用户名: 密码: 验证码:
LPV系统鲁棒变增益控制研究及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
变增益控制一直是工程界最为常用的控制方法之一,应用领域十分广泛,特别是在飞行控制系统设计领域。传统的变增益控制设计方法缺乏保证系统在整个工作区域内的稳定性理论证明,同时设计步骤繁琐,已逐渐不能适应目前系统要求。LPV系统是一类重要的时变系统,由于能够描述一类实际动态系统本身存在的非线性和时变特性,所以应用LPV系统进行变增益设计可以避免传统变增益出现的问题。
     论文研究了LPV系统的鲁棒变增益控制,分析了目前鲁棒变增益控制中存在的保守性,并展开研究,得到了具有更低保守性的方法,并将部分研究结果应用到一类无尾式飞行器的控制系统的设计中。主要研究内容和创新点如下:
     (1)研究了鲁棒变增益控制中的模型问题,即系统的LPV建模。介绍了常用非线性系统向LPV系统转化的方法,针对目前方法存在的保守性,提出了一种改进的非线性系统LPV的表示方法,并且通过比较不同方法与原非线性系统可达集大小的方式验证了改进方法较之目前方法具有更小的保守性;同时研究了一般LPV系统的多胞形表示,根据矩阵的高阶奇异值分解,给出了一般LPV系统向多胞形转化的实现步骤。
     (2)研究了多胞形系统基于二次Lyapunov函数的鲁棒变增益控制方法。针对目前基于变参数几何位置的调度策略存在的保守性,提出了一种基于模型广义距离的调度策略,通过计算当前时刻模型与多胞形顶点模型间的Gap度量,然后进行凸分解,进而进行变增益控制,仿真结果验证了较之目前的调度策略具有更小的保守性。
     (3)针对二次Lyapunov函数方法存在的保守性,从两个方面研究了基于参数依赖Lyapunov函数的鲁棒变增益控制方法。首先,针对多胞形系统,提出了一种多松弛变量的参数依赖Lyapunov函数方法,将Lyapunov函数矩阵与系统矩阵解耦,降低了保守性;其次,针对仿射参数依赖LPV系统,提出了一种仿射参数依赖Lyapunov函数方法,考虑了变参数的变化速率,降低了保守性。
     (4)研究了基于线性分式变换的鲁棒变增益控制方法。阐述了基于线性分式变换的鲁棒变增益的基本思想,研究了一类LPV系统的降维线性分式变换方法,并且给出了降维变换的思路和步骤;针对目前线性分式变换鲁棒变增益控制方法存在的保守性,基于S-过程提出了一种保守性更小的鲁棒变增益控制分析和综合的方法,该方法通过对全块标量矩阵的选择,采用双线性矩阵不等式,降低了由于对标量矩阵过多约束限制带来的保守性,同时给出了控制器实现的迭代线性矩阵不等式算法。
     (5)研究了LPV系统的鲁棒变增益多目标控制。将扩展线性矩阵不等式方法和参数依赖Lyapunov函数方法应用到LPV系统的多通道多目标控制中,降低了单一Lyapunov函数方法带来的保守性,同时研究了一类双线性矩阵不等式的求解问题,提出了一种简单有效的迭代LMI算法,进一步降低了鲁棒变增益多目标控制的保守性。
     (6)将LPV系统鲁棒变增益控制方法应用于一类无尾式飞行器的飞控系统的设计中。建立了飞行器的LPV模型,采用Lyapunov函数方法和线性分式变换方法分别设计了飞行器的纵向和横侧向的鲁棒变增益控制器,并根据系统存在的不确定性,检验了控制器的鲁棒性,仿真结果验证了方法的有效性和可行性。
     总之,论文始终围绕着LPV系统的鲁棒变增益控制展开研究,得到了一些新的结果,并且将部分研究结果应用于飞行器的控制系统设计中,为鲁棒变增益控制在高性能飞行器中的应用做了有意义的尝试。
Gain-Scheduling (GS) is one of the most famous methods in the engineering and is applied in many fields, especially for flight control systems. Due to lack of stability theory prove within operation range and burdensome process, the traditional GS is not compatible for modern system gradually, Linear Parameter-Varying (LPV) system is an important time-varying system, GS based on LPV system can overcome the shortcomings of the traditional GS, because it can describe nonlinear and time-varying characteristics of a class of dynamic systems.
     The robust GS theory based on LPV system is investigated, and the conservatism of current methods is analyzed and studied, some new methods which have smaller conservatism are obtained. And partial results are applied to the flight control system of a class of tailless aircraft. The main research contents and contributions are listed as follows:
     (1) Model problems of robust GS, LPV system modeling, are studied. The transformation methods of nonlinear system to LPV system are introduced, and aim at the conservatism of these methods, an improved method is proposed. The performance of models got by different methods is evaluated using reachable set and the results testify the proposed method has smaller conservatism. At the same time, method of polytope representation of the general LPV system based on high-dimensional singular value decomposition is studied, and the implementation steps are given.
     (2) Robust GS based on quadratic Lyapunov functions is studied and a new GS strategy is proposed because of the conservatism of the current GS strategy which based on parameter geometry distance. Aim at polytope, the new strategy based on Gap-Metric does convex decomposition through generalized distance between the system and its vertex systems. The simulation result testifies the new one has smaller conservatism.
     (3) In order to reduce the conservatism of the quadratic Lyapunov function method, the parameter dependent Lyapunov function method is studied from two aspects. Firstly, aim at the polytope, a multi-slack variables parameter dependent Lyapunov function method is proposed, this new method can decouple the Lyapunov function and system matrix and the conservatism is reduced. Secondly, aim at the affine parameter dependent LPV system, an affine parameter dependent Lyapunov function method is proposed. The variations of the variable parameter are considered and the conservatism is reduced.
     (4) The robust GS based on linear fractional transformation (LFT) is studied and the basic idea of this method is introduced. The LFT representation of polynomial LPV and the dimensionality reduction methods and steps are given. A less conservative analysis and synthesis method based on S-procedure is proposed. The bilinear matrix inequality is used in this method because less constraint on full block scaling matrix and the iterative LMI algorithm to the BMI is given.
     (5) The multi-objective robust GS based on LPV system is studied, the extended LMI and parameter dependent Lyapunov function, which can reduce the conservatism of the multi-channel single Lyapunov function method, are applied into LPV system multi-objective control using multi-channel principle. A class of BMI problem is studied, a new simple and effective iterative LMI algorithm is proposed which can further reduce the conservatism.
     (6) The results obtained in the dissertation are applied to flight control system of a class of tailless aircraft. The LPV model of the aircraft is developed, the robust GS controllers of longitudinal and lateral are designed using Lyapunov function method and LFT method respectively, and in accordance with system uncertainty the robustness of the controller is verified. The simulation results prove the feasibility and efficiency of the methods.
     In a word, the dissertation is focus on the robust GS control based on LPV system, and some new results are obtaied, and then the results are applied to flight control system. The meaningful attempt of robust GS to the high-performance aircraft is done.
引文
[1]L Reberga, D Henrion. LPV Modeling of a Turbofan Engine[C]. Czech Republic:Prague, the 16th IF AC Word Congress,2005.
    [2]H Kajiwara, P Apkarian, P Gahinet. LPV Techiniques for Control of an Inverted Pendulum[J]. IEEE Control System,1999,19(1):44-54.
    [3]虞忠伟,陈辉堂,王月娟.基于LMI方法的机器人LPV鲁棒H∞控制器设计[J].控制与决策,2001,16(2):146-150.
    [4]F Lescher, J Y Zhao, P Borne. Robust Gain Scheduling Controller for Pitch Regulated Variable Speed Wind Turbine[J]. Studies Informatics and Control, 2005,14(4):299~316.
    [5]B Lu, H Choi, G Buckner. LPV Control Design and Experiment Implemention for a Magnetic Bearing System[C]. USA:Minneapolis, American Control Conference,2006:4570~4575.
    [6]H K Khalil. Nonlinear Systems[M]. New Jersey:Prentice Hall, Upper Saddle River,1995.
    [7]D Mclean. Automatic Flight Control Systems[M]. London: Prentice-Hall, 1990.
    [8]C H Lee, M J Chung. Gain-Scheduled State Feedback Control Design Technique for Flight Vehicles[J]. IEEE Trans On Aerospace and Electronic Systems,2001,37(1):173~182.
    [9]W Rugh, J Shamma. Research on Gain Scheduling[J]. Automatica,2000, 36(10):1401~1425.
    [10]J Shamma, M Athans. Guaranteed Properties of Gain Scheduled Control for Linear Parameter-Varying Plants[J]. Automatica,1991,27(3):559~564.
    [11]P Apkarian, R Adams. Advanced Gain-Scheduling Techniques for Uncertain Systems[J]. IEEE Trans on Control Systems Technology,1998,6(1):21~32.
    [12]J Shamma, M Athans. Analysis of Gain Scheduled Control for Nonlinear Plants[J]. IEEE Trans On Automatic Control,1990,35(8):898~907.
    [13]哈里尔著;朱义胜,董辉,李作洲译.非线性系统(第三版)[M].北京:电子工业出版社,2005.
    [14]W Garrard, D Enns, S Snell. Nonlinear Feedback Control of Highly Manoeuvrable Aircraft[J]. International Journal of Control,1992,56(4): 799~812.
    [15]李中健.大包线飞行控制系统鲁棒设计研究[D].西安:西北工业大学,2000.
    [16]F Bruzelius. Linear Parameter-Varying Systems:an Approach to Gain Scheduling[D]. Sweden:Chalmers University of Technology,2004.
    [17]R Nichols, R Reichert, W Rugh. Gain Scheduling for H_ Controllers:A Flight Control Example[J]. IEEE Control System,1993,1(2):69~79.
    [18]D Leith. Survey of Gain-Scheduling Analysis & Design[J]. International Journal of Control,2000,73(11):1001~1025.
    [19]J Shamma, J Cloutier. Gain-Scheduled Missile Autopilot Design Using Linear Parameter Varying Transformations [J]. Journal of Guidance, Control, and Dynamics,1993,16(2):256~263.
    [20]P Pellanda, P Apkarian, H Tuan. Missile Autopilot Design via a Multi-Channel LFT/LPV Control Method[J]. International Journal of Robust Nonlinear Control,2002,12(1):1-20.
    [21]P Apkarian, J Biannic. Gain-Scheduled H∞ Control of a Missile via Linear Matrix Inequalities[C]. USA: Lake Buena Vista, the 33rd Conference on Decision and Control,1994:3312~3317.
    [22]L Carter, J Shamma. Gain-Scheduled Bank-to-Turn Autopilot Design Using Linear Parameter Varying Transformations [J]. Journal of Guidance, Control and Dynamics,1996,19(5):1056~1063.
    [23]F Wu, A Packard, B Gary. Systematic Gain-Scheduling Control Design:A Missile Autopilot Example[J]. Asian Journal of Control,2002,4(3):341~347.
    [24]A Mehrabian, J Roshnian. Design of Gain-Scheduled Autopilot for a Highly-Agile Missile[C]. System and Control in Aerospace and Astronautics, 2006:144~149.
    [25]Y Jianqiao, L Li, Z Hongxia. Robust Gain-Scheduled Controller Design for
    Air Defense Missile[C]. China:Harbin, the 25th Chinease Control Conference, 2006:714~718.
    [26]H Buschek. Self-Scheduled Missile Autopilot Using Parameter Varying Robust Control[C]. USA:Boston, AIAA Guidance, Navigation, and Control Conference and Exhibit,1998.
    [27]J Shin, I Gregory. Robust Gain-Scheduled Fault Tolerant Control for a Transport Aircraft[C]. Singapore, IEEE Intrernational Conference On Control Application,2007:1209~1214.
    [28]G Papageorgiou, K Glover. Taking Robust LPV Control into Flight on the VAAC Harrier[C]. Australia:Sydney, the 39th IEEE Conference on Decision and Control,2000.
    [29]S Ganguli, A Marcos, B Gary. Reconfigurable LPV Control Design for Boeing 747-100/200 Longitudinal Axis[C]. USA: Anchorage, the American Control Conference,2002.
    [30]J Biannic, P Apkarian, W Garrard. Parameter Varying Control of a High Performance Aircraft[J]. Journal of Guidance, Control and Dynamics,1997, 20(2):225~231.
    [31]J Gary, I Fialho, A Packard. On the Design of LPV Controllers for the F-14 Aircraft Lateral-Directional Axis During Powered Approach[C]. USA:New Mexico, the American Control Conference,1997.
    [32]J Gary, J Mueller, J Barker. Application of Gain-Scheduled Multivariable Control Techniques to the F/A-18 System Research Aircraft[C]. USA:Portland, AIAA Guidabce, Navigation and Control Conference and Exhibit,1999.
    [33]I Fialho, J Gary. Gain-Scheduled Lateral Control of the F-14 Aircraft During Powered Approach Landing[J]. Journal of Guidance, Control and Dynamics, 2000,23(3):450~458.
    [34]J Mueller, J Gary. Implementation and Testing of LPV Controllers for the NASA F/A-18 Systems Research Aircraft[C]. USA:Denver, AIAA Guidance, Navigation and Control Conference,2000.
    [35]L Lee, M Spillman. Robust, Reduced-Order, Linear Parameter Varying Flight Control For an F-16[C]. USA:New Orleans, AIAA Guidance, Navigation, and Control Conference,1997.
    [36]W Gregory, J Gary, W Garrard. Application of Parameter Dependent Robust Control Synthesis to Turbofan Engines[J]. Journal of Guidance, Control and Dynamics,1999,22(6):833~838.
    [37]J Gary. Linear Parameter-Varying Control and its Application to a Turbofan Engine[J]. International Journal of Robust Nonlinear Control,2002,12(9): 763~769.
    [38]G Sparks. Linear Parameter Varying Control for a Tailless Aircraft[C]. USA: New Orleans, AIAA Guidance, Navigation, and Control Conference,1997.
    [39]A Jadbabaie, J Hauser. Control of a Thrust-Vectored Flying Wing: a Receding Horizon-LPV Approach[J]. International Journal of Robust Nonlinear Control, 2002,12(9):869~896.
    [40]I Fialho, G Balas. Adaptive Vehicle Suspension Design Using LPV Methodes[C]. USA:Florida, the 37th IEEE Conference on Decision & Control, 1998.
    [41]I Fialho, J Gary. Road Adaptive Active Suspension Design Using Linear Parameter-Varying Gain-Scheduling [J]. IEEE Control System,2002,10(1): 43~54.
    [42]K Trangbak. Linear Parameter Varying Control of Induction Mo tors [D]. Sweden:Aalborg University,2001.
    [43]王涛,肖建,李冀昆.基于变增益控制理论的感应电机转子磁链观测[J].电力系统及其自动化学报,2006,18(1):71-73.
    [44]F Wu. Switching LPV Control Design for Magnetic Bearing Systems [C]. Mexico: Mexico city, IEEE International Conference on Control Application, 2001.
    [45]虞中伟,陈辉堂.机器人多胞变增益输出反馈H∞控制[J].控制理论与应用,2003,20(6):925~932,937.
    [46]K Fitzpatrick. Application of Linear Parameter-Varying Control for Aerospace Systems[D]. USA:University of Florida,2003.
    [47]R Gao, K Ohtsubo, H Kajiwara. LPV Design for a Space Vehicle Attitude Control Benchmark Problem[C]. Japan: Fukui, SICE Annual Conference, 2003.
    [48]M Zerar, F Cazaurang, A Zolghadri. LPV Modeling of Atmospheric Re-entry Demonstrator for Guidance Re-entry Problem[C]. Spain:Seville, the 44th IEEE Conference on Decision and Control,2005.
    [49]H Hughes. Optimal Control for Spacecraft Large Angle Maneuvers using H∞ Linear Varying Parameter Control Techniques[D]. USA:North Carolina State University,2006.
    [50]G Voorsluijs, J Mulder. Parameter-Dependent Robust Control for a Rotorcraft UAV[C]. USA: San Francisco, AIAA Guidance, Navigation and Control Conference and Exhibit,2005.
    [51]G Voorsluijs, S Bennani, C Scherer. Linear and Parameter Dependent Robust Control Techniques Applied to a Helicopter UAV[C]. Island: Rhode, AIAA Guidance, Navigation and Control Conference and Exhibit,2004.
    [52]S Oca, V Puig, M Witczak. Fault-tolerant Control of a Two-degree of Freedom Helicopter using LPV Techniques[C]. France: Ajaccio,16th Mediterranean Conference on Control and Automation,2008:1204~1209.
    [53]K Natesan. Design of Flight Controllers based on Simplified LPV Model of a UAV[C]. USA: San Diego, the 45th IEEE Conference on Decision and Control, 2006.
    [54]M Dettori, C Scherer. LPV Design for a CD Player: an experimental Evaluation of Performance[C]. USA: Orlando, the 40th IEEE Conference on Decision and Control,2001.
    [55]Y Tipsuwan. Gain Scheduling for Networked Control System[D]. USA: North Carolina State University,2003.
    [56]W Qin, Q Wang. Modeling and Control Design for Performance Management of Web Service Via an LPV Approach[J]. IEEE Control System,2007,15(2): 259~275.
    [57]K Turki, O Boubaker. H∞ Gain Scheduling Control of a Nonlinear Bioprocess: A Multiple Model Approach[J]. AIML Journal,2005,5(3):79-85.
    [58]J Shin N Wu, C Belcastro. Linear Parameter Varying Control for Actuator Failure[R]. ICASE, Hampton, Virginia,2002.
    [59]Z Weng, R Patton, P Cui. Integrated Design of Robust Controller and Fault Estimator for Linear Parameter Varying Systems[C]. Korea: Seoul, the 17th World Congress IF AC,2008.
    [60]J Barker, J Gary. Gain-Scheduled Linear Fractional Control for Active Flutter Suppression[J]. Journal of Guidance, Control and Dynamics,1999,22(4): 507~512.
    [61]G Papageorgiou, R Hyde. Analysing the Stability of NDI-based Flight Controllers With LPV Methodes[C]. Canada: Montreal, AIAA Guidance, Navigation and Control Conference and Exhibit,2001.
    [62]M Oosterom, P Bergsten, R Babuska. Fuzzy Gain-Scheduled H∞ Flight Control Law Design[C]. USA:Monterey, AIAA Guidance, Navigation and Control Conference and Exhibit,2002.
    [63]邵晓巍.LPV时滞系统的准Min-Max鲁棒模型预测控制[J].武汉理工大学学报(交通科学与工程版),2006,30(3):373~376.
    [64]J Salcedo. GPC-LPV:a Predictive LPV Controller Based on BMIs[C]. Spain: Seville, the 44th IEEE Conference on Decision and Control,2005.
    [65]P Apkarian, P Gahinet, G Becker. Self-Scheduled H_ Control of Linear Parameter-Varying Systems:A Design Example [J]. Automatica,1995, 31(9):1251~1261.
    [66]D Cabecinhas. Path-Following Control for Coordinated Turn Aircraft Maneuvers[C]. USA:Hilton Head, AIAA Guidance, Navigation and Control Conference and Exhibit,2007.
    [67]J Ousingsawat. H∞ Gain Scheduling Control for Aircraft Trajectory Tracking using Linear Parameter Varying Model [J]. The Journal of KMITNB,2007, 17(1):10-17.
    [68]F Wu. Induced L2-Norm Control for LPV Systems with Bounded Parameter Variation Rates[J]. International Journal of Robust Nonlinear Control,1996, 6(10):983-998.
    [69]E Feron, P Apkarian, P Gahinet. Analysis and Synthesis of Robust Control Systems via Parameter-Dependent Lyapunov Functions[J]. IEEE Trans On Automatic Control,1996,41(7):1041-1046.
    [70]P Apkarian, E Feron, P Gahinet. Parameter-Dependent Lyapunov Functions for Robust Control of Systems with Real Parametric Uncertainty[C]. Italy:Roma, European Control Conference,1995.
    [71]V Vesely. Robust Output Feedback Controller Design: LMI Approach[C]. Slovakia: Bratislava,2th IFAC Conference CSD'03,2003.
    [72]S Chughtai, H Werner. Synthesis of Low-Order Controllers for LPV Systems Using LMIs and Evolutionary Search[C]. USA:San Diego, the 45th IEEE Conference on Decision and Control,2006.
    [73]A Farag, H Werner. Robust Control of a Class of LPV Systems-A Combined Evolutionary-LMI Approach[C]. Germany:Munich, IEEE Conference on Computer Aided Control Systems Design,2006.
    [74]Q Liu, V Vittal, N Elia. Expansion of System Oprerating Range by an Interpolated LPV FACTS Controller Using Multiple Lyapunov Functions[J]. IEEE Trans On Power System,2006,21(3):1311~1320.
    [75]A Bouali, M Yagoubi, P Chevrel. Gain Scheduled Observer State Feedback Controller for Rational LPV Systems[C]. Korea: Seoul, the 17th World Congress IFAC,2008.
    [76]C Wei, L Lee. Stability Analysis of Discrete LPV Systems Subject to Rate-Bounded Parameters[C]. Korea: Seoul, the 17th World Cngress IFAC, 2008.
    [77]M Chadli, J Daafouz, M Darouach. Stabilization of Singular LPV Systems[C]. Korea:Seoul, the 17th World Congress IFAC,2008.
    [78]M Oliveira, J Bernusson, J Geromel. A New Discrete-Time Robust Stability Condition[J]. System and Control Letters,1999,37(4):261~265.
    [79]U Shaked, V Suplin. A New Bounded Real Lemma Representation for the Continuous-Time Case[J]. IEEE Trans On Automatic Control,2001,46(9): 1420~1426.
    [80]Y Jia. Alternative Proofs for Improved LMI Representations for the Analysis and Design of Continuous-Time Systems With Polytopic Type Uncertainty: A Predictive Approach[J]. IEEE Trans Automatic Control,2003,48(8): 1413-1416.
    [81]T Li, Y Jia. Improved LMI Representations for Bounded Real Criterion of Systems with Polytopic Type Uncertainty[C]. USA:Denver, Proceedings of the ACC,2003.
    [82]J Wei, L Lee. Further Improvement on LMI Representations for the Analysis and Design of Continuous-Time Systems with Polytopic Type Uncertainty [C]. Australia:Melbourne,5th Asian Control Conference,2004:1130-1136.
    [83]S Chughtai, N Munro. LMI Based Gain-Scheduled Control[R]. University of Bath,2004.
    [84]F Wu. LPV Controller Interpolation for Improved Gain-Scheduling Control Performance[C]. USA:Monterey, AIAA Guidance, Navigation and Control Conference and Exhibit,2002.
    [85]P Apkarian,P Gahinet.A Convex Characterization of Gain-Scheduled H∞ Controllers[J]. IEEE Trans On Automatic Control,1995,40(9):853~864.
    [86]A Packard. Gain Scheuling via Linear Fractional Transformations[J]. System and Control Letters,1994,22(2):79-92.
    [87]C Scherer. Robust Mixed Control and LPV Control with Full Block Scalings[J]. Rencent Advance of LMI Methods in Control, SIAM,2000: 187~207.
    [88]F Wu, K Dong. Gain-Scheduling Control of LFT Systems using Parameter-Dependent Lyapunov Functions[C]. USA:Portland, American Control Conference,2005.
    [89]J Magni. An LFT Approach to Robust Gain Scheduling[C]. Spain:Seville, 44th IEEE Conference on Decison and Control,2005.
    [90]K Dong, F Wu. Gain-Scheduled Control of LFT Systems Through Duality and Conjugate Lyapunov Functions[C]. USA:Minnestoa, American Control Conference,2006.
    [91]J barker, J Gary. Comparing Linear Parameter-Varying Gain-Scheduled Control Techniques for Active Flutter Suppression[J]. Journal of Guidance, Control and Dynamics,2000,23(5):948-955.
    [92]F Wu, K Dong. Robust and Gain-Scheduling H2 Synthesis for LFT Parameter-Dependent Systems[C]. USA:Portland, American Control Conference,2005:2851~2856.
    [93]D Bernstein. LQG Control with an H∞ Performance bound: Riccati Equation Approach[J]. IEEE Trans On Automatic Control,1989,34(4):293-305.
    [94]C Scherer, P Gahinet, M Chilali. Multiobjective Output-Feedback Control via LMI Optimization[J]. IEEE Trans On Automatic Control,1997,42(7): 896~911.
    [95]杨志红,马广富,李传江.基于扩展LMI的多目标H2/H∞状态反馈控制综合[J].电机与控制学报,2004,8(4):333~337.
    [96]王进华.混合H2/H∞鲁棒控制器设计[J].控制理论与应用,2004,21(1):45~53.
    [97]张羽飞,冯汝鹏,王茂.H2/H∞混合优化问题综述[J].信息与控制,2002,31(5):430~436.
    [98]D Arzlier, B Clement, D Peaucelle, Multi-Objective H2/H∞ /Impulse-to-Peak Control of a Space Launch Vehicle[J]. European Journal of Control,2006,12(1):57~70.
    [99]C Poussot-Vassal. Multi-objective qLPV H2/H∞ Control of a Half Vehicle[C]. Hungary:Budapest,10th MINI Conference on Vehicle System Dynamics, Identification and Anomalies,2006.
    [100]P Apkarian, P Pellanda, H Tuan. Mixed H2/H∞ Multi-Channel Linear Parameter-Varying Control in Discrete Time[C]. USA:Chicago, the American Control Conference,2000.
    [101]朱学斌,虞忠伟.暂态特性可调的一类非线性系统的变增益H2/H∞控制[J].兰州理工大学学报,2005,31(3):82~86.
    [102]马清亮,胡昌华.不确定离散时间系统的变增益H2/H∞滤波[J].控制与决策,2007,22(5):540~544.
    [103]D Peaucelle, D Arzelier. Robust Performance Analysis with LMI-based Methods for Real Parametric Uncertainty via Parameter-Dependent Lyapunov Functions[J]. IEEE Trans On Automatic Control,2001,46(4):624~630.
    [104]M Sato. Robust Stability/Performance Analysis for Polytopic Systems via Multiple Slack Variable Approach[C]. Korea:Seoul, the 17th World Congress IFAC,2008.
    [105]A Marcos, J Gary. Development of Linear-Parameter-Varying Models for Aircraft [J]. Journal of Guidance, Control and Dynamics,2004,27(2): 218~228.
    [106]A Kwiatkowski, H Werner. LPV Control of a 2-DOF Robot using Parameter Reduction[J]. IEEE Trans On Control System,2008,16(4):781~788.
    [107]P Gaspar, Z Szabo, J Bokor. The Design of an Integrated Control System in Heavy Vehicles based on an LPV Method[C]. Spain:Seville, IEEE Conference on Decision and Control,2005.
    [108]F Casella, M Lovera. LPV/LFT Modeling and Identification: Overview, Synergies and a Case Study[C]. USA:San Antonio, IEEE Int Symposium on Computer-Aided Control System Design,2008:852~857.
    [109]A Mehrabian, J Roshanian. Design of Gain-Scheduled Autopilot for a Highly-Agile Missile[C]. System and Control in Aerospace and Astronautics, 2006.
    [110]J Shin, G Balas, Kaya. Blending Approach of Linear Parameter Varying Control Synthesis for F-16 Aircraft[C]. Canada, AIAA Guidance, Navigation and Control Conference and Exhibt,2001.
    [111]R Bhattacharya, G Balas, Kaya. Nonliear Receding Horizon Control of an F-16 Aircraft[J]. Journal of Guidance, Control and Dynamics,2002,25(5): 924~931.
    [112]A Fujimori, L Ljung. A Polytopic Modeling of Aircraft by using System Identification[C]. Hungary:Budapest, International Conference on Control and Automation,2005.
    [113]L Holly, S Kowalchuk, P Lederbogen. University of Kansas UAV Dynamic Modeling and Flight Testing Development Program[C]. USA:Chicago, AIAA 3rd "Unmanned Unlimited" Technical Conference, Workshop and Exhibit,2004.
    [114]B Bamieh, L Giarre. Identification of Linear Parameter Varying Models[J]. International Journal of Robust Nonlinear Control,2002,12(9):841-853.
    [115]H Abbas, H Werner. Polytopic Quai-LPV Models Based on Neural State-Space Models and Application to Air Charge Control of a SI Engine[C]. Korea:Seoul, the 17th World Congress IF AC,2008.
    [116]http://ieeecss.org.
    [117]胡东.变增益控制理论及其应用[D].南京:南京航空航天大学,1999.
    [118]余翔.鲁棒可靠控制方法研究及其在直升机飞控系统中的应用[D].西安:西北工业大学,2007.
    [119]何矞,周凤岐,周军.变质心控制导弹H∞综合LPV鲁棒自动驾驶仪的设计[J].西北工业大学学报,2004,22(3):360~364.
    [120]潘常春.无人机直接侧力控制律的研究[D].南京:南京航空航天大学,2004.
    [121]王茂兵.增益调参H∞控制在飞控系统中的应用[D].北京:北京航空航天大学,2004.
    [122]傅彩芬,谭文,刘吉臻.基于回路成形的鲁棒增益调度控制器设计[J].信息与控制,2005,34(2):152~157.
    [123]于剑桥.导弹线性分式变换模型及其在H∞增益调度自动驾驶仪设计中的应用[J].兵工学报,2007,28(7):844~848.
    [124]李辉,刘藻珍,孟秀云.鲁棒自增益H2滤波器设计[J].弹箭与制导学报,2007,26(3):1~4.
    [125]沈明辉.低层大气内动能拦截弹末端制导与控制研究[D].长沙:国防科学
    技术大学,2007.
    [126]袁士春,郭晨,史成军.基于线性变参数的船舶运动H∞控制及仿真[J].大连海事大学学报,2007,33(2):88~91.
    [127]段玉波,袁伟,王俊玲.中立时滞LPV系统基于观测器的控制器设计[J].控制与决策,2006,21(12):1387~1391.
    [128]王红茹,王常虹,高会军.一类时滞LPV系统的鲁棒故障检测[J].控制与决策,2006,21(10):1148~1153.
    [129]王俊玲,王常虹,高会军.时滞LPV系统的H∞控制新方法[J].控制理论与应用,2005,22(1):144~148.
    [130]王俊玲,王常虹,高会军.时滞LPV系统的稳定新判据及控制器设计[J].控制与决策,2004,19(4):402~406.
    [131]倪一峰.感应电动机LPV直接转矩控制系统的研究[D].杭州: 浙江工业大学,2005.
    [132]马东星.饱和系统的稳定性分析与抗饱和控制研究[D].杭州: 浙江大学,2006.
    [133]王鑫.航空发动机数学模型与控制律研究[D].西安:西北工业大学,2007.
    [134]S Boyd. Control System Analysis and Synthesis via Linear Matrix Inequalities[C]. USA:San Franciso, Proceedings of American Control Conference,1993.
    [135]俞立.鲁棒控制--线性矩阵不等式处理方法[M].北京:清华大学出版社,2002.
    [136]S Boyd. Linear Matrix Inequalities in System and Control[J]. Theory of SIMA Studies in Applied Mathematics, Vol 15,1994, Philadelpia, Pa, USA:SIAM.
    [137]Goh.K.C, M.G. Safanov. A Global Optimization Approach for the BMI Problem[C]. USA: Lake Buena, Proceedings of the 33th Conference on Decision and Control,1994.
    [138]A Hassibi, J How, S Boyd. A Path-Following Method for Solving BMI Problems in Control[C]. USA: San Diego, the American Control Conference, 1999.
    [139]T Shimomura, T Fujii. Multiobjective Control Design via Successive over Bounding of Quardratic terms[J]. International Journal of Robust and Nonlinear Control,2005,15:363~381.
    [140]S Ibaraki, M Tomizuka. Rank Minimization Approach for Solving BMI Problems with Random Search[C]. USA:Arlington, the American Control Conference,2001.
    [141]D Huang, S Nguang. Robust H∞ Static Output Feedback Control of Fuzzy Systems:An ILMI Approach[J]. IEEE Trans On Systems, Man and Cybernetics--Part B:Cybernetics,2006,36(1):216~222.
    [142]吉明,姚绪良.鲁棒控制系统[M].哈尔滨:哈尔滨工业大学出版社,2002.
    [143]J Yu. Lyapunov-Based Robust Control for Linear Parametrically Varying Systems[D]. USA: University of Califonia Irvine,1997.
    [144]J Shamma, M Athans. Gain Scheduling: Potential Hazards and Possible Remedies[J]. IEEE Control System Magazine,1992,12(3):101~107.
    [145]F Bruzelius, S Pettersson, C Breitholtz. Induced L2-gain Domain for LPV-Gain Scheduled Control Systems[C]. Greece:Rhodes, IEEE Mediterranean Conference on Control and Automation,2003.
    [146]A Kwiatkowski, M Boll, H Werner. Automated Generation and Assessment of Affine LPV Models[C]. USA:San Diego, the 45th IEEE Conference on Decision & Control,2006.
    [147]J Shin. Quasi-Linear Parameter Varying Representation of General Aircraft Dynamics over Non-Trim Region[R]. National Institute of Aerospace,2007.
    [148]B Lu. Linear Parameter-Varying Control of An F-16 Aircraft at High Angle of Attack[D]. USA:North Carolina State University,2004.
    [149]D Leith, W Leithead. Comments on the Prevalence of Linear Parameter Varying Systems[R]. Dept Electronic and Electrical Engineering, Tech. Rept., Univ. of Strathclyde:Glasgow, Scotland,1999.
    [150]G Papageorgiou, K Glover. Development of'"reliable" LPV Model for the Longitudinal Dynamics of DERA's VAAC Harrier[C]. USA:Denver, AIAA Guidance, Navigation, and Control Conference and Exhibit,2000.
    [151]W Tan, A Packard, J Gary. Quasi-LPV Modeling and LPV Control of a Generic Missile[C]. USA: Chicago, the American Control Conference.2000.
    [152]W Tan. Application of Linear Parameter-Varying Control Theory[D]. USA: University of California at Berkeley,1997.
    [153]虞忠伟,机器人变增益鲁棒控制研究[D].上海:同济大学,2002.
    [154]P Baranyi, Annamaria. TP Transformation Based Dynamic System Modeling for Nonlinear Control[J]. IEEE Trans On Instrumentation and Measurment, 2005,54(6):2191~2203.
    [155]P Baranyi, Y Yam. Case Study of the TP-Model Transformation in the Control of a Complex Dynamic Model with Structural Nonlinearity[J]. IEEE Trans On Industrial Electronics,2006,53(3):895~904.
    [156]L Lathauwer, B Moor, J Vandewalle. A Multilinear Singular Value Decomposition[J]. SIAM Journal on Matrix Analysis and Applications,2000, 21(4):1253~1278.
    [157]Z Petres. Polytopic Decomposition of Linear Parameter-Varying Models by Tensor-Product Model Transformation[J]. Hungary:Budapest, MTA SZTAKI,2006.
    [158]G Balas, R Chiang, A Packard. Robust Control ToolBox User's Manual[M]. Math Works Inc,2005.
    [159]G Zames, El-Sarkkary. Unstable Systems and Feedback: the Gap Metric [C]. Proc 16th Allerton Conf.1980:380-385.
    [160]A Feintuch. The Gap Metric for Linear Time-Varying Systems[J]. System and Control Letters,1991,16:277~279.
    [161]周克敏.鲁棒与最优控制[M].北京:国防工业出版社,2002.
    [162]P Gahinet, P Apkarian, M Chilali. Affine Parameter-Dependent Lyapunov Functions for Real Parametric Uncertainty [J]. IEEE Trans On Automatic Control,1996,41(3):436~442.
    [163]高会军.基于参数依赖Lyapunov函数的不确定动态系统的分析与综合[D].哈尔滨:哈尔滨工业大学,2005.
    [164]U Shaked. Improved LMI Representations for the Analysis and the Design of Continous-Time Systems with Polytopic Type Uncertainty [J]. IEEE Trans On Auto Control,2001,46(4):652~656.
    [165]W Xie. An Equivalent LMI Representation of Bounded Real Lemma for Continuous-Time Systems[J]. Journal of Inequalities and Applications,2008.
    [166]B Morton, R McAfoos. A Mu-test for Real Parameter Variations[C]. the American Control Conference,1985.
    [167]C Beck, R Andrea. Minimality, Controllability and Observability for Uncertain System[C]. USA: New Mexico, Proceedings of the American Control Conference.1997.
    [168]Ghaoui.L.E, F.Oustry, M.AitRami. A Cone Complementarity Linearization Algorithm for Static Output-Feedback and Related Problems[J]. IEEE Trans On Automatic Control,1997,42(8):1171~1176.
    [169]A Helmersson. Methods for Robust Gain Scheduling[D]. Sweden: Linkoping University,1995.
    [170]F Wang, V Balakrishnan. Improved Stability Analysis and Gain-Scheduled Controller Synthesis for Parameter-Dependent System [J]. IEEE Trans On Automatic Control,2002,47(5):720~734.
    [171]M Dettori. LMI Techniques for Control With Application to a Compact Disc Player Mechanism[D]. Dutch Institute of Systems and Control DISC,2001.
    [172]S Yen, W Levine. Mixed H2/H∞ Optimization:A BMI Solution[C]. USA: San Diego, the 36th Conference on Decision and Control,1997.
    [173]Y Ebihara, T Hagiwara, Shimomura. Multiobjective State-Feedback Control Design With Non-Common LMI Solutions:Change of Variables via Affine Functions[C]. USA: Arlington, the American Control Conference,2001.
    [174]M Chilali, P Gahinet, P Apkarian. Robust Pole Placement in LMI Regions[J]. IEEE Trans On Automatic Control,1999,44(12):2257~2270.
    [175]杨志红.基于LMI的多目标控制方法研究及应用[D].哈尔滨: 哈尔滨工业大学,2004.
    [176]马清亮,胡昌华.基于参数相关Lyapunov函数的鲁棒H2/H∞控制[J].系统仿真学报,2007,19(10):2244~2247.
    [177]R Pual, W Garrard. Dynamics and Control of Tailless Aircraft[C]. USA:New Orleans, AIAA Atmospheric Flight Mechanics Conference,1997.
    [178]王彦民,陆宇平,李丽荣.飞翼式UCAV低空段动静稳定性研究[J].飞机设计,2005,(1):32~36.
    [179]B Etkin, L Reid. Dynamics of Flight Stability and Control [M]. New York: John Wiley and Sons Inc,1996.
    [180]肖业伦.航空航天器运动的建模-飞行动力学的理论基础[M].北京:航空航天大学出版社,2006.
    [181]B Etkin. Dynamics of Flight--Stability and Control[M]. New York:John Wiley & Sons,1982.
    [182]Y LI. Robust Neuro-H∞ Controller Design for Aircraft Auto-Landing[J]. IEEE Trans On Aerospace and Electronic Systems,2004,40(1):158-167.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700