用户名: 密码: 验证码:
滇中地区云南松天然林群落结构及天然更新规律
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在云南省中部禄丰县雕林山省级自然保护区,在海拔2200-2450m的阳坡和半阳破,选择暗红壤、黄红壤和红壤上生长且长期封育恢复的云南松天然林以及择伐后更新不同年限的云南松天然次生林为研究对象,采用典型取样法设置样地,开展了云南松纯林和混交林群落的植物种类组成、植物多样性、群落结构、优势树种种群动态及林地土壤特征,云南松在不同亚类红壤和群落内的生长速率、针叶N、P含量与养分再吸收效率,以及云南松天然林及天然次生林的天然更新特点研究。主要研究结论如下:
     (1)植物种类数量呈现暗红壤>红壤>黄红壤的变化趋势。暗红壤上植物以禾本科、蔷薇科、菊科、蝶形花科和杜鹃花科种类最多,亚热带代表科山茶科、壳斗科的种类在混交林中明显增多;红壤上纯林的属、种数减少较少,混交林中禾本科种类和蕨类植物明显增加,菊科种类相对减少;黄红壤上植物种类相比暗红壤降低40%以上,禾本科种类明显减少,混交林乔木层杜鹃花科和壳斗科种类明显增加。云南松是群落乔木层重要值最高的树种,乔、灌木优势树种均不同程度含有半湿润常绿阔叶林的部分种类,其中壳斗科树种在不同土壤上存在种类替代现象:暗红壤上为白穗石栎,黄红壤上为麻栎、黄毛青冈,红壤上为槲栎。有害入侵生物紫茎泽兰已侵占了群落草本层,成为群落草本层的优势种类,但对黄红壤上群落草本层的侵害稍轻。
     (2)乔木层、灌木层和草本层物种丰富度均存在显著差异,乔木层最高的是暗红壤上云南松混交林及黄红壤云南松纯林,灌木层和草本层最高的是暗红壤上云南松纯林和云南松混交林。乔、灌、草3个层次的Shannon-Wiener指数呈现暗红壤>红壤>黄红壤的变化趋势,但纯林与混交林无明显变化规律。Simpson指数在乔木层表现为云南松混交林>云南松纯林,灌木层为暗红壤>红壤>黄红壤的变化趋势,Pielou指数仅在乔木层存在显著差异,最高的是云南松混交林。
     (3)所有林木平均胸径均呈现暗红壤>红壤>黄红壤,云南松纯林>云南松混交林的变化趋势。云南松平均胸径在云南松纯林内呈现为暗红壤>黄红壤>红壤的变化趋势,而在云南松混交林内则为暗红壤>红壤>黄红壤。云南松纯林大树密度平均为10-11株/600m~2,云南松混交林为8-13株/600m~2,云南松大树(DBH≥30.0cm)密度与所有树种大树密度存在较好的协同性。云南松纯林枯立木密度为暗红壤>黄红壤>红壤,云南松混交林为黄红壤>暗红壤>黄红壤。云南松立木密度呈现出云南松纯林>云南松混交林,红壤>黄红壤>暗红壤的变化规律,总的胸高断面积趋势为暗红壤>黄红壤>红壤,云南松混交林>云南松纯林。林地土壤总N含量呈现云南松混交林>云南松林,暗红壤>红壤>黄红壤的明显梯度变化规律,土壤总P、速效N、速效P也存在显著变化,并对群落分布起到较大作用;土壤C/N比为黄红壤>红壤>暗红壤,黄红壤是暗红壤的2.14倍;N/P比为云南松混交林略大于云南松林,暗红壤显著大于黄红壤和红壤。
     (4)暗红壤上群落林木层分为4层,为云南松单优群落,云南松混交林的群落高度大于云南松纯林;黄红壤和红壤上群落林木层只分为3层,除了黄红壤上的混交林为云南松、黄毛青冈共优群落外,均为云南松单优群落。云南松混交林胸径级分布呈倒“J”形,云南松纯林则呈倒“S”形。云南松在暗红壤和红壤上的云南松混交林内为稳定种群,在红壤上云南松纯林内为增长种群,其余为衰退种群。除红壤上云南松混交林的滇油杉、黄毛青冈等树种为间歇型种群外,其它群落内的优势树种或属于稳定种群,或属于增长种群,利于群落稳定与演替。
     (5)云南松针叶N含量与土壤总N梯度变化一致。90%以上云南松个体生长发育受N元素限制。云南松针叶Nr大于Pr,与多数研究Pr>Nr的结果相反,揭示云南松具有较高的N养分保存能力;HGR和DGR呈现暗红壤>黄红壤>红壤,云南松林>云南松混交林的变化趋势,VGR为云南松混交林>云南松林。Nr与土壤全N、全P、速效N、速效K成正相关,Pr与速效K成显著正相关。HGR和DGR与速效N成显著正相关,VGR与总N、总P及速效N成显著正相关,总体上土壤总N、速效N、容重和自然含水量显著影响云南松高、胸径和材积的生长速率。
     (6)长期封育云南松天然林更新密度呈现为云南松混交林>云南松林,暗红壤>红壤>黄红壤的变化趋势,壳斗科、山茶科、杜鹃花科树种更新密度差异显著,可能导致不同群落趋向不同的种类组成。云南松更新密度和更新频度以红壤云南松纯林和云南松混交林最高。云南松是稀疏云南松林和云南松择伐迹地更新频度最高的树种,具有不同大小级的幼苗幼树。择伐更新20年后的云南松天然次生林,Ⅳ级小树、Ⅴ级小树和Ⅰ级幼苗更新密度显著大于稀疏云南松林和择伐更新10年的云南松天然次生林。地被物基质影响云南松的天然更新,65%以上的云南松幼苗更新基质为裸露的矿质土壤,森林地被物和石块也占一定比例,枯落物和粗木质残余物的比例极低。
     根据上述研究结果,可以通过增加土壤总N含量、降低土壤C/N比以促进群落内云南松的生长发育,并可通过引入林火干扰体系、创造林窗及矿质土壤裸露促进云南松的天然更新,以较低成本恢复云南松在群落内的优势地位,维持区域群落长期稳定性,维护滇中地区异质性的森林景观。
Based on pure Yunnan Pine (Pinus yunnanensis) forest (PPY)and mixed Ynanan Pine forest(MPY) after long enclosure for restoration, which distributed on dark-red soil(D), yellow-red soil(Y) and red soil(R) respectively with the same site conditions and located the south to west aspect at the elevation of 2200-2450m in Diaolinshan Natural Reserve, Middle Yunnan Plateau, Yunnan, China, as well as natural second-growth forests at different regeneration ages after selective logging, the characteristics of species composition, plant diversity, community structure and natural regeneration, together with dominant tree species’population dynamics, soil properties in PPY and MPY, growth rates and leaf stoichiometry of P. yunnanensis in different soils and communities were studied by representatively sampling. The main results indicate as follows:
     (1) The number of plant species in communities was in the order of D>R>Y. In dark-red soil, most of species were the family of Gramineae, Rosaceae, Compositae, Papilionaceae and Ericaceae, and the species of the family of Theaceae, Fagaceae and Aquifoliaceae increased in MPY apparently. Compared with dark-red soil, the number of species on yellow-red soil decreased by over 40%, but the species of Ericaceae and Fagaceae increased in MPY apparently. As for the red soil, the number of genus and species increased apparently in PPY, especially those of Gramineae and ferns increased apparently, but that of Compositae decreased relatively. P. yunnanensis was the dominant tree species in all communities with the highest important value. Other dominant tree and shrub species were partly attached to subtropical semi-humid evergreen broad-leaved forests to some extent, and the dominant species of Fagaceaea showed species replacement phenomena on different soils, namely Lithocarpus leucostachyus on dark-red soil, Quercus acutissima, Cyclobalanopsis delavayi on yellow-red soil, and Q. aliena on red soil. The harmful Eupatorium adenophorum invaded and occupied the herb layers in all communities and did little harm to forests on yellow-red soil.
     (2) Species richness in all layers showed significant difference among different communities. MPY on dark-red soil and PPY on yellow-red soil presented the highest values in tree layer, whearas MPY and PPY on dark-red soil were the highest in shrub and herb layers. Shannon-Wiener index of 3 layers showed significant difference with the same tendency of D>R>Y, but no constant order between MPY and PPY. Simpson index indicated the order of MPY>PPY in tree layer and D>R>Y in shrub layer, and Pielou index showed significant difference in tree and shrub layers.
     (3)Mean DBH of all trees was in the order of D>R>Y and PPY>MPY. Mean DBH of P. yunnanensis showed the tendency of D>Y>R in PPY, but indiceted the order of D>R>Y in MPY. The density of P. yunnanensis stumpage presented the tendency of PPY>MPY and R>Y>D, and total BA was in the order of MPY>PPY and D>Y>R. It was clear that soil total N changed along the gradients of MPY>PPY and D>R>Y. The ratio of C/N was changed as D>R>Y, and that of N/P as MPY>PY slightly, D>Y and R remarkably. Thus it was certain that PY and MPY changed with total N gradient on different soils. Soil total P, available N, available P changed remarkably and played an important role in the distribution of communities.
     (4) On dark-red soil, the forests were featured as uni-dominant tree of P. yunnanensis and divided into 4 layers. Community height was in the order of MPY>PY. As for yellow-red soil and red soil, the forests were divided into 3 layers, but MPY on yellow-red soil featured as co-dominant trees of P. yunnanensis and Cyclobalanopsis delavayi. DBH distribution types of all tree layer individuals in MPY showed a typical reverse“J”shape and in PY a similar reverse“S”shape. P. yunnanensis population structure in MPY on dark-red and red soils was characterized as constant type, in PPY on red soil as incremental type and others as recessionary type. Except that Keteleeria evelyniana, Cy. delavayi, Q. aliena, Castanopsis delavayi and L. dealbatus in MPY on red soil were featured as interim population type, others characterized as constant or incremental population types.
     (5) Leaf N of P. yunnanensis showed the same tendency along soil total N gradients. Over 90% individuals were N limited according to the threshold of limiting nutrients. The result of Nr>Pr tendency of leaf nutrient resorption efficiency was contrary to those in most study cases, thus it revealed that Yunnan Pine had higher ability of conserve N nutrient. Height and DBH growth rates showed the tendency of D>Y>R and PPY>MPY, but volume growth rate was in the order of MPY>PPY. There was positive correlation between leaf Nr and soil total N, total P, available N and available K. As for leaf Pr, there was positively remarkable correlation to available K, and positive correlation to soil total N, total P and available N. As far as the growth rates were concerned, HGR and DGR indicated remarkably positive correlation with available N, but VGR showed the same correlation with total N, total P and available N. As a whole, soil total N, available N, bulk density and natural water content affected HGR, DGR and VGR remarkably.
     (6)Regeneration density in natural forests after long enclosure for restoration revealed the tendency of MPY>PY and D>R>Y. In the meanwhile regeneration density and percentage of Fagaceae, Theaceae and Ericaceae differed significantly among different soils and communities, which may result in different succession tendency and species composition. It was indicated that regeneration density and frequency of P. yunnanensis in PPY and MPY on red soil were higher significantly than those in other communities, but was very poor in other communities. P. yunnanensis ranked the top tree species about regeneration frequency in sparse forest and logging areas, and its seedlings and saplings at different size classes may result in forests with hetero-aged structure. The densities ofⅣsmall trees,Ⅴsmall trees andⅠseedlings in second-growth forests after 20 years logging were higher significantly than that of forests after 10 years logging and in sparse P. yunnanensis forest. Understory substrates affected natural regeneration of P. yunnanensis. Over 60% of P. yunnanensis seedlings were found growing on the mineral soil, others were found on forest floor, rock, litter and CWD.
     From the results above, there are some implications for restoration. Soil total N increment or soil C/N ratio reduction may be proposed to enhance the growth of P. yunnanensis. Fire disturbance regimes may be introduced to create gaps and naked mineral soil in order to facilitate natural regeneration of P. yunnanensis. Thus P. yunnanensis will keep its dominance in communnities at lower costs so that community stability and landscape heterogeneity may be maintained regionally.
引文
[1]蔡年辉,李根前,束传林等.云南松天然林区植物群落结构的空间动态研究.西北植物学报,2006,26(10):2119~2124
    [2]蔡年辉,李根前,朱存福等.云南松人工林与天然林群落结构的比较研究.西北林学院学报,2007a,22(1):1~4
    [3]蔡年辉,李根前,朱存福等.云南松人工林与天然林群落结构的比较研究.西北林学院学报,2007b,22(2):1~4
    [4]陈玉福,董鸣.毛乌素沙地景观的植被与土壤特征空间格局及其相关分析.植物生态学报,2001,25(3):265~269
    [5]戴开结,沈有信,周文君等.在控制条件下云南松幼苗根系对低磷胁迫的响应.生态学报,2005,25(9):2423~2426
    [6]戴开结,何方,沈有信等.低磷胁迫下云南松幼苗的生物量及其分配.广西植物,2006,26(2):183~186
    [7]党承林,吴兆录.云南松林的生物量研究.云南植物研究,1991,13(1):59~64
    [8]邓坤枚,罗天祥,张林等.云南松林的根系生物量及其分布规律的研究.应用生态学报,2005, 16(1): 21~24
    [9]丁应详,张金泮.长江中上游资源保护与林业可持续发展.南京林业大学学报(自然科学版),1999,23(2):51~56
    [10]丁圣彦,宋永昌.常绿阔叶林演替过程中马尾松消退的原因.植物学报,1998,40(8):755~760
    [11]高三平,李俊祥,徐明策等.天童常绿阔叶林不同演替阶段常见种叶片N、P化学计量学特征.生态学报,2007,27(3):947~952
    [12]韩明跃,李莲芳,段辉等.禄丰村林场云南松天然次生林的林分特征及质效研究.西部林业科学,2009,38(1):28~35
    [13]郝占庆,张健,李步杭等.长白山次生杨桦林样地:物种组成与群落结构.植物生态学报,2008,32(2):251~261
    [14]胡传伟,孙冰,陈勇等.深圳次生林群落结构与植物多样性.南京林业大学学报:自然科学版,2009,33(5):21~26
    [15]胡国珠,武来成,谢双喜等.不同岩性土壤对皂荚幼树生长及生物量的影响.南京林业大学学报(自然科学版),2008,32(3):35~38
    [16]黄瑞复.云南松的种群遗传与进化.云南大学学报(自然科学版),1993,15(1):50~63
    [17]金红喜,杨占彪,袁彩霞等.六盘山4种类型森林群落天然更新初探.西北林学院学报,2009,24(1):93~97
    [18]金永焕,李敦求.长白山区次生林恢复过程中天然更新的动态.南京林业大学学报(自然科学版),2005,29(5):65~68
    [19]金振洲,彭鉴.云南松.昆明:云南科技出版社,2004,19~285
    [20]李德军,莫江明,方运霆等.鼎湖山自然保护区不同演替阶段森林土壤中有效微量元素状况研究.广西植物,2004,24(6):529~534
    [21]李贵祥,施海静,孟广涛等.云南松原始林群落结构特征及物种多样性分析.浙江林学院学报,2007,24(4):396~400
    [22]李楠,杨永川,李百战.重庆铁山坪残存常绿阔叶林群落结构及动态研究.西南大学学报(自然科学版),2009,31(7):12~20
    [23]李荣华,汪思龙,王清奎等.同林龄马尾松针叶凋落前后养分含量及回收特征.应用生态学报,2008,19(7):1443~1447
    [24]李正理,樊拥军,崔克明等.云南松与地盘松木材结构比较观察.植物学报,1994,36(7):302~305
    [25]蔺菲,郝占庆,叶吉等.苔藓植物对植物天然更新的影响.生态学杂志,2006,25(4):456~460
    [26]刘德隅,刘中天,钱德仁等.云南自然保护区.北京:中国林业出版社,1989:167~169
    [27]刘鹏,郝朝运,陈子林等.不同群落类型中七子花器官营养元素分布及其与土壤养分的关系.土壤学报,2008,45(2):304~312
    [28]刘世荣,唐守正.我国天然林保护与可持续经营.生态安全与生态建设(主编李文华,王如松),中国气象出版社,2002:85~89
    [29]刘文耀,刘伦辉,郑征.滇中不同群落结构云南松林的水文作用.北京林业大学学报,1992,14(2):38~45
    [30]刘足根,朱教君,袁小兰等.辽东山区长白落叶松天然更新调查.林业科学,2007,43(1):42~49
    [31]卢其明,庄雪影.车八岭不同演替阶段植物群落土壤特性的初步研究.华南农业大学学报,1997,18(3):48~52
    [32]莫江明.鼎湖山退化马尾松林、混交林和季风常绿阔叶林土壤全磷和有效磷的比较.广西植物,2005,25(2):186~192
    [33]樊金拴,陈原国,李凯荣等.土壤水分状况对核桃生长和发育的影响.林业科学,2006,42(12):39~46
    [34]漆小雪,韦霄,蒋运生等.青蒿素含量与土壤、植株养分含量关系的研究.广西植物,2009,29(5):627~630
    [35]沈有信,周文君,刘文耀等.云南松根际与非根际磷酸酶活性与磷的有效性.生态环境,2005,14(1):91~94
    [36]史东梅,吕刚,蒋光毅等.马尾松林地土壤物理性质变化及抗逆性研究.水土保持学报,2005,19(6):35~39
    [37]孙书存,陈灵芝.东灵山地区辽东栎叶养分的季节动态与回收效率.植物生态学报,2001,25 (1):76~82
    [38]唐季林,欧国菁.林火对云南松林土壤性质的影响.北京林业大学学报,1995,17(2):44~49
    [39]万慧霖,冯宗炜.庐山常绿阔叶林物种组成及其演替趋势.生态学报,2008,28(3):1147~1157
    [40]王长庭,王启兰,景增春等.不同放牧梯度下高寒小嵩草草甸植被根系和土壤理化特征的变化.草业学报,2008,17(5):9~15
    [41]王绍强,于贵瑞.生态系统碳氮磷元素的生态化学计量学特征.生态学报,2008,28(8):3937~3947
    [42]吴亚维,邹养军,马锋旺等.土壤紧实度对平邑甜茶幼苗生长及叶绿素荧光参数的影响.西北农林科技大学学报(自然科学版),2008,36(8):177~181
    [43]胥清利.枫香与杉木、马尾松混交林土壤有机质和腐殖质碳的研究.福建林业科技,2007,34(4):42~45
    [44]阎恩荣,王希华,郭明等.浙江天童常绿阔叶林、常绿针叶林与落叶阔叶林的C:N:P化学计量特征.植物生态学报,2010,34(1):48~57
    [45]杨淑贞,马原,蒋平等.浙江西天目山土壤理化性质的海拔梯度格局.华东师范大学学报(自然科学版),2009,6:101~107
    [46]杨永祥,战铁铮,白沙林.云南松林分系统的形成与演变.林业科学,1991,27(3):199~209
    [47]游秀花.马尾松天然林不同演替阶段土壤理化性质变化.福建林学院学报,2005,25(2):121~124
    [48]袁春明,郎南军,孟广涛等.长江上游云南松林水土保持生态效益的研究.水土保持学报,2002,16(2):87~90
    [49]张江英,周华荣,高梅等.艾里克湖湿地植物群落特征指数与土壤因子的关系.生态学杂志,2007,26(7):983~988
    [50]张庆费,宋永昌,由文辉.浙江天童植物群落次生演替与土壤肥力的关系.生态学报,1999,19(2):174~178
    [51]张志祥,刘鹏,刘春生等.浙江九龙山南方铁杉( Tsuga tchekiangensis)群落结构及优势种群更新类型.生态学报,2008,28(9):4547~4558
    [52]周志春,徐高福,金国庆等.择伐经营后马尾松次生林阔叶树的生长与群落恢复.林业科学研究,2004,17(4):420~426
    [53]朱伟兴.恢复及演替过程中的土壤生态学考虑.植物生态学报,2005,29(3):479~486
    [54] Abella S.R.,Covington W.W.Monitoring an Arizona ponderosa pine restoration:sampling efficiency and multivariate analysis of understory vegetation.Restoration Ecology,2004,12(3):359~367
    [55] Alexander R.R.,Ronco F.Classification of the forest vegetation on the national forests of Arizona and New Mexico.USDA Forest Service Research Note,1987,RM-469
    [56] Allen C.D.,Savage M.,Falk D.A.,et al.Ecological restoration of southwestern ponderosa ecosystems:a broad perspective.Ecological Applications,2002,12(5):1418~1433
    [57] Alvarez M.E.,Cushman J.H.Community-level consequences of a plant invasion:effects on three habitats in coastal California.Ecological Applications,2002,12:1434~1444
    [58] Baar J.,Kuyper T.W.Restoration of aboveground ectomycorrhizal flora in stands of Pinus sylvestris (scots pine)in the Netherlands by removal of litter and humus. Restoration Ecology,1998,6(3):227~237
    [59] Bassett I.E.,Simcock R.C.,Mitchell N.D. Consequences of soil compaction for seedling establishment:implications for natural regeneration and restoration.Austral Ecology,2005,30:827~833
    [60] Boerner R.E.J.,Coates A.T.,Yaussy D.A.,et al.Assessing ecosystem restoration alternatives in eastern deciduous forests:the view from belowground.Restoration Ecology(in press),2007,doi:10.1111/j.1526-100x.2007.00312.X
    [61] Brinkman E.P.,Troelstra S.R.Soil feedback effects to the foredune grass Ammophila arenaria by endoparasitic root-feedling nematodes and whole soil communities.Soil Biological Biochemistry,2005,37:2077~2087
    [62] Brooker R.W.,Maestre F.T.,Callaway R.M.,et al.Facilitation in plant communities:the past,the present,and the future.Journal of Ecology,2008,96:18~34
    [63] Callaham M.A.Jr.,Rhoades C.C.,Heneghan L.A striking profile:soil ecological knowledge in restoration management and science.Restoration Ecology,2008,16(4):604~607
    [64] Callaway R.M.Positive interactions in plant communities and the individualistic-continuum concept.Oecologia,1997,112:143~149
    [65] Casper B.B.,Castelli J.P.Evaluating plant–soil feedback together with competition in a serpentine grassland.Ecology Letters,2007,10:394~400
    [66] Condon B.,Putz F.E.Countering the broadleaf invasion:financial and carbon consequences of removing hardwoods during longleaf Pine savanna restoration.Restoration Ecology,2007,15(2): 296~303
    [67] Coop J. D., Schoettle A. W. Regeneration of Rocky Mountain bristlecone pine (Pinus aristata) and limber pine(Pinus flexilis)three decades after stand-replacing fires.Forest Ecology and Management,2009,257:893~903
    [68] Covington W.W.,Everett R.L.,Steele R.,et al.Historical and anticipated changes in forest ecosystems of the inland west of the United States.Journal of Sustainable Forestry,1994,2:13~63
    [69] Covington W.W.Assessing targets for the restoration of herbaceous vegetation in ponderosa pine forests.Restoration Ecology,2006,14(4):548~560
    [70] Cushman J.H.,Tierney T.A.,Hinds J.M.Variable effects of feral pig disturbances on native and exotic plants in a California grassland.Ecological Applications,2004,14(6):1746~1756
    [71] Davis M.A.,Grime J.P.,Thompson K.Fluctuating resources in plant communities:a general theory of invisibility.Journal of Ecology,2000,88:528~534
    [72] De Deyn G.B.,Raaijmakers C.E.,Zoomer H.R.,et al.Soil invertebrate fauna enhances grassland succession and diversity.Nature,2003,422:711~713
    [73] De Deyn G.B.,Raaijmakers C.E.,van der Putten W.H.Plant community development is affected by nutrients and soil biota.Journal of Ecology,2004,92:824~834
    [74] Deal R.L.Management strategies to increase stand structural diversity and enhance biodiversity in coastal rainforests of Alaska.Biological Conservation,2007,137:520~532
    [75] Dicus C.A.,Dean T.J.Tree-soil interactions affect production of loblolly and slash pine.Forest Science,2008,54(2):134~139
    [76] Dobrowolska D.,Veblen T.T.Treefall-gap structure and regeneration in mixed Abies alba stands in central Poland.Forest Ecology and Management,2008,255:3469~3476
    [77] Dupuy J.M.,Chazdon R.L.Interacting effects of canopy gap,understory vegetation and leaf litter on tree seedling recruitment and composition in tropical secondary forests.Forest Ecology and Management,2008,255:3716~3725
    [78] Ehrenfeld J.G.,Ravit B.,Elgersm K.Feedback in the plant-soil system.Annual Review of Environment and Resources,2005,30:75~115
    [79] Eviner V.T.,Chapin III F.S.Plant species provide vital ecosystem functions for sustainable agriculture,rangeland management and restoration.California Agriculture,2001,55:54~59
    [80] Eviner V.T.,Hawkes C.V.Embracing variability in the application of plant–soil interactions to the restoration of communities and ecosystems.Restoration Ecology,2008,16(4):713~729
    [81] Fitter A.H.,Gilligan C.A.,Hollingworth K.,et al.Biodiversity and ecosystem function in soil.Functional Ecology,2005,19:369~377
    [82] Fornara D.A.,Tilman D.Plant functional composition influences rates of soil carbon and nitrogen accumulation.Journal of Ecology,2008,96:314~322
    [83] Franklin J.F.,Spies T.A.,Pelt R.V.,et al.Disturbances and structural development of natural forest ecosystems with structural implications,using Douglas-fir forests as an example.Forest Ecology and Management,2002,155:399~423
    [84] Güsewell S. N:P ratios in terrestrial plants:variation and functional significance.New Phytologist,2004,164:243~266
    [85] Harris J.A.,Hobbs R.J.,Higgs E.,et al.Ecological restoration and global climate change.Restoration Ecology,2006,14(2):170~176
    [86] Heneghan L.,Miller S.P.,Baer S.,et al.Integrating soil ecological knowledge into restoration management.Restoration Ecology,2008,16(4):608~617
    [87] Hooper D. U., Chapin III F.S., Euel J.J.,et al.Effects of biodiversity on ecosystem functioning:a consensus of current knowledge.Ecological Monographs,2005,75:3~35
    [88] Jokela E.J.,Martin T.A. Effects of ontogeny and soil nutrient supply on production,allocation, and leaf area efficiency in loblolly and slash pine stands.Canadian Journal of Forest Research,2000,30:1511~1524
    [89] Karachi M.,Giathi G.,Muchiri N.M.,et al. Factors influencing the natural regeneration of Polyscias kikuyensis Summerh in Nyamweru forest-Kikuyu escarpment,Kenya.African Journal of Ecology,2006,45:242~248
    [90] Kardol P.,Bezemer T.M.,van der Putten W.H.Temporal variation in plant-soil feedback controls succession.Ecology Letters,2006,9:1~9
    [91] Kennedy T.A.,Naeem S.,Howe K.M.,et al.Biodiversity as a barrier to ecological invasion.Nature, 2002,417,636~638
    [92] Kim C.,Sharik T.L.,et al.Canopy cover effects on soil nitrogen mineralization in northern red oak (Quercus rubra) stands in northern Lower Michigan.Forestry Ecology and Management,1995,76:21~28
    [93] Kimmins J.P.Forest Ecology.曹福亮.北京:中国林业出版社,2005,245-248
    [94] Klironomos J.N.Feedback with soil biota contributes to plant rarity and invasiveness in communities.Nature,2002,417:67~70
    [95] Krueger-Mangold J.M.,Sheley R.L.,Svejcar T.J.Toward ecologically-based invasive plant management on rangeland.Weed Science,2006,54:597~605
    [96] Laughlin D.C.,Moore M.M.,Bakker J.J.D.,et al.Assessing targets for the restoration of herbaceous vegetation in ponderosa pine forests.Restoration Ecology,2006,14(4):548~560
    [97] Lavorel S.,Garnier E. Predicting changes in community composition and ecosystem functioning from plant traits:revisiting the Holy Grail.Functional Ecology,2002,16:545~556
    [98] Lee E.W.S., Hau B.C.H.,Corlett R.T.,et al.Natural regeneration in exotic tree plantations in Hong Kong,China.Forest Ecology and Management,2005,212:358~366
    [99] Levine J.M., Pachepsky E.,Sullivan D.S.,et al. Plant-soil feedbacks and invasive spread.Ecology Letters,2006,9:1005~1014
    [100] Lilja S.,Kuuluvainen T.Structure of old Pinus sylvestris dominated forest stands along a geographic and human impact gradient in mid-boreal Fennoscandia.Silva Fennica,2005,39(3):407~428
    [101] Lindgren P.M.F.,Ransome D.B.,Sullivan D.S.,et al.Plant community attributes 12 to 14 years following precommercial thinning in a young lodgepole pine forest.Canadian Journal of Forest Research,2006,36(1):48~61
    [102] Liu C.,Berg B.,Kutsch W.,et al.Leaf litter nitrogen concentration as related to climatic factors in Eurasian.Global Ecology and Biogeography,2006,15:438~444
    [103] Lortie C.J.,Cushman J.H.Effects of a directional abiotic gradient on plant community dynamics and invasion in a coastal dune system.Journal of Ecology,2007,95:468~481
    [104] Macdonald T.Networks for restoration and sustainability.Ecological management and restoration,2007,8(3):1
    [105] MacDougall A.S.,Boucher J.,et al.Patterns of plant invasion along an environmental stress gradient.Journal of Vegetation Science,2006,17:47~56
    [106] Mack R.N.,Simberloff D.,Lonsdate W.M.,et al.Biotic invasions:causes,epidemiology,global consequences,and control.Ecological Applications,2000,10:689~710
    [107] Marage D.,Gégout J.-C.Importance of soil nutrients in the distribution of forest communities on a large geographical scale.Global Ecology and Biogeography,2009,18:88~97
    [108] Norris M.D.,Reich P.B.Modest enhancement of nitrogen conservation via retranslocation in response to gradients in N supply and leaf N status.Plant Soil,2009,316:193~204
    [109] Noss R.F.,Beier P.,Covington W.W.,et al.Recommendations for integrating restoration ecology and conservation biology in ponderosa pine forests of the southwestern United States.Restoration Ecology,2006,14(1):4~10
    [110] O’Brien M.J.,O’Hara K.L.,Erbilgi N.,et al.Overstory and shrub effects on natural regeneration processes in native Pinus radiata stands.Forest Ecology and Management,2007,240:178~185
    [111] Pywell R.F.,Bullock J.M.,Roy D.B.,et al.Plant traits as predictors of performance in ecological restoration.Journal of Applied Ecology,2003,40:65~77
    [112] Richardson S.J.,Allen R.B.,Doherty J.E.Shifts in leaf N:P ratio during resorption reflect soil P in temperate rainforest.Functional Ecology,2008,22:738~745
    [113] Roderick M.L.On the measurement of growth with applications to the modelling and analysis of plant growth.Functional Ecology,2000,14:244~251
    [114] Rotundo J.L.,Aguiar M. R.Litter effects on plant regeneration in arid lands:a complex balance between seed retention,seed longevity and soil–seed contact.Journal of Ecology,2005,93:829~838
    [115] Ruiz-Jaen M.C.,Aide T.M.Restoration success:how is it being measured? Restoration Ecology,2005,13(3):569~577
    [116] Sansevero J.B.B.,Prieto P.V.,de Moraes L.F.D.,et al.Natural regeneration in plantations of native trees in lowland Brazilian Atlantic forest:community,structure,diversity and dispersal syndromes.Restoration Ecology(in press),2009,doi:10.1111/j.1526-100X.2009.00556.x
    [117] Solon J ., Degórski M ., Roo-Zielinska E . Vegetation response to a topographical-soil gradient.Catena,2007,71:309~320
    [118] Stone J.E.,Kolb T.E.,Covington W.W.Effects of restoration thinning on presettlement Pinus ponderosa in northern Arizona.Restoration Ecology,1999,7(2):172~182
    [119] Sweeney B.W.,Czapka S.J.,Yerkes T.Riparian forest restoration:increasing success by reducing plant competition and herbivory.Restoration Ecology,2002,10(2):392~400
    [120] Tan X.,Chang S.X.,Comeau P.G.,et al.Thinning effects on microbial biomass,N mineralization, and tree growth in a mid-rotation fire-origin lodgepole pine stand in the lower foothills of Alberta, Canada.Forest Science,2008,54(4):465~474
    [121] Tessier J.T.,Raynal D.J.Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation.Journal of Applied Ecology,2003,40:523~534
    [122] Tilman D.,Reich P.B.,Knops J.M.H.,et al.Diversity and productivity in a long-term grassland experiment.Science,2001,294:843~845
    [123] Tilman D.,Reich P.B.,Knops J.M.H.,et al.Biodiversity and ecosystem stability in a decade-long grassland experiment.Nature,2006,441:629~632
    [124] Van der Heijden M.G.A.,Klironomos J.N.,Ursic M.,et al.Mycorrhizal fungal diversity determines plant biodiversity,ecosystem variability and productivity.Nature,1998,396:69~72
    [125] Varner III J.M.,Gordon D.R.,Putz F.E.,et al.Restoring fire to long-unburned Pinus palustris ecosystems:novel fire effects and consequences for long-unburned ecosystems.Restoration Ecology,2005,13(3):536~544
    [126] Vinton M.A., Goergen E.M. Plant-soil feedbacks contribute to the persistence of Bromus inermis in tallgrass prairie.Ecosystems,2006,9:967~976
    [127] Vivanco L.,Austin A.T.Tree species identity alters forest litter decomposition through long-term plant and soil interactions in Patagonia, Argentina.Journal of Ecology,2008,96:727~736
    [128] Wardle D . A . Communities and ecosystems : linking the aboveground and belowground components.2002,New Jersey:Princeton University Press
    [129] Wright I.J.,Reich P.B.,Westoby M.Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats.Functional Ecology,2001,15:423~434
    [130] Wu X.P.,Zheng Y.,Ma K.P. Population distribution and dynamics of Quercus liaotungensis,Fraxinus rhynchophlla and Acer mono in Dongling Mountain,Beijing.Acta Botanica Sinica,2002,44 (2):212~223
    [131] Yadav R.S.,Yadav B.L.,et al.Litter dynamics and soil properties under different tree species in a semi-arid region of Rajasthan,India.Agroforest Syst,2008,73:1~12
    [132] Youngblood A.,Maxb T.,et al.Stand structure in eastside old-growth ponderosa pine forests of Oregon and northern California.Forest Ecology and Management,2004,199:191~217

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700