1): 42-49.
    [47] Duch W.Computational creativity[C].Proceedings of International JointConference on Neural Networks. 2006: 435-442.
    [48] Koestler A. The Act ofCreation[M]. Macmillan, 1964.
    [49] Boden M A.The creative mind: myths and mechanisms[M]. 1991.
    [50] Newell A, Simon H A. Human Problem Solving[M]. Englewood Cliffs, NJ:Prentice Hall, 1972.
    [51] Newell A, Simon H A. GPS, A Program that Simulates Human Thought[M]. E. A.Feigenbaum and J. Feldman (eds.), R. Oldenbourg KG . 1963.
    [52] FauconnierG. Turner M. Conceptual integration networks[J]. Cognitive Science: AMultidisciplinary Journal. 1998,22(2): 133-187.
    [53] Wiggins G A. Searching for computational creativity[J]. New GenerationComputing. 2006, 24(3): 209-222.
    [54] Forth J,Mclean A, Wiggins G. Musical Creativity on the ConceptualLevel[C].Proceedings of 2008 Computational Creativity Conference. 2008: 21-30.
    [55] Leon C, Gervas P. Creative Storytelling Based on Exploration and Transformationof Constraint Rules[C].Proceedings of Computational Creativity Conference 2008.2008:51-60.
    [56] Byrne W. Schnier T, Hendley R J. Computational Intelligence and Case-basedCreativity in Design[C].2008: 31-41.
    [57] Finke R, Ward T,Smith S.Creative cognition:Theory, research andapplications[M]. Cambridge: MIT press, 1992.
    [58] Simonton D K. Origins of genius: Darwinian perspectives on creativity[M]. OxfordUniversity Press, USA, 1999.
    [59] Stermberg R J. Views on Origins of Genius[J]. Treands in cognitive science. 2000,4(6): 50.
    [60] Gabora L. Creative thought as a nondarwinian evolutionary process[J]. The Journalof Creative Behavior. 2005, 39(4): 262-283.
    [61]范秋生.基于遗传程序设计的机构创新设计[J].黄冈职业技术学院学报.2008,10(3):19-21.
    [62] Romero J M P. The Art of Artificial Evolution: A Handbook on Evolutionary Artand Music. Natural Computing Series[M]. Berlin: Springer. 2008.
    [63] Gabora L. Cognitive mechanisms underlying the creative process[C].Proceedingsof the 4th conference on Creativity & cognition. Loughborough. UK: ACM Press,2002: 126-133.
    [64] Chengyi S,Yan S,Junwei L. Mind-Evolution-based Machine Learning:Framework and The Implementation of Optimization[C].Proc of IEEE Int. Conf.on Intelligent Engineering System. 1998: 355-359.
    [65]王凌,张亮,郑大钟.仿真优化研究进展[J].控制与决策.2003,18(3):257-262.
    [66] Buchholz P, Thummler A. Enhancing Evolutionary Algorithms With StatisticalSelection Procedures For Simulation Optimization[C].Orlando, Florida : 2005:842-852.
    [67] Dengiz B, Alabas C. Simulation optimization using tabu search[C].Proceedings ofthe 2000 Winter Simulation Conference. Orlando, Florida: IEEE Press, 2000:805-810.
    [68] Fu M C,Glover F W, April J. Simulation optimization: a review, newdevelopments, and applications [C].Proceedings of the 37th conference on Wintersimulation. Orlando, Florida : Winter Simulation Conference. 2005: 83-95.
    [69] Azadivar F. Simulation optimization methodologies [C].Proceedings of the 31stconference on Winter simulation. Phoenix, Arizona, United States : ACM Press,1999:93-100.
    [70] Glynn P W. Likelihood ratio gradient estimation for stochastic systems[J].Commun. ACM. 1990, 33(10): 75-84.
    [71] Ho Y C. On the perturbation analysis of discrete-event dynamic systems[J]. Journalof Optimization Theory and Applications. 1985, 46(4): 535-545.
    [72] Neddermeijer H G, Van Oortmarssen G J. A Framework for Response SurfaceMethodology for Simulation Optimization[C].Proceedings of the 2000 WinterSimulation Conference. Orlando, Florida: IEEE Press, 2000: 129-136.
    [73]郭宇,廖文和,程筱胜,等.基于AiNet的仿真优化加速/求解器研究[J].中国机械工程.2004,15(24):2214-2216.
    [74]顾婷,廖文和,郭宇,等.仿真优化加速求解器的研究与开发[J].机械制造与自动化.2007,36(4):3-6.
    [75] Rubinstein R Y, Shapiro A. Discrete event systems: Sensitivity analysis andstochastic optimization by the score function method[M]. Wiley New York, NY,1993.
    [76] Deng G. Ferris M C. Variable-number sample-path optimization[J]. MathematicalProgramming. 2009, 117(1): 81-109.
    [77] Cave A, Nahavandi S, Kouzani A. Simulation Optimization for Process SchedulingThrough Simulated Annealing[C].Proceedings of the 2002 Winter SimulationConference. IEEE Press, 2002: 1909-1913.
    [78] Eskandari H, Rabelo L, Mollaghasemi M. Multiobjective Simulation OptimizationUsing An Enhanced Genetic Algorithm [C].Proceedings of the 37th WinterSimulation Conference. Orlando, FL: IEEE Press, 2005: 833-841.
    [79] Wong M L. Lam W. Leung K S. Using evolutionary programming and minimumdescription lengthprinciple for data mining of Bayesian networks[J]. IEEETransactions on Pattern Analysis and Machine Intelligence. 1999, 21(2): 174-178.
    [80] Konak A. Kulturel-Konak S. Simulation Optimization Using Tabu Search: AnEmperical Study[C].Proceedings of the 37th Winter Simulation Conference.Orlando, FL: IEEE Press, 2005: 2686-2692.
    [81]白子建,贺国光.基于禁忌算法的快速公交网络系统仿真优化[J].计算机工程与应用.2007,43(17):226-229.
    [82] Boesel J, Glover F. Future of Simulation Optimization[C].Proceedings of the 2001 Winter Simulation Conference. Piscataway, NJ: IEEE Press, 2001: 1466.
    [83] April J, Glover F, Kelly J P. et al. Simulation-based optimization: practical introduction to simulation optimization [C].Proceedings of the 35th conference on Winter simulation. New Orleans, Louisiana : Winter Simulation Conference, 2003: 71-78.
    [84] Better M. Glover F, Laguna M. Advances in analytics: Integrating dynamic data mining with simulation optimization[J]. IBM Journal of Research and Development. 2007, 51(3-4): 477-487.
    [85]王凌,吉利军,郑大钟.基于代理模型和遗传算法的仿真优化研究[J].控制与决策.2004,19(6):626-630.
    [86]赵骅,陈晓慧,何权.用正交试验设计法实现JIT系统的仿真优化[J].工业工程与管理.2004,9(3):41-44.
    [87] Marshak W P. Winkler R. Fiebig C B, et al. Evaluating intelligent aiding of course of action decisions using the Fox genetic algorithm in 2-d and 3-d interfaces[C].Proceedings of the 3rd Annual FedLab Symposium. 1999
    [88] Kewley R H. Embrechts M J. Computational military tactical planning system[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews. 2002, 32(2): 161-171.
    [89] Cavallaro K L, Captain U. Analyzing the Interdiction of Sea-Borne Threats Using Simulation Optimization[R]. Air Force Inst Of Tech Wright-Patterson Afb Oh School Of Engineering And Management, 2007.
    [90] Popken D, Cox L. A Simulation-optimization Approach to Air Warfare Planning[J].The Journal of Defense Modeling and Simulation: Applications, Methodology,Technology. 2004, 1(3): 127.
    [91] Evans E C. Simulation Optimization Approach To The Design Of UnmannedAerial Vehicles[D]. Air Force Institute of Technology, 2008.
    [92] Lee H, Zeigler B P.Kim D. A Devs-Based Framework For SimulationOptimization: Case Study Of Link-11 Gateway Parameter Tuning[C].2008
    [93]刘喜春,郑华,仲辉,等.备件配置优化问题研究[J].系统工程与电子技术.2008,30(10):1934-1937.
    [94] Holland J V. Michelsen R E, Powell D R, et al. Generative Analysis: Automated Concept Exploration Using Multi-Agent Simulations[J].In 16th Symposium -1999 Ismor International Symposium On Military Operational Research. Los Alamos National Laboratory, 1999: 4699-4715.
    [95]胡润涛,胡晓峰.基于数据耕耘方法探索战争中的非线性[J].计算机仿真.2009(002):1-3.
    [96]黄柯棣,鞠儒生,黄健,等.基于数据耕种的作战仿真理论及其关键技术研究综述[J].系统仿真学报.2008,20(013):3337-3341.
    [97]李明忠,毕长剑,刘小荷,等.基于作战模拟的数据耕种技术研究[J].计算机仿真.2008,25(1007):1-4.
    [98]胡晓峰,杨镜宇,胡润涛.数据耕耘:一种基于协同的探索性仿真分析方法[J].系统仿真学报.2007,19(007):1651-1655.
    [99]鞠儒生.基于数据耕种与数据挖掘的系统效能评估方法研究[D].长沙:国防科技大学研究生院博士论文,2006.
    [100] Ficici S G. Solution Concepts in Co-evolutionary Algorithms[D]. BrandeisUniversity, 2004.
    [101] Friman H. Home G E. Using agent models and data farming to explore networkcentric operations[C].Proceedings of the 37th conference on Winter simulation.Orlando, FL: IEEE Press, 2005: 1094-1100.
    [102] Walton D J. Paulo E P, MccarthyC J, et al. Modeling force response to small boatattack against high value commercial ships[C].2005: 988-991.
    [103] Barry P, Koehler M. Simulation in context: using data farming for decisionsupport [C].Proceedings of the 36th conference on Winter simulation. Washington.D.C. : Winter Simulation Conference, 2004: 814-819.
    [104]杨镜宇,司光亚,胡晓峰.战争分析仿真实验:战争工程方法学的一类实践[J].系统仿真学报.2005,17(11):2775-2779.
    [105]彭英武,胡晓峰,司光亚,等.战争分析综合仿真实验环境研究[J].系统仿真学报.2007,19(17):3966-3969.
    [106]邓剑,彭英武,张广军,等.战争分析仿真实验运行过程中的若干问题讨论[J].系统仿真学报.2007,19(18):4312-4315.
    [107]彭英武,曦吴,胡晓峰,等.战争分析仿真实验综合分析系统研究[J].系统仿真学报.2008,20(11):2859-2863.
    [108] Hart J.,Kamber M.数据挖掘——概念与技术[M].机械工业出版社,2001.
    [109] Painter M K. Erraguntla M. Jr Gary L Hogg, et al. Using simulation, data mining, and knowledge discovery techniques for optimized aircraft engine fleetmanagement [C].Proceedings of the 38th conference on Winter simulation. Monterey, California : IEEE Press, 2006: 1253-1260.
    [110]李建平.仿真元建模中的拟合方法及其应用研究[D].长沙:国防科技大学研究生院博士论文,2007.
    [111]张为民.计算机作战实验的数据挖掘[J].海军学术研究.2005(7):33-34.
    [112] Ju R. Wu T. Huang J. et al. Svm-Based Knowledge Discovery In CombatSystems[J]. Dynamics of Continuous, Discrete and Impulsive Systems Series B:Applications & Algorithms. 2007(14): 875-884.
    [113] Remondino M, So Svizzera C, Correndo G. Data mining applied to agent basedsimulation[C]. Proceedings 19th European Conference on Modeling andSimulation. 2005: 374-380.
    [114] Poropudas J. Virtanen K. Analyzing air combat simulation results with dynamicBayesian networks [C].Proceedings of the 39th conference on Winter simulation.Washington D.C. : IEEE Press, 2007: 1370-1377.
    [115] Poropudas J. Virtanen K. Influence diagrams in analysis of discrete eventsimulation data[C].Proceedings of the 2009 Winter Simulation Conference. 2009:696-708.
    [116]石峰,吴东坡,李群,等.面向复杂仿真因果追溯的行为建模方法[J].系统仿真学报.2007,19(2):405-409.
    [117] Kaste R. O May J, Heilman E. et al. From Simulation to Insights: Experiments in the Use of a Multi-criteria Viewer to Develop Understanding of the COA Space[C].Proceedings of US Army Research Laboratories Collaborative Technology Alliances Symposium. Univ. of Maryland Conference Center, College Park. MD:2003: 1-6.
    [118]司马贺.人工科学:复杂性面面观[M].上海科技教育出版社,2004.
    [119] Hammond G T. The Mind of War: John Boyd and American Security[M]. Smithsonian Institution Press, 2001.
    [120]仲辉.基于MCBA的舰艇编队NCO行为建模方法及其关键技术研究[D].长沙:国防科技大学研究生院博士论文,2007.
    [121] Alberts D S, Garstka J J, Hayes R E, et al. Understanding information agewarfare[M]. CCRP, 2001.
    [122] Fujimoto R M. Parallel simulation: parallel and distributed simulation systems[C].Proceedings of the 33nd conference on Winter simulation. Arlington, Virginia :IEEE Computer Society, 2001: 147-157.
    [123] Low Y H, Lim C C, Others. Survey of languages and runtime libraries for paralleldiscrete-event simulation[J]. Simulation. 1999, 72(3): 170.
    [124] Goldberg A. Virtual time synchronization of replicated processes[C].6thWorkshop on Parallel and Distributed Simulation. 1992: 107-116.
    [125] Hybinette M, Fujimoto R. Cloning: a novel method for interactive parallelsimulation [C].Proceedings of the 29th conference on Winter simulation. Atlanta.Georgia, United States : IEEE Computer Society, 1997: 444-451.
    [126] Goldberg D E. Genetic algorithms in search, optimization and machinelearning[M]. Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA,1989.
    [127] Rudolph G. Convergence analysis of canonical genetic algorithms[J]. IEEE transactions on Neural Networks. 1994, 5(1): 96-101.
    [128]马永杰,马义德,蒋兆远,等.一种快速遗传算法及其收敛性[J].系统工程与电子技术.2009,31(3):714-718.
    [129] Chafeka D. Xuan J. Rasheed K. Constrained multi-objective optimization using steady state genetic algorithms[C].Proceedings of the Genetic and Evolutionary Computation Conference. Springer-Verlag Germany: 2003: 813-824.
    [130] Boesel J, Bowden R O, Glover F, et al. Future of simulation optimization[J].Proceedings of the Winter Simulation Conference, 2001. 2001: 1466-1470.
    [131]国家教委社会科学研究与艺术教育司.自然辩证法概论[M].高等教育出版社.2003.
    [132]文贵华.创新计算的旋转动力学理论研究[D].广州:华南理工大学出版社,2001.
    [133] Wallas G. The art of thought[M]. J. Cape, 1926.
    [134] Perkins D N. The mind's best work[M]. Harvard Univ Press, 1981.
    [135] Amabile T M. The social psychology of creativity: A componentialconceptualization[J]. Journal of personality and social psychology. 1983, 45(2):357-376.
    [136] Ram A. Wills L. Domeshek E. et al. Understanding the creative mind: a review ofMargaret Boden's Creative Mind[J]. Artificial intelligence. 1995,79(1): 111-128.
    [137] Lawson B. How Designers Think[M]. Architectural Press. Oxford, 1997.
    [138] Shneiderman B. Creativity support tools[J]. Communications of the ACM. 2002,45(10): 116-120.
    [139] Santanen E. Briggs R. De Vreede G J. Toward an Understanding of CreativeSolution Generation [C].Proceedings of the 35th Annual Hawaii InternationalConference on System Sciences. Hawaii: IEEE Computer Society, 2002: 1-10.
    [140] Funke J.Solving complex problems: Exploration and control of complexsystems[J]. Complex problem solving: Principles and mechanisms. 1991: 185-222.
    [141]贺善侃.创新思维概论[M].东华大学出版社,2006.
    [142] Wiggins G. A Preliminary Framework for Description, Analysis and Comparisonof Creative Systems[J]. Journal of Knowledge Based Systems. 2006, 19(7):449-458.
    [143] Seltzer K. Bent ley T. The creative age: Knowledge and skills for the neweconomy[M]. Demos, 1999.
    [144] Feldhusen J F. Creativity: A Knowledge Base, Metacognitive Skills, andPersonality Factors[J]. Journal of Creative Behavior. 1995, 29(4): 255-268.
    [145] Weisberg R W. Creativity and knowledge: A challenge to theories[J]. Handbookof creativity. 1999, 226: 250.
    [146] Keeney R L. Value-focused thinking: A path to creative decisionmaking[M].Harvard Univ Press, 1996.
    [147]钟义信.人工智能理论:从分立到统一的奥秘[J].北京邮电大学学报.2006,29(003):1-6.
    [148] Simon H A. The Sciences of the Artificial[M]. MA: MIT Press, 1969.
    [149] Candy L. Computers and creativity support: Knowledge, visualisation andcollaboration[J]. Knowledge-Based Systems. 1997, 10(1): 3-13.
    [150] Miller G A. The magical number seven, plus or minus two: some limits on ourcapacity for processing information.[J]. Psychological Review. 1956, 63(2): 81-97.
    [151] Wang Y. Wang Y. Cognitive Models of the Brain [C].IEEE Computer Society,2002: 259-269.
    [152]张淑华,朱启文,杜庆东.认知科学基础[M].科学出版社,2007.
    [153] Karmiloff-Smith A. Beyond modularity: A developmental perspective oncognitive science[M]. MIT press, 1999.
    [154] Pereira F C, Cardoso A. Conceptual blending and the quest for the holy creativeprocess[C].Proceedings of the 2nd Workshop on Creative Systems. Lyon, France:2002
    [155]王飞跃.关于复杂系统的建模,分析,控制和管理[J].复杂系统与复杂性科学.2006,3(2):26-34.
    [156]A M.Meystel J.S.Albus.智能系统一结构、设计与控制[M].电子工业出版社,2005.
    [157] Jackson Jr L C J A, Jones L C B L, Lehmkuhl M L J, et al. An Operational Analysis for Air Force 2025: An Application of Value-Focused Thinking to Future Air and Space Capabilities[R]. . 1996.
    [158] Guihua W. Oilun Z. Others. An integrated creative reminding algorithm[C].Proceedings of 2000 IEEE international conference on system, man and cybernetics. Tennessee, USA: IEEE Press, 2000: 641-644.
    [159] Bird J, Stokes D. Minimal Creativity. Evaluation and Fractal Pattern Discrimination[J]. Proceedings of Computational Creativity conference. 2007: 121-128.
    [160]廖海林.关于记忆与遗忘定量研究的两个数学模型[J].江西广播电视大学学报.2003,20(4):41-42.
    [161]张格伟,廖文和,刘长毅,等.知识的记忆遗忘模型及其在知识管理中的应用[J].南京航空航天大学学报.2008,40(2):265-270.
    [162] Craik F. Rough D. De Broadbent. On the transfer of information from temporaryto permanent memory[J]. Pilosophical Transactions of Royal Society of London.Series b, Biological Sciences. 1983: 341-359.
    [163] Kirton M J. Adaptors and innovators: A description and measure[J]. Journal ofApplied Psychology. 1976, 61(5): 622-629.
    [164] Higgins L F. A comparison of scales for assessing personal creativity inIS[C].Proceedings of the 29th Hawaii International Conference on System Sciences.Hawaii: 1996: 13-19.
    [165] Higgins L F,Couger J D.Comparison of KAI and ISP instruments fordetermining style of creativity of IS professionals[C].Proceedings of the 28thHawaii International Conference on System Sciences. Hawaii: 1995: 566-570.
    [166]陈光全.怎样避免思维定势的负效应[J].新华文摘.1985(9).
    [167]李剑锋,王菲.唐山学院学报[J].2003(1):3-5.
    [168] Pearl J. Shafer G. Probabilistic reasoning in intelligent systems: networks of plausible inference[M]. JSTOR, 1988.
    [169]高隽.人工神经网络原理及仿真实例[M].北京:机械工业出版社,2003.
    [170]黄解军.贝叶斯网络结构学习及其在数据挖掘中的应用研究[D].武汉大学,2005.
    [171] Akaike H. A new look at the statistical model identification[J]. IEEE Transactionson Automatic Control. 1974, 19(6): 716-723.
    [172] Schwarz G. Estimating the dimension of a model[J]. Annals of Statistics. 1978(6):461-464.
    [173] Cooper G F, Herskovits E. A Bayesian method for the induction of probabilisticnetworks fromdata[J]. Machine learning. 1992, 9(4): 309-347.
    [174] Heckerman D. A tutorial on learning with Bayesian networks[R]. MicrosoftResearch, 1995.
    [175] Riggelsen C. Learning Bayesian Networks: A MAP Criterion for Joint Selectionof Model Structure and Parameter [C].Proceedings of the 2008 Eighth IEEEInternational Conference on Data Mining. IEEE Computer Society, 2008: 522-529.
    [176] Mehmet K, Gregory C. A bayesian network scoring metric that is based onglobally uniform parameter priors[C].Proceedings of the 18th Annual Conferenceon Uncertainty in Artificial Intelligence. San Francisco, CA: Morgan KaufmannPublishers, 2002: 251-258.
    [177] Suzuki J. Learning Bayesian belief networks based on the minimum descriptionlength principle:Basic properties[J]. IEICE RANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS ANDCOMPUTER SCIENCES E SERIES A. 1999, 82: 2237-2245.
    [178] Heckerman D, Geiger D, Chickering D M. Learning Bayesian networks: Thecombination of knowledge and statistical data[J]. Machine learning. 1995, 20(3):197-243.
    [179] J R. Stochastic Complexity in Statistical Inquiry[M]. World Scientific Press,1989.
    [180] Chickering D M. Learning Bayesian networks is NP-complete[J]. Learning fromdata: Artificial intelligence and statistics v. 1996: 121-130.
    [181] Schmidt D C. Learning probabilistic relational models[M]. Relational DataMining. Springer-Verlag New York, Inc., 2000, 307-333.
    [182] Wellman M P. Breese J S, Goldman R P. From knowledge bases to decisionmodels.[J]. Knowledge Engineering Review. 1992, 7(1): 35-53.
    [183]胡笑旋.贝叶斯网络建模技术及其在决策中的应用[D].合肥工业大学博士论文,2006.
    [184] Langseth H, Nielsen T D. Fusion of domain knowledge with data for structural learning in object oriented domains[J]. The Journal of Machine Learning Research. 2003, 4: 339-368.
    [185] Kraaijeveld P C, Druzdzel M J, Onisko A, et al. Genierate: An interactivegenerator of diagnostic bayesian network models[C].16th International Workshop on Principles of Diagnosis. Monterey, California, USA: 2005
    [186]Berget’.贾乃光.吴喜之.统计决策论及贝叶斯分析[M].中国统计出版社,1998.
    [187]王玮,周海云,尹国举.使用混合Beta分布的Bayes方法[J].系统工程理论与实践.2005,25(9):142-144.
    [188] Kirkpatrick S, Gelatt C D. Vecchi M P. Optimization by simulated annealing[J]. Science. 1983,220:671-680.
    [189]邢文训,谢金星.现代优化计算方法[M].北京:清华大学出版社,2005.
    [190]邢永康,沈一栋.学习信度网的结构[J].计算机科学.2000,27(10):83-87.
    [191]张少中.基于贝叶斯网络的知识发现与决策应用研究[D].大连理工大学,2003.
    [192] Dougherty J, Kohavi R, Sahami M. Supervised and Unsupervised Discretizationof Continuous Features[C].Proceedings of the 12th international conference.Morgan Kaufmann, 1995: 194-202.
    [193] Friedman N, Goldszmidt M. Discretizing continuous attributes while learningBayesian net works [C]. In Proc 13th International Conference on Machine Learning.1996: 157-165.
    [195] Hellinger E. De Branges L, Gohberg I, et al. Topics in Operator Theory: Ernst D.Hellinger Memorial Volume[M]. Birkhauser, 1990.
    [196] Kullback S, Leibler R A. On information and sufficiency[J]. The Annals ofMathematical Statistics. 1951: 79-86.
    [197] Jeffreys H. An invariant form for the prior probability in estimation problems[J].Proceedings of the Royal Society of London. Series A, Mathematical and PhysicalSciences. 1946:453-461.
    [198] Johnson D H, Sinanovic S. Symmetrizing the kullback-leibler distance[J]. IEEETransactions on Information Theory. 2001.
    [199] Spiegelhalter D J, Lauritzen S L. Sequential updating of conditional probabilitieson directed graphical structures[J]. Networks. 1990, 20(5): 579-605.
    [200]邱学军.防空兵指挥决策中优选作战方案的效用模型研究[J].现代防御技术.2001,29(6):23-26.
    [201]阮智,李庆民,于志良,等.基于多阶段多指标的编队干扰方案协同决策研究[J].系统工程与电子技术.2009,31(6):1404-1408.
    [202]王红军,时进发,迟忠先.基于协同的多指标决策网构建及效能计算[J].辽宁工程技术大学学报:自然科学版.2008,27(003):420-423.
    [203]王红军,迟忠先.编队干扰方案协同决策研究[J]系统工程理论与实践.2007,27(004):171-176.
    [204]王红军,迟忠先.基于协同的舰载软硬武器反导决策优化[J].控制与决策.2007.22(003):299-303.
    [205] Alberts D S, Hayes R E. Power of the edge: Command, Control in the Information Age[M]. US DOD Command and Control Research CenterPublications, 2003.
    [206] Lacave C, D I Ez F J. A review of explanation methods for Bayesian networks[J].The Knowledge Engineering Review. 2003, 17(2): 107-127.
    [207] Charniak E. Shimony S E. Cost-based abduction and MAP explanation[J].Artificial Intelligence. 1994, 66(2): 345-374.
    [208] Santos E. On the generation of alternative explanations with implications forbelief revision[C].Proceedings of the 7th Conference on Uncertainty in ArtificialIntelligence. San Mateo, CA: Morgan Kaufmann Publishers, 1991: 339-347.
    [209] Shimony S E. A Probabilistic Framework for Explanation[R]. Brown University,1991.
    [210] Holmes D E, Jain L C. Innovations in Bayesian Networks: Theory andApplications[M]. Springer Verlag, 2008.
    [211] Liftman M. Initial experiments in stochastic search for Bayesiannetworks[C].Procedings of the Sixteenth National Conference on ArtificialIntelligence. 1999:667-672.
    [212] Korb K B, Nicholson A E. Bayesian artificial intelligence[M]. CRC Pr I Lie,2004.
    [213]过武宏,袁彩锦,朱汉雨.巡航导弹潜艇发展历程及趋势[J].飞航导弹.2009(7):27-34.
    [214]方有培,汪立萍,赵霜,等.突破航母编队防御的导弹技术研究[J].航天电子对抗.2006,22(3):4-8.
    [215]建模与仿真教研室.多平台反舰导弹仿真模型报告[R].国防科学技术大学,2001.
    [216] Fischer G, Nakakoji K. Computational environments supporting creativity in the context of lifelong learning and design[J]. Knowledge-Based Systems. 1997, 10(1): 21-28.
    [217]王德利,高莹.竞争进化与协同进化[J].生态学杂志.2005,24(10):1182-1186.
    [218] Strickberger M W. Evolution. 2ed[M]. Boston, MA, Jones and Bartlett. 1996.
    [219]http://wiki.mbalib.com/w/index.php?title=%E9%9B%86%E4%B8%AD%E6%80 %9D%E7%BB%B4&redirect=no [OL].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700