用户名: 密码: 验证码:
基于天基监视的空间目标测向初轨确定研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天基空间目标监视具有重要的军事和民用价值,天基可见光(Space-Based Visible, SBV)在当前并将在以后相当长的时间内成为主要的天基监视手段。当前美国已有在轨运行的天基监视系统,而我国在此方面研究较为薄弱,为了未来建立相应系统,应开展天基轨道确定等相关关键技术研究。
     论文基于SBV监视背景,采用理论分析与数值验证相结合研究了天基测向初轨确定,着重研究了初轨确定技术中的方法、模型和解算等相关问题,尤其是传统方法在天基测向定轨中的改进,并研究了地月转移轨道的天基测向初定轨问题与地月转移轨道和卫星编队构形设计等相关问题。主要内容与结论有:
     首先,研究了空间目标对单星和星座观测平台的可见性及观测数据的预处理。研究表明,星座平台可以适当降低各种约束对可见性的不利影响;近地空间目标比中高轨道目标的天基可见性差;平滑随机噪声需要根据平滑多项式阶数折衷考虑采样率和采样点数。
     其次,重点研究了双r迭代法、Gauss法和Laplace法在天基测向初定轨中的应用及相应改进,包括定轨误差、模型解算和初值问题等等,分析了观测误差对天基测向初定轨的影响,提出了消除误差定轨模型。
     通过该部分研究得到如下主要结论:
     1.传统地基定轨方法较适合于低轨平台确定中高轨空间目标,在天基测向初定轨上会出现平凡解和多值性问题,其本质在于缺乏距离观测信息,可以通过改进迭代算法和迭代初值等手段进行抑制,但是很难完全消除;
     2.论文提出的天基双ρ迭代法及初值求解和解算算法,基本解决了天基稀疏测向初定轨中的迭代发散与平凡解问题,仿真表明解算成功率在90%以上;
     3.定轨模型的截断误差对定轨结果影响不大,观测误差是主要的定轨误差因素;
     4.如果不进行观测数据的预处理或者预处理失效时,观测系统差的模型对于分析其影响并进行消除相当重要;在观测数据稀疏时,随机噪声有可能造成平凡解。
     再次,研究了星座对空间目标的测向初定轨,尤其从解算过程分析了天基测向初定轨模型奇异性和平凡解等问题。
     通过该部分研究得到如下主要结论:
     1.星座平台较好的观测几何可以消除平凡解,提高定轨成功率,其中星座同步定轨较优;星座定轨可以有效削弱或消除随机噪声的影响,减弱或者部分消除观测系统差的影响;同时,可以极大地缩短定轨所需弧段,但是对高轨目标成功定轨仍需一定长度的弧段;
     2.观测采样率对于成功定轨所需弧段影响有限;观测几何对单星定轨影响比对星座定轨影响大;增加弧段长度和采样率有利于克服观测几何的不利影响,提高定轨成功率;
     3.改善观测条件以及避开某些特定定轨时刻,均可以从一定程度上降低平凡解概率;模型奇异性是定轨模型固有的问题,不能通过外界手段进行消除,只能在定轨时避免相应时刻。
     最后,作为对天基测向初定轨研究的进一步检验和拓展应用,开展了地月转移轨道的天基测向初定轨等研究,除利用单星和星座平台外,尤其研究了利用卫星编队作为观测平台的可行性,同时介绍了卫星编队设计等相关内容。
     该部分研究表明,模型误差使得月球探测器的单星定轨误差远大于一般应用卫星,且利用星座双星定轨并非弧段越长越好;编队同步定轨精度明显优于非同步定轨,后者定轨弧长和观测几何影响与单星定轨基本相同;编队构形较小时,构形尺寸对定轨结果影响不大。
     论文的研究可为我国建立天基监视系统提供相应的理论和技术支撑,并为我国探月二三期工程以及未来深空探测的天基测定轨提供一定的借鉴。
The space-based surveillance is valued highly on civil and military applications, which would mainly use the SBV, space-based visible, currently and for a fairly long future period. Today, USA has its on-orbit space-based surveillance system(SBSS). However, China is weak on this research. So it is urgent to develop the key technologies including space-based orbit determination(OD) for our own system in the future.
     Under the above background, this dissertation studies the space-based initial orbit determination(SBIOD) by combining theoretical analysis and numerical verification, stresses on relative issues including methods, models, algorithms, etc, especially on improvements of tradition methods for the space-based purpose. At the end of the dissertation, the SBIOD of the cislunar transfer trajectory is researched, incidentally designs of the trajectory and the formation flying(FF) configuration.
     The main content and conclusions are drawn as follows:
     First, visibilities of space targets to satellite and constellation platforms and the data pretreatment are researched. Results show that the constellation platform can restrain adverse impacts of visibility constraints, the visibilities near the earth are worse than the ones of high targets, and smoothing rand error is a tradeoff among fitting polynomial degree, sampling rate and amount.
     Second, applications and improvements of the double r iteration method, the Gauss method and the Laplace method for space-based purposes are studied, including OD accuracy, algorithms and initial values. The impact of measure errors on OD is also analyzed and models under error are presented as a result.
     Conclusions of this part consist of four points as follows:
     1. The traditional methods are fit for low platforms to measure high targets and would bring on phenomena of multivalue and self-solution. The phenomena, which derive from the absence of range measurement, couldn’t be eliminated and only could be decreased by improvements of iteration algorithms and initial values.
     2. The space-based doubleρiteration method together with iteration algorithms and initial values brought forward in the dissertation could basically solve the above phenomena with sparse data. The numerical result shows an over 90% success rate.
     3. The model error is negligible and measurement errors play an important role.
     4. The systemic measurement error model is vital to error analysis and elimination when the data pretreatment is unconsidered or failed. Under the sparse data, the rand errors could result in the self-solution.
     Third, using the constellation to determine target orbits is discussed. Based on the solution process, the self-solution and the model singularity are analyzed.
     The following conclusions could be achieved :
     1. The constellation has a preferable visible geometry and can eliminate the self-solution, whose synchronized model is excellent. Also has the constellation some merits, such as effectively weakening or eliminating impacts of rand errors, lowering or partly eliminating influences of systemic measurement errors, and greatly shortening required measurement arcs. However, it still needs a fair measurement arc for high ODs.
     2. The effect of sampling rate on required measurement arcs is limited. The visibility influences the single platform more than the constellation. Increasing arc length and sampling rate is favorable to overcome visibility influences and to gain a high success rate.
     3. The self-solution can be reduced at a certain extent by improving measure conditions and by avoiding some particular times. The model singularity is intrinsic and cannot be eliminated by outside resorts. So it should avoid to determinate orbits at that time.
     Finally, as the further verification and expanded applications, the SBIOD of the cislunar transfer trajectory is investigated. The platforms consist of a single satellite, a constellation and especially a FF. The FF configuration design is also researched at the last chapter.
     According to the studies of the last chapter, model errors make the cislunar OD error far more than common space targets. The long measurement arc is not always preferable for constellation platforms. The FF synchronized model is obviously more favorable than the unsynchronized one which is nearly the same as the single satellite platform on impacts of measurement arcs and visibilities. When the FF is small, the size of formation has tiny impact on the results.
     The dissertation could support the foundation of our SBSS theoretically and technically and could be used as a reference of space-based orbit measurement and determination in our future lunar and deep space exploration.
引文
[1] Klinkrad H. Monitoring Space–Efforts Made by European Countries[C/OL]. http://www. fas. org/spp/military/program/track/klinkrad. Pdf
    [2] United States Air Force Scientific Advisory Board. Space Surveillance, Asteroids and Comets, and Space Debris[R], 1997.06
    [3]李颖,张占月,方秀花.空间目标监视系统发展现状及展望[J].国际太空, 2004, (6):28-32
    [4] Sridharan R, Pensa A F. U.S. Space Surveillance Network Capabilities[C], SPIE, 1998(3434):88-100
    [5] Thrall M L. Orbit Determination of Highly Eccentric Orbits using a RAVEN Telescope [D]. Naval Postgraduate School. 2005
    [6] Africano J L, Kervin P W, Sydney P F, et al. AMOS Debris Observations [C]. Proceedings of the third European Conference on Space Debris. 2001
    [7] McCall G H. Space Surveillance[R/OL]. http://www.fas.org/spp/military/ program/track/mccall.pdf
    [8] Eather R H, Lance C A, Vu Q. Space Debris Detection and Analysis[R], Phillips Labroratory., 1996, 2
    [9] Umehara H. Ground-Based Optical Scan and Parallel Orbit Determination of near Geosynchronous Objects [J]. AIAA2003-2373
    [10] Lambert J V, Kissell K E. Historical Overview of Optical Space Object Identification [J]. SPIE. 2000, 4091:159-163
    [11]直心义.庞大的美国空间目标监视系统[J].现代军事, 2001, (6):18-20
    [12] Anonymous. Ground-based Electro-optical Deep Space Surveillance[R/OL]. http://www.af.mil/factsheets/factsheet. asp?id=170
    [13] Houchard J, Kervin P, Africano J, et al. Orbital debris detection program highlights from the Air Force Maui Optical Station, SPIE., 1994(2214):7-20
    [14]魏晨曦.俄罗斯的空间目标监视、识别、探测与跟踪系统[J].中国航天, 2006, (8):39-41
    [15] Monitoring of GEO Satellites in Russian Space Surveillance Center[C]. Proceedings of the third European Conference on Space Debris. 2001
    [16] Schildknecht T, Hugentobler U, Verdun A. Optical Observations of Space Debris with the Zimmerwald 1-meter Telescope [J]. Advances in Space Research. 1997(19):221-228
    [17] Schildknecht T, Musci R, Ploner M, et al. Optical Observation of Space Debris in the Geostationary Ring [J]. Proceedings of the third European Conference on Space Debris. 2001
    [18]王杰娟,于小红.国外天基空间目标监视研究现状与特点分析[J].装备指挥技术学院学报, 2006, 17(4):33-37
    [19] Robert R O, Harold A B, Gibson J, et al. Midcourse Space Experiment(MSX): Planned Observations of Infrared Earthlimb and Terrestrial Backgrounds [C]. 34th Aerospace Sciences Meeting & Exhibit. 1996,1
    [20] Stair A T, Mill J D. The Midcourse Space Experiment (MSX) [J]. IEEE. 1997
    [21]侯振宁.美国天基红外系统(SBIRS)的发展现状[J].光机电信息, 2002, (8):30-33
    [22] Hoult C P, Wright R P. Space Surveillance Catalog Growth During SBIRS Low Deployment[R], AIAA, 1999(1):209-224
    [23] Sorensen H B, Hornsby J D. An Adaptive Performance Support System for Satellite Ground Systems Operators, Space 2004 Conference and Exhibit, 2004, 9
    [24] Smith M S. Military Space Programs: Issues Concerning DOD’s SBIRS and STSS Programs [R]. CRS Report for Congress, 2006,1
    [25] Paiva C A. Space-Based Missile Exhaust Plume Sensing: Strategies for DTCI of Liquid and Solid IRBM Systems [J]. AIAA2005-6820
    [26] Andreas N S. Space-Based Infrared System (SBIRS) System of Systems [J]. IEEE. 1997. 429-438
    [27] Davis D E. Military Space Mission Analysis [J]. AlAA, 2000-5246
    [28]范晋祥.美国弹道导弹防御系统的红外系统与技术的发展[J].红外与激光工程, 2006, 35(5):536-540, 550
    [29]张科科,周峰,傅丹鹰.天基空间目标监视可见光遥感器研究[J].航天返回与遥感, 2005, 26(4):10-14
    [30] Lyon R H. Geosynchronous Orbit Determination Using Space Surveillance Network Observations and Improved Radiative Force Modeling [D]. Massachusetts Institute of Technology. 2004
    [31] Stokes G H, etc. The Space-Based Visible Program[R]. AIAA Space 2000 Conference &Exposition. 2000, 9
    [32] Price M E, Blott R J, Laycock J. Future UK Space Surveillance Satellites[J], AIAA, 2003(2581)
    [33] Isobe S, Japanese Spaceguard Association. Japanese 0.5m and 1.0m Telescope to Detect Space Debris and Near-earth Asteroids [J]. Advances in Space Research. 1999(23):33-36.
    [34] Nonaka K, Sawabe M, Isobe S, et al. Some Results of GEO Space Debris Observations and Orbit Determination under Experimental Operation [C]. Proceedings of the third European Conference on Space Debris. 2001
    [35] Arimoto Y, Takami H, Hiromoto N, et al. Optical Tracking of Geostationary Satellites and Space Debris Using a Sensitive CCD Camera [J]. Journal of theCommunications Research Laboratory. 1994, 41(3):195-207
    [36] LeVan P D, Improved Space Object Awareness with Advanced Sensing Technologies, Space 2004 Conference and Exhibit, 2004, 9
    [37] Sun Hua-yan, XU Xiao-qin, Ni Guo-qiang. Analysis of space targets detection ability of spaceborne infrared detcetion system[J], Proceedings of SPIE, 2006(6031):6031121-1-6
    [38]吕洁,吴季,孙波.利用天基雷达观测低地轨道上的危险空间碎片[J].遥感技术与应用, 2006, 21(2):103-108
    [39] Oswald M, Wiedemann C, et al. Space-Based Radars for the Observation of Orbital Debris in GEO [J]. AIAA2003-6294
    [40]谢恺,林两魁.安玮等.天基雷达系统概念分析[J].现代雷达, 2006, 28(9):1-4
    [41] King Y J, Garnham J, Preiss B. Innovative Space-based Surveillance Concepts, AIAA Space 2001 Conference and Exposition, 2001, 8
    [42]崔华,赵玉洁.天基预警雷达及其对抗技术[J].航天电子对抗, 2006, 22(2):9-11
    [43]曹剑,王炳如,王昀等.国外天基雷达的发展趋势[J].电子工程师, 2005, 31(5):1-7
    [44]韦荻山,邢宁.美国的“天基雷达”计划[J].国际太空, 2005(12):18-23
    [45] Sharma J, Wiseman A, Zollinger G. Improving Space Surveillance with Space-Based Visible Sensor[R], MIT Lincoln Laboratory, 2001
    [46] Sharma J. Space surveillance with the space-based visible sensor [R]. MIT Lincoln Laboratory, 2000.
    [47]乔凯,王治乐,丛明煜.空间目标天基与地基监视系统对比分析[J].光学技术, 2006, 32(5):744-749
    [48]余建慧,苏增立,谭谦等.空间目标天基光学观测模式分析[J].量子电子学报, 2006, 23(6):772-776
    [49]谭莹.天基空间目标探测技术探讨[J].空间电子技术, 2006(3):5-9, 35
    [50]余建慧,苏增立.天基观测目标卫星光度特性分析[J].飞行器测控学报, 2006, 25(1):52-56
    [51]桑思武,许尤楠,刘艳华等.空间碎片天基光电光学可见条件与预报[J].天文研究与技术(国家天文台台刊), 2006, 3(3):271-274
    [52]彭华峰,陈鲸,张彬.天基光电望远镜对空间目标成像的模拟[J].光电工程, 2005, 32(10):14-17
    [53] Dyjak C P, Harrison D C. Space-Based Visible Surveillance Experiment [J]. SPIE. 1991, 1479:42-56
    [54] Stokes G H, Braun C V, Sridharan R, et al. The Space-Based Visible Program [C].AIAA Space 2000 Conference & Exposition. 2000
    [55] Gaposchkin E M, Braun C V, Sharma J. Space Based Space Surveillance with SBV [J]. Journal of Guidance, Control and Dynamics. 2000,23(1):148-152
    [56] Braun C V, Sharma J, Gaposchkin E M. SBV Metric Accuracy [J]. Journal of Guidance, Control and Dynamics. 2000,23(1):175-181
    [57] Sharma J. SBV Space Surveillance Performance [J]. Journal of Guidance, Control and Dynamics. 2000,23(1):170-174
    [58] Braun C V, Gaposchkin E M. Improvements to SBV Metric Accuracy Using Spacecraft Drift Corrections [J]. Journal of Guidance, Control and Dynamics. 2000,23(1):182-185
    [59] Abbot R I, Gaposchkin E M, Braun C V. MSX Precision Ephemeris [J]. Journal of Guidance, Control and Dynamics. 2000,23(1):186-190
    [60] Lambour R, Bergemann R, Braun C V, et al. SBV Space Object Photometry: Initial Results [J]. Journal of Guidance, Control and Dynamics. 2000,23(1):159-164
    [61] Capelle K, Sharma J. Geosynchronous Satellite Orbit Pattern’s Improvements to SBV Geosynchronous Search [C]. Proc. 2000 Space Control Conf.
    [62]袁庆智,孙越强,王世金等.天基微小空间碎片探测研究[J].空间科学学报, 2005, 25(3):212-217
    [63] Chioma V J. Orbit Estimation Using Track Compression and Least Squares Differential Correction [D]. Air Force Institute of Technology. 1997
    [64] Raol J R, Sinha N K. On the Orbit Determination Problem [J]. IEEE Trans. Aero. Elec. Sys. 1985,Aes-21(3):274-291
    [65]罗海银.导弹航天测控通信技术词典[M].国防工业出版社, 2001:385-388
    [66] Dewald L S. Orbit Determination from Visual Sightings: An Investigation of Two Angles-only Orbit Determination Processes Including a Science Activity for Middle and High School Students [R]. University of Colorado at Colorado Springs. 1998
    [67] Escobal P R. Methods of Orbit Determination [M]. John Wiley & Sons, Inc. , New York, 1965:187-358
    [68] BATE R R. Fundamentals of Astrodynamics [M]. Dover publications, Inc, New York, 1971:50-210
    [69] Battin R H. An Introduction to the Mathematics and Methods of Astrodynamics[M]. AIAA Education Series, 1999:30-208
    [70] Taff L G. on Gauss's method of orbit determination[R], Massachusetts Institute of technology Lincoln laboratory Technical note. 1979, 2
    [71] Taff L G, Hall D L. The use of angles and angular rates I: initial orbit determination[J]. Celestial Mechanics, 1977(14):431–438
    [72] Porfilio M, Piergentili F, Graziani F. Two-site orbit determination: The 2003GEO observation campaign from Collepardo and Mallorca[J]. Adv. Space Res. 2006(38):2084-2092
    [73] Sokolskaya M J. On the Laplacian orbit determination of asteroids[J]. Planet. Space Sci. , 1997, 45(12):1575-1580,
    [74]徐品新. Laplace轨道计算法的一种改革[J].天文学报, 1981, 22(4):346-349
    [75]李艳斌.改进的Laplace算法初轨计算的收敛问题[J].无线电通信技术, 1998, 24(2):57-61
    [76]刘林,王歆.考虑地球扁率摄动影响的初轨计算方法[J].天文学报, 2003, 44(2):175-179
    [77]刘林,王海红,胡松杰等.卫星定轨综述[J].飞行器测控学报, 2005, 24(2):28-34
    [78]王志胜,周军,王道波.基于角度量观测的卫星初轨计算技术研究[J].弹箭与制导学报, 2002, 22(4):190-193
    [79] Vitarius P J, Hahs D, Gregory D A. A Keplerian Approach to Angles-Only Orbit Determination [J]. Proc. SPIE, 2006, 6220:6220M1-7
    [80] Milani A, Gronchi G F, Kne?evíZ, et al. Orbit determination with very short arcs II. Identifications[J]. Icarus, 2005(179): 350–374.
    [81] Descamps P. Orbit of an Astrometric Binary System[J]. Celestial Mechanics and Dynamical Astronomy, 2005(92):381–402
    [82]夏南银.航天测控系统[M].国防工业出版社, 2002:300-309
    [83]王西京,李栋林,马鹏斌等.基于遗传算法的单站测速数据定初轨技术研究[J].飞行力学, 2004, 22(4):53--56
    [84]祝转民,徐宗本.卫星初轨确定方法研究[J].中国空间科学技术, 2007(3):1-6
    [85]曹坤梅,曲炜,刘利生.实时定轨条件下初轨确定方法研究[J].装备指挥技术学院学报, 2003, 14(1):1-3
    [86]戎鹏志,陆本魁.一种改进型的Laplace轨道计算方法[J].天文学报, 1991, 32(1):62-72
    [87]陆本魁,李剑峰.一种有摄初轨计算的单位矢量法[J].宇航学报, 1999, 20(1):14-20
    [88]陆本魁,戎鹏志,吴建民等.人造地球卫星初轨计算的单位矢量法[J].宇航学报, 1997, 18(2):1-7
    [89] LU Ben-kui, MA Jing-yuan, XIA Yi, et al. A Method of Initial Orbit Determination for Long Arc Data[J]. Acta Astmn. Sin. 2004(28):88-93
    [90]何晶,马静远,陆本魁等.移动站的运动对轨道确定影响的分析[J].天文学报, 2005, 46(2):181-185
    [91]何晶,马静远,陆本魁等.初轨计算方法中的常数系统差修正[J].天文学报,2006, 47(3):284-290
    [92]掌静,马静远,陆本魁等.单站单圈测距资料初轨计算的单位矢量法[J].天文学报, 2005, 46(4):426-432
    [93]傅敏辉,邹惠之,掌静等.低测角精度下的轨道确定计算方法[J].飞行器测控学报, 2006, 25(5):68-71
    [94]洪炳熔,刘艳芳,胡芳.基于延拓法的卫星初轨算法——应用于单个观测物体确定低轨卫星初始轨道[J].导弹与航天运载技术, 1999(5):43-49
    [95]潘晓刚,赵德勇,王炯琦等.利用双星定位系统和雷达高度计的航天器初轨确定算法[J].导弹与航天运载技术, 2006(3):7-12
    [96]甘庆波,马静远,陆本魁等.一种基于星间方向观测的初轨计算方法[J].宇航学报, 2007, 28(3):619-622
    [97]李俊,安玮,周一宇. SBV对GEO短弧初轨确定误差分析[J].航天控制, 2008, 26(4):21-25
    [98]刘磊,等.一种天基测向初轨确定方法[J].国防科技大学学报, 2009, 31(1):11-15
    [99]刘磊,等.一种改进的天基测向初轨确定初值和模型求解方法[J].上海航天.2009, 26(1):1-5
    [100]刘磊,等.一种稀疏测向数据下的天基初轨确定模型及其算法[J].宇航学报. 2009, 30(3):870-876
    [101]王石,文援兰,戴金海.初始轨道的确定方法[J].计算机仿真, 2007, 24(3):43-49
    [102] Kang Z, Nagell P, Pastor R. Precise orbit determination for GRACE[J]. Adv. Space Res 2003, 31(8): 1875-1881
    [103]奥特加J M等.多元非线性方程组迭代解法[M].科学出版社, 1983:20-180
    [104]范东明.非线性最小二乘参数平差迭代算法[J].测绘学院学报, 2001, 18(3):173-175
    [105]李桂苓,陶华学.不同类型观测数据的非线性最小二乘估计解算新方法[J].石油大学学报(自然科学版), 2001, 25(5):29-35
    [106]韩雪,周智.对最小二乘问题的研究[J].济南大学学报(自然科学版), 2004, 18(3):273-275
    [107]陈淑铭,乔田田.一个求解非线性最小二乘问题的新方法[J].烟台大学学报(自然科学与工程版), 2004, 17(1):14-22
    [108]陈忠,黄惠.求解非线性最小二乘问题的迭代法[J].武汉大学学报(理学版), 2003, 49(1):14-16
    [109]郑洲顺,普乐.非线性最小二乘问题的一种迭代解法[J].数学理论与应用,2002, 22(1):43-45
    [110]陈务深,掌静,马静远等.总体最小二乘法在初轨计算中的应用[J].天文学报, 2006, 47(2):186-191
    [111]吴玲,刘忠,卢发兴.全局收敛高斯-牛顿法解非线性最小二乘定位问题[J].火控雷达技术, 2003, 32(3):75-80
    [112] Foster B L. Orbit Determination for a Microsatellite Rendezvous with a Non-cooperative Target [D]. Air Force Institute of Technology. 2003
    [113] Marshall P M. Least Squares Solutions in Statistical Orbit Determination Using Singular Value Decomposition [D]. Naval Postgraduate School, 1999
    [114] Hirsch B J. Maneuver Estimation Model for Geostationary Orbit Determination [D]. Air Force Institute of Technology. 2006
    [115]王鼎,张莉,吴瑛.基于角度信息的约束总体最小二乘无源定位算法[J].中国科学E辑信息科学, 2006, 36(8):880~890
    [116]邱玲,沈振康.三维纯角度被动跟踪定位的最小二乘-卡尔曼滤波算法[J].红外与激光工程, 2001, 30(2):83-86
    [117]粟塔山,彭维杰,周作益等.最优化计算原理与算法程序设计[M].长沙:国防科技大学出版社, 2002:36-116
    [118]周明,孙树栋.遗传算法原理及应用[M].北京:国防工业出版社, 2000:15-150
    [119]周北岳,邓斌,郭观七.基于小生境技术的改进遗传算法研究[J].机械强度, 2002 , 24(1):13-16
    [120]杨平,郑金华.遗传选择算子的比较与研究[J].计算机工程与应用, 2007, 43( 15):59-65
    [121]冯毅,李利,高艳明等.一种基于小生境的混合遗传退火算法[J].机械科学与技术, 2004, 23(12):1494-1498
    [122]黄聪明,陈湘秀.小生境遗传算法的改进[J].北京理工大学学报, 2004, 24(8):675-678
    [123]杨意飞,廖良才.基于进化算法的人造卫星轨道优化设计与仿真[J].计算机仿真, 2007, 24(6):66-68
    [124]杨凤凤,黄海风,梁甸农.基于遗传算法的分布式星载SAR-GMTI编队优化[J].电子学报, 2007, 35(6):1037-1041
    [125]吴宝林,曹喜滨,任子武.一种长期稳定的卫星编队队形优化设计方法[J].航空学报, 2007, 28(1):167-172
    [126] Visser B, Sabol C, Dahlke S. Geosynchronous Orbit Determination Using High Accuracy Angular Observations [C]. AAS/AIAA Spaceflight Mechnanics Conference. 2005, AAS 05-135
    [127] Sabol C. A Role for Improved Angular Observations in Geosynchronous Orbit Determination [R]. Air Force Research Laboratory, 1998
    [128] Sabol C, Kelecy T, Murai M. Geosynchronous Orbit Determination Using the High Accuracy Network Determination Systems (HANDS) [C]. AAS/AIAA Space Flight Mechnanics Conference. 2004, AAS 04-216
    [129] Sabol C, Culp R. Improved Angular Observation in Geosynchronous Orbit Determination [J]. AIAA Journal of Guidance, Navigation and Dynamics. 2001, 24(1):123-130
    [130] Sabol C, Luu K K, et al. Recent Developments of the Raven Small Telescope Program [C]. AAS/AIAA Space Flight Mechnanics Conference. 2002, AAS 02-131
    [131] Kelecy T, Sabol C, Murai M. High Accuracy Orbit Analysis Test Results Using the High Accuracy Network Determination Systems (HANDS) [J]. 2003 AMOS Technical Conference. 2003
    [132] Sabol C, Culp R. Improved Angular Observations in Geosynchronous Orbit Determination [J]. AIAA 98-4281
    [133] Kawase S. Orbit Determination Accuracy for Optically Tracked Near-Synchronous Objects [C]. International Symposium on Space Dynamics, Biarritz, France, 2000,6
    [134] Cox J, Chao C C, Stephens P W, et al. Optical Tracker and S-Band Ranging Utility for Accurate Orbit Determination and Prediction [C]. AAS/AIAA Space Flight Mechnanics Conference. 2000, AAS 00-116
    [135] Wiese D, Sabol C. Low Earth Orbit Prediction Accuracy Assessment using Optical Data [C]. AAS/AIAA Space Flight Mechnanics Conference. 2005, AAS 05-139
    [136]尹冬梅,赵有,李志刚.同步卫星短弧定轨[J].天文学报, 2007, 48(2):248-255
    [137]刘迎春,刘林,王昌彬.关于星-星跟踪的定轨问题[J].飞行器测控学报, 2000, 19(2):7-14, 34
    [138]刘林,刘迎春.关于星-星相对测量自主定轨中的亏秩问题[J].飞行器测控学报, 2000, 19(3):13-16
    [139] HU Song-jie, CHEN Li, LIU Lin. Application of two-satellite positioning system to LEO/MEO satellite orbit determination[J]. Acto Astmn. Sin. 2003(27):199-208
    [140]赵德勇,王炯琦,潘晓刚等.联合定轨技术发展综述及其在基于双星定位系统的近地卫星精密定轨中的应用[J].飞行器测控学报, 2006, 25(2):30-36
    [141]胡国荣,欧吉坤.星载GPS低轨卫星几何法精密定轨研究[J].空间科学学报, 2000, 20(1):32-39
    [142]刘海颖,王惠南.基于GPS的中高轨道航天器定轨研究[J].空间科学学报,2005, 25(4):293-297
    [143] Karslioglu M O. An interactive program for GPS-based dynamic orbit[J]. Computers & Geosciences, 2005, (31):309–317
    [144] IJssel J V D, Visserl P, Rodriguez E P. Champ precise orbit determination using GPS data[J]. Adv. Space Res. 2003, 31(8):1889-1895
    [145] Chiaradia A P M, Kuga H K, Prado A F B A. Single frequency GPS measurements in real-time artificial satellite orbit determination[J]. Acta Astronautica, 2003, (53):123–133
    [146] Bock H, Hugentobler U, Springer T A, et al. Efficient precise orbit determination of LEO satellites using GPS[J]. Adv. Space Res. 2002, 30(2):295-300.
    [147] Ma D M, Zhai S Y. Sun-synchronous satellite orbit determination[J]. Acta Astronautica, 2004(54):245–251
    [148] Montenbruck O, Helleputte T V, Kroes R, et al. Reduced dynamic orbit determination using GPS code and carrier measurements[J]. Aerospace Science and Technology, 2005, (9):261–271
    [149] Romero I, Boomkamp H, Dow J, et al. GPS orbit processing in support of low earth orbiter precise orbit determination[J]. Adv. Space Res. 2003, 31(8):1911-1916
    [150] Boomkamp H, Dow J. Use of double difference observations in combined orbit solutions for LEO and GPS satellites[J]. Adv. Space Res, 2005, (36):382–391
    [151] J?ggi A, Beutler G, Hugentobler U. Reduced-dynamic orbit determination and the use of accelerometer data[J]. Adv. Space Res. 2005(36):438-444
    [152] Yoshikawaa M, Kawaguchia J, Yamakawa H, et al. Summary of the orbit determination of NOZOMI spacecraft for all the mission period[J]. Acta Astronautica, 2005(57):510–519
    [153] Liu Lin, Liu Yingchun. Precise orbit determination for lunar satellite[J]. Acta Astronautica. 2002, 51(1-9):501-506
    [154] Romero I, Garcia C, Kahle R, et al. Precise orbit determination of GLONASS satellites at the European space agency[J]. Adv. Space Res, 2002, 30(2):281-287
    [155] Vasile M, Sironi F, Zazzera F B. Deep Space Autonomous Orbit Determination Using CCD [J]. American Institute of Aeronautics and Astronautics, 2002
    [156] Aly A F, Aly M N, Elshishtawy M E, et al. Optimization Techniques for Orbit Estimation and Determination to Control the Satellite Motion [J]. IEEE Trans. Auto. Con., 2002,5-2231-2347
    [157] Oza D H, Jones T L, Hakimi M, et al. Landsat-4(TDRSS-User) Orbit Determination Using Batch Least-Squares and Sequential Methods [J]. AIAA 92-4432
    [158] Kim S, Chun J. Bayesian Bootstrap Filtering for the LEO Satellite Orbit Determination [J]. IEEE. 2000
    [159] EI-Mahy M K. Efficient Satellite Orbit Determination Algorithm [C]. The 18th National Radio Science Conference. 2001
    [160] Yoon J C, Lee K H, Lee B S, et al. Geostationary Orbit Determination for Time Synchronization Using Analytical Dynamic Models [J]. IEEE Trans. Aero. Elec. Sys. 2004,40(4):1132-1146
    [161]贾沛璋.卡尔曼滤波定轨算法的研究进展[J].飞行器测控学报, 2001, 20(3):45-50
    [162] Bikdash M U, Speyer J, Cliff E M. An Algorithm for Space-Based Tracking with Bearings-Only Measurements[J], AIAA, 1995(3244)
    [163]郭福成,樊昀.空间信息对抗中的单星对卫星无源定位跟踪方法[J].宇航学报, 2005, 26(2):196-200
    [164]雪丹,曹喜滨,吴云华.相对测量在编队卫星自主定轨中的应用[J].飞行力学, 2006, 24(3):61-65
    [165]李琳琳,孙辉先.一种卫星天文自主定轨定姿方法研究[J].空间科学学报, 2003, 23(2):127-134
    [166]张春青,李勇,刘良栋.卫星自主轨道确定的自校准滤波[J].宇航学报, 2006, 27(2):301-305
    [167] Kawase S, Tanaka T. A Simple Method for Evaluating the System Observability in Satellite Orbit Determination [J]. IEEE Trans. Aero. Elec. Sys, 1979, AES-15(1):152-156
    [168] Hodgart M S, Rortora P, Morrison N. A Gaussian Deterministic Approach to Smoothing and Prediction for Application to Spacecraft Attitude and Orbit Determination [J]. IEEE, 2000, 687-695
    [169] Vanek C. TDRSS, Space-Based Communications for the Present and for the Future [C]. AIAA Space Programs and Technologies Conference & Exhibit. 1993,9
    [170] Estefan J A. Precise Orbit Determination of High-Earth Elliptical Orbiters Using Differenced Doppler and Ranging Measurements [J]. IEEE. 1992
    [171]周凤岐,赵黎平,周军.基于星光大气折射的卫星自主轨道确定[J].宇航学报, 2002, 23(4):20-23, 36
    [172] Kim B Y, Yoon J C, Choi K H, et al. Real time numerical dynamic orbit determination of geostationary satellite for time synchronization service[J]. Aerospace Science and Technology, 2003(7):385–395
    [173]陈金平,焦文海,马骏等.基于星间测距/轨道定向参数约束的导航卫星自主定轨研究[J].武汉大学学报, 2005, 30(5):439-443
    [174] Beutler G , Hugentobler U, Ploner M, et al. Determining the orbits of EGNOS satellites based on optical or microwave observations[J]. Adv. Space Res.2005(36):392-401
    [175] Cicci D A. Filter performance in target tracking using space-based observers[J]. AppL Math. Comput. 1999 (99):275-293
    [176]项军华,张育林.地球非球形对卫星轨道的长期影响及补偿研究[J].飞行力学, 2007, 25(2):85-88
    [177]马剑波,刘林,王歆.地球非球形引力位中田谐项摄动的有关问题[J].天文学报, 2001, 42(4):436-443
    [178]季江徽,刘林,张伟.第三体摄动分析解的一种表达式[J].天文学报, 2000, 41(1):79-92
    [179]王歆,刘林.制约卫星轨道寿命的另一种机制[J].天文学报, 2002, 43(2):189-196
    [180]刘林,王彦荣.卫星轨道预报的一种分析方法[J].天文学报, 2005, 46(3):307-313
    [181]冯和生,李语强.直接推导摄动运动方程的一种方法[J].天文学报, 2007, 48(1):54-59
    [182]薛申芳,孙才红,宁书年等.卫星自主定轨中轨道摄动仿真[J].系统仿真学报, 2004, 16(7):1395-1397
    [183] Hashida Y, Palmer P L. Analytic Approach for Near Circular Orbit Determination [J]. AIAA Guidance, Navigation, and Control Conference and Exhibit. 2001
    [184]周文艳,杨维廉.月球探测器转移轨道的特性分析[J].空间科学学报, 2004, 24(5):354-359
    [185]白玉铸,等.月球探测器返回轨道特性分析[J].国防科技大学学报.2008, 30(4):11-16
    [186]林晓辉,孙兆伟,杨涤.地月转移轨道的快速设计方法研究[J].哈尔滨工业大学学报, 2005, 37(2):234-237
    [187]李立涛,杨涤,崔祜涛.奔月轨道的一种求解方法[J].宇航学报, 2003, 24(2):150-155
    [188]谷立祥,刘竹生.使用遗传算法和B平面参数进行月球探测器地月转移轨道设计[J].导弹与航天运载技术, 2003, (3):1-5
    [189] Brown C D. Spacecraft Mission Design Second Edition [M]. Castle Rock, Colorado: Wren Software, Inc, 1998: 117-225
    [190]高玉东,等.地月空间飞行轨道分层搜索设计[J].宇航学报, 2006, 27(6):1157-1161
    [191]高玉东,等.月球探测器返回轨道快速搜索设计[J] .宇航学报,2008,29(3):31-37
    [192]陈永志,曾国强.双月球近旁转向探月初步分析[J].飞行力学, 2005, 23(1):86-89
    [193]谷立祥,刘竹生.相位环地月转移轨道研究[J].导弹与航天运载技术, 2002, (3):5-12
    [194] R.Biesbroek, G.Janin. Ways to the Moon[R]. Easbulletin103, August 2000
    [195]刘磊,等.多约束条件下的地月转移轨道设计[J].宇航学报, 2008, 29(2):482-488
    [196]刘林,王歆.月球卫星轨道力学综述[J].天文学进展, 2003, 21(4):281-288
    [197]林胜勇,李珠基,和兴锁.月球卫星轨道设计优化[J].空间科学学报, 2004, 24(5):360-366
    [198]周文艳,杨维廉.月球探测器转移轨道的中途修正[J].宇航学报, 2004, 25(1):89-92
    [199]杨维廉,周文艳.月球探测器发射机会分析[J].中国空间科学技术, 2005, 20(2):11-15
    [200]高玉东.月球探测器地月空间转移轨道研究[D].国防科技大学研究生院, 2008
    [201]王宏,董光亮,胡小工等. USB-VLBI综合快速确定环月飞行器短弧轨道[J].测绘科学技术学报, 2007, 24(2):100-103
    [202] QIAN Zhi-han, PING Jin-song. The Orbit Determination of the Chang’E-1Lunar Orbiter by VLBI [J]. SICE-ICASE International Joint Conference, 2006,10
    [203] Mackenzie R, Salvador D L, Milligan D. ORBIT DETERMINATION OF THE SMART-1 MISSION[C]. Proceedings of the 18 th International Symposium on Space Flight Dynamics( ESA SP2548) , 2004.
    [204]刘迎春,张飞鹏,董晓军.月球探测卫星的轨道支持[J].飞行器测控学报, 2003, 22(1):54-58
    [205] Beckman M, Concha M. Lunar Prospector Orbit Determination Results [J]. AIAA 98-4561
    [206]王家松,陈建荣,马鹏斌等. USB与VLBI联合确定“探测一号”卫星轨道[J].飞行器测控学报, 2006, 25(1):31-36
    [207]黄勇,胡小工,黄珹等.利用VLBI数据确定“探测一号”卫星的轨道[J].天文学报, 2006, 47(1):82-92
    [208]黄勇.“嫦娥一号”探月飞行器的轨道计算研究[D].中国科学院研究生院, 2006
    [209]刘林,张巍.月球探测器过渡轨道的短弧定轨方法[J].天文学报, 2007, 48(2):220-227
    [210] Laskin R A. Technology for Space Optical Interferometry [C]. 33rd AerospaceSciences Meeting & Exhibit. 1995,1
    [211] Asai Y, Nishimura T, Kamijo F, et al. Geometric Effects on Deep Space Orbit Determination via Space-VLBI Observations [J]. SICE, 2002, 175-180
    [212] Sabol C, Burns R, McLaughlin C A. Satellite Formation Flying Design and Evolution[J]. Journal of Satellite and Rockets. 2001, 38(2):21-27
    [213] Massonnet D. Capabilities and Limitations of the Interferometric Cartwheel[J]. IEEE Trans. Geosci. Remote Sensing, 2001,39(3):10-20
    [214] Massonet D, Thouvenot E, RamongassiéS, et al. A wheel of passive radar microsats for upgrading existing SAR projects[C], in Proc. 2000 International Geoscience and Remote Sensing Symposium (IGARSS 2000), 1000-1003, Inst. of Elec. and Electron. Eng. , Piscataway, N. J. , USA, 2000
    [215] Massonet D. The interferometric cartwheel, a constellation of low cost receiving satellites to produce radar images that can be coherently combined[R], Int. J. of Remote Sens. , in press
    [216] Romeiser R, Schw?bisch M, Schulz-Stellenfleth J, et al. Study on Concepts for Radar Interferometry from Satellites for Ocean(and Land) Applications[R], 2002
    [217] Krieger G, Wendler M, Fiedler H, et al. Comparison of the Interferometric Performance for Spaceborne Parasitic SAR Configurations[J], EUSAR. 2002
    [218] Krieger G, Jochim F, Kirschner M. Analysis of Bistatic Configurations for Spaceborne SAR Interferometry[J], EUSAR 2002
    [219] Moreira A, Krieger G, Mittermayer J. Comparison of Several Bistatic SAR Configurations for Spaceborne SAR Interferometry[C], IGARSS’01 Proceedings, 2001
    [220]张锦绣,曹喜滨,林晓辉.基于平均轨道要素的干涉SAR编队构形设计方法研究[J].宇航学报, 2006, 27(4):670-674, 699
    [221]杏建军,李海阳,唐国金等.利用数值优化技术设计周期性绕飞的编队轨道[J].国防科技大学学报, 2006, 28(1):13-16
    [222]张娟,和兴锁,邓峰岩等.编队飞行星座的地球扁率摄动和大气阻力摄动分析[J].应用力学学报, 2006, 23(3):496-499
    [223]孟云鹤,韩宏伟,戴金海. J2摄动作用下近地轨道卫星编队构形长期演化机理分析[J].宇航学报, 2007, 28(2):253-258
    [224]孟鑫,李俊峰,高云峰.编队飞行卫星相对运动的零J2摄动条件[J].清华大学学报, 2004, 44(2):219-223
    [225]安雪滢,张为华,杨乐平等.考虑地球扁率的大椭圆轨道编队飞行优化设计[J].宇航学报, 2006, 27(2):306-311
    [226]李晨光,韩潮.编队飞行卫星群相对轨道测量研究[J].北京航空航天大学学报, 2005, 31(6):614-617
    [227]张洪华,林来兴.卫星编队飞行相对轨道的确定[J].宇航学报, 2002, 23(6):77-81
    [228]雪丹,曹喜滨,吴云华.多星编队相对轨道的自主确定[J].宇航学报, 2006, 27(6):1406-1408
    [229]魏伟,康伟.在地球扁率摄动下的卫星编队飞行控制[J].飞行力学, 2004, 22(1):83-87
    [230]崔海英,李俊峰,高云峰.椭圆参考轨道的卫星编队队形保持控制设计[J].工程力学, 2007, 24(4):147-151
    [231]刘磊.星载干涉式合成孔径雷达小卫星编队构形设计[D].国防科学技术大学研究生院, 2004
    [232]钱煦.天基光学传感器对空间小目标定位算法研究[D].中国航天第二研究院, 2007
    [233]李于衡,易克初,田红心.跟踪与数据中继卫星(TDRS)跟踪用户星的条件分析[J].空间科学学报, 2006, 26(5):377-381
    [234]陆镇麟.人造地球卫星轨道计算方法.中国人民解放军八九七五〇部队.内部资料
    [235]刘林.航天器轨道理论[M].北京:国防工业出版社, 2000:33-96
    [236]李启华.计算机技术在天文航海上的应用[M].长沙:国防科技大学出版社, 2002:20-110
    [237]刘利生,吴斌,杨萍.航天器精确定轨与自校准技术[M].北京:国防工业出版社, 2005:15-165
    [238] Taff L G. Statistical Initial Orbit Determination [J]. SPIE, 1991,1481:440-448
    [239] Poore A B. Final Technical Report for Optimization Problems in Multisensor and Multitarget Target Tracking, Department of the Air Force,[R] 2004,3
    [240] Klungle R, Hague H. Stereo Tracking&Target Recognition in IR Space Sensors[J], AIAA, 1999(4621)
    [241]丁月蓉,郑大伟.天文测量数据的处理方法[M].南京:南京大学出版社, 1990:6-86
    [242]刘磊,等.星载InSAR均匀相位构形的空间基线稳定性[J].国防科技大学学报, 2006, 28(1):9-12
    [243]刘磊,等.定常基线卫星编队构形设计[J].空间科学学报, 2007, 27(2):157-161

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700