用户名: 密码: 验证码:
月球车移动系统构型综合与ALR原理样机的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
月球车移动系统是探月二期工程的重要工具和载体,其性能的好坏具有举足轻重的作用。近几年各种各样的月球车移动系统涌现,但大部分移动系统的功能、结构和尺寸等各不相同,这些移动系统具有各自的优缺点,设计过程中遵循的原则更是各不相同。到目前为止尚未有完善的理论和准则来指导月球车移动系统的设计,对月球车移动系统应具有哪些性能,哪些技术更满足月球车要求缺乏统一的评判标准。因此开展月球车移动系统构型综合的研究,研制出高性能的月球车移动系统,具有重要的研究意义和应用价值。
     按照移动系统的结构组成分别对车轮、悬架和差动机构的构型展开研究。应用图论理论建立悬架子系统的拓扑图,在分析铰接式悬架拓扑图的基础上添加车轮等约束构成新的拓扑图,对四轮、六轮和八轮月球车移动系统悬架子系统进行拓扑构型综合,提出了ALR(Articulated Lunar Rover)移动系统悬架新构型和其他几种性能优越的悬架子系统新构型;应用图论理论对齿轮式差动机构进行拓扑构型综合,综合出三种齿轮式月球车差动机构新构型,提出了分离式绳索差动机构构型,分析了分离式差动机构的特点,并利用构型组合的方法衍生几种新型月球车差动机构;从地面力学角度出发,分析了提高车轮牵引力的方法,提出两种月球车车轮新构型。
     针对ALR移动系统悬架构型,以其最小越障力矩和载荷平台俯仰角为优化目标,建立了ALR移动系统悬架结构参数的多目标优化数学模型,利用双权因子法将多目标优化模型转换成单目标优化模型,利用序列二次规划法进行了悬架结构参数的优化,得到了ALR移动系统悬架的最优结构参数。根据优化后的悬架结构尺寸参数对ALR移动系统进行了结构设计,包括车轮、绳索式差动机构、转向机构的设计和驱动元件的选择等,研制了ALR移动系统地面试验原理样机(简称ALR原理样机)。
     对ALR原理样机性能分析的仿真地形进行了研究,给出了典型地形和随机地形的建立方法,建立了ALR原理样机性能分析的虚拟仿真模型,分析了其在松软地形下的通过性能、稳定性能、越障性能和差动性能,将其和采用摇臂-转向架式悬架的FAYC(Fang An Yang Che)移动系统的性能进行了对比,分析结果发现ALR移动系统在载荷平台倾角、行驶效率、最大越障力矩和滑转率等方面的性能要优于FAYC移动系统。
     基于地面力学理论分析了月球车移动系统性能和构型参数间的关系,根据分析结果和月球车移动系统的性能技术准则,建立了ALR原理样机移动系统的性能评价的指标体系。基于熵权层次分析评价方法,建立了ALR原理样机移动系统性能评价体系。在确定指标的权重系数时结合主观分析和客观分析的方法,既借鉴了专家的经验,又尊重指标间的客观联系,评价结果更可信。利用VC编写了性能评价软件,利用该软件对ALR原理样机的性能进行了自定义指标的评价。为了更好的评价ALR移动系统的性能,将其和采用Rocker-bogie悬架的FAYC的移动系统的性能进行了自定义指标的对比评价,评价结果表明ALR具有更好的移动性能。
     对研制的ALR原理样机进行了室内沙场试验,搭建移动系统的控制系统和力/力矩参数的测量系统,利用六维力传感器测量ALR的牵引力和转向力矩等参数。在相同包络尺寸的约束条件下,研制了FAYC移动系统原理样机,对其同样进行了相关性能的试验,并将试验结果和ALR试验结果进行对比,分析两种移动系统的性能。试验结果表明ALR原理样机在越障性能、车轮载荷分配和滑转率等方面较FAYC原理样机具有较好的性能。
Rover locomotion system is one of the important tools for lunar exploration and carrier, which plays an important role in the lunar exploration. Recently many new types of rover locomotion system are proposed, but most of them aren’t consistent, such as function, structure and dimension. These locomotion systems have their respective advantages and disadvantages. The design principles are also different. There is no theory and criterion for the design of lunar rover locomotion system. It is lack of unified evaluation criterion such as which performances lunar rover should have, which technologies meet the requirements of lunar exploration. So there are important research significance and application value in the aspects of research on configuration synthesis of lunar rover locomotion system and developing high performance locomotion system.
     According to structure composition of locomotion system this paper do some research on the configuration of wheel, suspension subsystem and differential mechanism. The topology graphs of the suspension subsystem are built based on graph theory. New topology graphs are rebuilt by adding wheel to the suspension subsystem. ALR (Articulated Lunar Rover) locomotion system suspension configuration is proposed through the mechanism synthesis of suspension subsystem for 4, 6 and 8-wheel rover locomotion system. Configuration synthesis of gear differential is carried out based on graph theory. Three types of gear differentials are found. A separating rope differential is proposed in this paper. Also configuration characteristics of separating type differential are summarized. Some other differential configurations are obtained by configuration combination. The method for improving draw-bar pull is analyzed according to theory of mechanism and two kinds of wheel configurations are put forward.
     Multi-objective optimization mathematical model is established, which takes minimum torque surmounting obstacle and load platform pitch angle as optimization objection for ALR suspension. Then structure parameters of ALR are optimized by sequential quadratics programming and suspension parameters of ALR suspension are determined. According to the results ALR locomotion system is designed including wheel, rope differential and steering gear. At last ALR locomotion system principle prototype used in ground test is developed (shortened name is ALR principle prototype).
     Simulation terrain has been studied for performance analysis of ALR locomotion systems principle prototype, the ways of establishing the typical and random terrain are given. ALR principle prototype virtual simulation model is built, analysis of its trafficability, stability, surmounting obstacle capability and differential performance on soft terrain are carried out. Then the capability of ALR and FAYC(Fang An Yang Che) which adopts the locomotion system of rocker-bogie is analyzed and compared. Simulation results indicated ALR locomotion system have better performance on load platform pitch angle, driving efficiency, obstacle-crossing capability and slip ratio
     The relationship between performance and configuration parameters is analyzed based on terramechanics. According to the analysis results and the rule of technique, the index system of the performance evaluation for the rover locomotion system is established. To evaluate the performance of ALR principle prototype, the evaluation system is established based on the method of entropy weight and analytical hierarchy process comprehensive evaluation. The evaluation result is creditable, for the index of weight coefficient is confirmed by the methods of subjective and objective analysis, which use the experience of experts for references and respect the objective relationships of index. A software is developed based on the evaluation model. The performance of ALR principle prototype is evaluated by the software. For comprehensive evaluation ALR performance, evaluation comparison between ALR and FAYC locomotion system is carried out and analysis result indicates ALR locomotion system principle prototype has better mobility performance.
     To implement indoor experiment, the control and measure system is established. The tractive force and turning torque of ALR principle prototype is measured with the six-axis force/torque sensor. To analysis the locomotion performance of FAYC and ALR principle prototype, the rover locomotion system FAYC is developed. Also, the experiment of FAYC is done. The results show that ALR possesses higher performance of obstacle-crossing, wheel load-distributing and slip ratio.
引文
1 P. H. Warren. The Magma Ocean Concept and Lunar Evolution. Annu. Rev. Earth P. lanel. SCI. 1985,13: 201~240
    2欧阳自远,邹永廖.月球的地质特征和矿产资源及我国月球探测的科学目标.国土资源情报. 2004
    3 SCHILLING K, JUNGIUS C. Mobile Robots for Planetary Exploration. Control Engineering Practice. 1996, 4(4): 513~524
    4胡明.月球车机械系统的概念设计及行走技术研究.哈尔滨工业大学硕士学位论文. 2001: 1~2
    5邓宗全,胡明,高海波等.月球车关键技术及其原理样机的研制. 2002年深空探测技术与应用科学国际研讨会. 2002: 29~35
    6 Iagnemma K, Shibl H, Rzepniewski A, et al.Planning and control algorithms for enhanced Rough terrain rover mobility. Proceeding of the 6th international symposium on Artificial Intelligence and Robotics & Automation in space. Quebec, Canada: Canadian Space Agency, 2001: 1~8
    7 Jet Propulsion Laboratory. Http://Robotics.jpl.nasa.gov.
    8 D. L. Shirley. Touching Mars: 1998 Status of the Mars Robotic Exploration Program. Acta Astronautica, 1995, 45(4-9): 249~265
    9 Alex Ellery. Environment–robot interaction—the basis for mobility in planetary micro-rovers[J].Robotics and Autonomous Systems, 2004, 27: 1~10
    10陈百超.月球车悬架研究及动力学仿真.吉林大学硕士论文. 2006: 45~46
    11中科院月球车系统关键技术研究获重大进展. http://news.cctv.com/science/20070321/105541.shtml
    12王其.中国首辆月球车首次亮相.科学大观园. 2006, (24): 79~80
    13 http://it.sohu.com/20070401/n249114133.shtml
    14 Ming Lin, Jihong Zhu, Jianghua Meng, Zengqi Sun. Tsinghua Lunar Rover Prototype And Its Hardware Design[J]. Proceedings of Ieee Tencon’02, 2002,0-7803-7490-8/02: 1579
    15 Takashi Kubota, Yoji Kuroda ,Yasuharu Kunii, et al. Small light-weight rover“Micro5”for lunar exploration. Acta Astronautica , 2003, (52): 447~453
    16 Yasuharu Kunii, Yoji Kuroda, et al. Development of micro-manipulator for tele-science by lunar rover: Micro5. Acta Astronautica 2003, (52): 433~439
    17 Yoji Kuroda, Koji Kond0. Low Power Mobility System for Micro PlanetaryRover“Micro5”. Proceeding of the 6th international symposium on Artificial Intelligence and Robotics & Automation in space. Netherlands, ESTEC, June 1-3 1999
    18付宜利,徐贺,王树国.具有新型轮式走行部的移动机器人及其特性研究.高技术通讯,2004, 12: 73~77
    19 L. Ketmurdjian. Planet rover as an object of the engineering design work. Leuven, Belgium: Proceedings of the 1998 IEEE International Conference on Robotics & Automation, 1998: 140~145
    20 Klaus Schilling, Christoph Jungius. Mobile robots for planetary exploration. Espoo, Finland: IFAC Intelligent Autonomous Vehicles, 1995:109~119.
    21 Sabine Pol. Odometry for a Planetary Exploration Rover. Sweden: Kungliga Tekniska h?gskolan Electrical Engineering, 2007: 25~42
    22刘方湖,陈建平,马培荪等.五轮月球机器人及其特性分析.机械设计, 2001, 5(l5): 15~18
    23 M. G. Bekker. The Development of A Moon Rover. Journal of the British Interplanetary Society. 1985, 38(4): 537~543
    24 M. Maurette. Robots for Lunar Exploration: Present and Future. Advanced Space Research, 1999, 23(11): 1894~1855
    25邱雪松,邓宗全,胡明.月球探测车可展开式悬架的设计分析.中国宇航学会深空探测技术专业委员会第二届学术会议论文集.北京,中国空间技术研究院总体部. 2005:436~439
    26 R. Siegwart, P. Lamon, T. Estier. Innovative Design for Wheeled Locomotion in Rough Terrain. Robotics and Autonomous Systems, 2002, 40: 151~162
    27 http://asl.epfl.ch/index.html?content=research/systems/Shrimp/shrimp.php
    28 Vladinir Kucherenko, Alexel Bogatchev, Michel van Winnendael. Chassis Concepts for the ExoMars Rover. Proceedings of the 8th ESA Workshop on Advanced Space Technologies for Robotics and Automation.‘ASTRA 2004’ESTEC, Noordwijk, The Netherlands, November 2-4, 2004: 1~8
    29 S. Michaud, A. Schneider, R. Bertrand,et al. SOLERO: Solar Powered Exploration Rover. In the 7th ESA Workshop on Advanced Space Technologies for Robotics and Automation, 2002
    30李翠兰,马培荪,高雪官等.一种新型的可被动适应崎岖表面的六轮月球漫游车.传动技术, 2005, 19(1): 9~13
    31汪新,杨栋,许昊等.高机动越障机器人攀登机构的关键问题解析.中国科学技术大学学报, 2005, 35(4): 506~511
    32 http://news.ustc.edu.cn/Article_Show.asp?ArticleID=3253
    33李春明,苏波,江磊,卢国轩.面向行驶安全性的月球车行走系统FDTM总体设计[J].机器人技术与应用,2008, (3): 10~13.
    34 http://www.yoxun.com/CMS/Article/106001/20060613164604/index.htm
    35 Yalda Favaedi, Alex Ellery. 3D Simulations Evaluation for Exo-Mars Rover.
    36 Lee C G-Y, Dalcolmo J, Klinkner S, et al. Design and Manufacture of a Full Size Breadboard EXOMARS Rover Chassis. 9th ESA Workshop on Advanced Space Technologies for Robotics and Automation ASTRA 2006: 28~30 November 2006 at ESTEC, Noordwijk, the Netherlands
    37 Engineering Support on Rover Locomotion for ExoMars Rover Phase a–“ESROL-A”. Science & Technology Rover Co. ltd. 2004, (13)
    38 http://www.asl.ethz.ch/project_pages/crab
    39 Thomas Thueer, Pierre Lamon, Ambroise Krebs, et al. Crab-C Exploration Rover with Advanced Obstacle Negotiation Capabilities. Proceedings of the 9th ESA Workshop on Advanced Space Technologies for Robotics and Automation (ASTRA2006). Noordwijk, the Netherlands, 2006: 1~8
    40 Rollins E, Luntz J, Foessel A. Nomad: A Demonstration of the Transforming Chassis[C]. Proceeding of IEEE International Conference on Robotics and Automation, 1998: 611~617
    41 Bapna D, Rollins E, Murphy J, et al. The Atacama Desert Trek: Outcomes[C]. Proceeding of IEEE International Conference on Robotics and Automation, 1998: 597-604
    42董磊.八轮摇臂式月球车悬挂系统机构设计与分析.哈尔滨工业大学硕士论文, 2005,7
    43邓宗全,高海波等.八轮扭杆弹簧悬架式车载机构专利.申请号200410043932.0,申请公开号为CN1600587A
    44 Eric A.Poulson. Design of a Rover with Six Intelligent Wheels. M.S.Thesis in Mechanical Engineering, Utah State University, 2000
    45 Ashley W. Stroupe, Sanjiv Singh, Reid Simmons, et al. Technology for Autonomous Space Systems. The Robotics Institute Carnegie Mellon University. CMU-RI-TR-00-02. 2002
    46陶建国,邓宗全,高海波等.六圆柱-圆锥轮式月球车的设计.哈尔滨工业大学学报. 2006, 38(1): 4~7
    47付宜利,徐贺,王树国等.沙地环境移动机器人驱动轮的发展概况综述.机器人技术与应用. 2004, (4): 22-29
    48孙鹏,高峰,李雯等.深空探测车可变直径车轮牵引通过性分析.北京航空航天大学学报. 2007, 33(12): 1404~1407
    49岳荣刚,王少萍,焦宗夏等.一种新型轮爪式车轮设计与性能仿真.北京航空航天大学学报. 2007, 33(12): 1408~1411
    50陈泽宇.适用于月球车的可伸缩叶片复式步行轮的研究.吉林大学硕士论文. 2007: 8~16
    51李杰,庄继德,魏东等.沙漠仿生轮胎与普通轮胎牵引性能的对比试验.吉林大学学报. 2006, 36(4): 510~513
    52 P. Berkelman, M. Chen, J. Easudes, et al. Design of a day/night lunar rover. Pittsburgh: Carnegie Mellon University (Tech Report), 1995: 38~42
    53 Matrossov S,Bogatchev A,Kutcherenko V,et al.Summary the Russian finnish cooperation in robotics[A].Proceeding of International Workshop on Adaptive Robots & GSLT[C].Petersburg,Russia:2004: 521-526.
    54 Anthony H Young.From concept to reality[M].The United State:Springer New York, 1978: 281-310.
    55 Lee C,Dalcolmo J,Klinkner S,Richter L.DESIGN AND MANUFACTURE OF A FULL SIZE BREADBOARD EXOMARS ROVER CHASSIS[A].9th ESA Workshop on Advanced Space Technologies for Robotics and Automation[C].Noordwijk,the Netherlands:2006: 236-241.
    56 http://www.nasm.edu/collections/imagery/apollo/apollo.htm
    57 Lindemann, R. A. and Voorhees, C. J. Mars exploration rover mobility assembly design, test and performance. In Proceeding of IEEE Conference on Systems, Man and Cybernetics, Hawaii, 2005: 1~6
    58 M. Malenkov, V. Gromov, S. Matrossov, et al. Results of ESA/ESTEC and VNⅡTransmash&RCL joint activities aimed at planetary rovers development. In Proceedings of the 8th ESA Workshop on Advanced Space Technologies for Robotics and Automation. Noordwijk, 2004: 1~10
    59 D. C. Fergusona, D. M. Wilta, A. F. Heppa, et al. The Mars pathfinder wheel abrasion experiment. Materials and Design. 2001, 22(7): 555~564
    60 K. Iizuka, Y. Sato, Y. Kuroda, et al. Study on wheel of exploration robot on sandy terrain. In Proceeding of IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, 2006: 4272~4277
    61 A.L.Kemurdjian. Planet rover as an object of the engineering design work. In Proceedings of the 1998 IEEE International Conference on Robotics & Automation, Leuven, 1998: 140~145
    62 W. T. Hunteress, V. I. Moroz, I. L. Shevalev. Lunar and planetary robotic exploration missions in the 20th century. Space Science Reviews. 2003, 107: 541~649
    63 L. Ray, A. Price, A. Streeter, et al. The design of a mobile robot for instrumentnetwork deployment in Antarctica. In Proceeding of 2005 IEEE International Conference on Robotics and Automation, Barcelona, 2005: 2111~2116
    64 D. Apostolopoulos. Analytical configuration of wheeled robotic locomotion. Pittsburgh: Carnegie Mellon University(PhD thesis), 2001: 5~8
    65 D. Wettergreen, D. Bapna, M. Mainone, et al. Developing Nomad for robotic exploration of the Atacama Desert. Robotics and Autonomous Systems. 1999, 26: 127~148
    66 K. Glette. Motion control for a planetary exploration rover with six steerable wheels. Trondheim: Norwegian University of Science and Technology (Master thesis), 2004: 11~21
    67 Y. Kuroda, T. Teshima, Y. Sato, et al. Mobility performance evaluation of planetary rovers in consideration of different gravitational acceleration. In Proceeding of 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, 2005:2991~2996
    68尚建忠,空间探测机器人移动机构及系统研究.华中科技大学博士论文. 2006: 19~20
    69 P. S. Schenker, L. F. Sword, et al. Lightweight rovers for Mars science exploration and sample return. In Proceeding of SPIE International Conference on Intelligent Robotics and Computer, Pittsburgh, 1997, 3208: 24~36
    70 K. Tadakuma, M. Masatsugu, S. Hirose. Mechanical design of horizontal polyarticular expandable 3-wheeled planetary rover. In Proceeding of 2005 IEEE International Conference on Mechatronics and Automation, Niagara Falls, 2005, (1): 236~241
    71 Ch. Grand, Ph. Bidaud, N. Jarrasse. Innovative concept of unfoldable wheel with an active contact adaptation mechanism. In Proceeding of 12th IFToMM World Congress, Besancon, 2007: 1~6
    72 M. Mikail, M. Michel, K. Victor. Innovative Mars exploration rover using inflatable or unfolding wheels. In Proceeding of the 9th ESA Workshop on Advanced Space Technologies for Robotics and Automation, Noordwijk, 2006:1~8
    73 J. A. Jones. Inflatable Robotics for Planetary Applications. In Proceeding of 6th International Symposium on Artificial Intelligence, Robotics & Automation in Space, Montreal, 2001: 1~6
    74陶建国,孟宪伟,邓宗全等.月球车差动平衡机构的建模及仿真.机械设计, 2007, 24 (3): 1~5
    75 R. A. Lindemann, C. J. Voorhees. Mars Exploration Rover Mobility Assembly Design, Test and Performance. 2005 IEEE International Conference on Man andCybemetics, Systems 2005, 1(10): 450~455
    76李允旺,葛世荣,朱华.行星齿轮式差动平衡机构.中国实用新型专利.申请号: 200820034725.2,公开号: CN201218316
    77 Joe Rooney, John D. Hobbs. Towards Kinematic Classification Schemes for Planetary Surface Locomotion Systems. Mechatronics. 2003, (13): 153~174
    78 John D. Hobbs, Joe Rooney. Kinematic Structure for Robust Mechanical Architectures in Robotic Planetary Exploration. Mecharonics, 2003, 13: 153~174
    79 Hunt K H. Structural Kinematics of In-Parallel-Actuated Robot-Arms. Journal of Mechanisms, Transmissions, and Automation in Design. 1983, 105(4): 705~712
    80黄真,丁华锋.机构的机构类型综合综述.燕山大学学报, 2007,7(27): 189~191
    81赵铁石.空间少自由度并联机器人机构分析与综合的理论研究.燕山大学博士学位论文. 2000
    82 Huang Z, Li Q C. Some Novel Lower-Mobility Parallel Mechanisms, Accepted by 2002 ASME DETC/CIE Conference, MECH-34299. 2002, Montreal Canada
    83 Huang Z, Li Q C. Type Synthesis Principle of Minor-mobility Parallel Manipulators. Science in China(Series E), 2002, 45(3): 241~248
    84梁维奎,柏合民,孙伟等.月面巡视探测器移动系统的移动性能指标分析与评估方法.测试技术学报, 2007, 21(6): 44~51
    85梁维奎,柏合民,孙伟等.月面巡视探测器移动系统的移动性能指标分析与评估方法.测试技术学报, 2007, 21(6): 44~51
    86 Apostolopoulos D. Analytical Configuration of Wheeled Robotic Locomotion. Carnegie Melon University, CMU-RI-TR ,2001: 01~08
    87 T. Thueer, A. Krebs, and R. Siegwart. Comprehensive Locomotion Performance Evaluation of All-terrain Robots. In IEEE International Conference on Intelligent Robots and Systems (IROS’06), Beijing, China, 2006.
    88 Nildeep Patel, Alex Ellery, Elie Allouis et al. Rover Mobility Performance Evaluation Tool (RMPET): A Systematic Tool for Rover Chassis Evaluation via Application of Bekker Theory. In Proceedings Of The 8th ESA Workshop On Advanced Space Technologies For Robotics And Automation 'ASTRA 2004' ESTEC, Noordwijk, The Netherlands, November 2-4, 2004: 1~8
    89 Apostolopoulos D. Analytical Configuration of Wheeled Robotic Locomotion. Carnegie Melon University, CMU-RI-TR ,2001: 01~08
    90 Ambroise Krebs, Thoms Thueer, Stephane Michaud, et al. Performanceoptimization of all-terrain robots: A 2D Quasi-static Tool. IEEE International Conference on Intelligent Robots and Systems. Beijing, China. 2006: 4266~4271
    91尚建忠,罗自荣,张新访等.基于构型的轮式空间探测机器人创新设计与优化.中国机械工程, 2007, 2(18): 414~418
    92李荣平,李剑玲.多指标统计综合评价方法研究.河北科技大学学报. 2004, 25 (1): 85~88
    93李因果,李新春.综合评价模型权重确定方法研究.辽东学院学报. 2009, 9(2): 92~96
    94文桂林,钟志华,马传帅等.被动摇臂式菱形四轮月球车移动系统.湖南大学,中国发明专利,申请号200810030515.0
    95 J. Purvis, P. Klarer. Robotic All terrain lunar exoploration rover(RATLER). American Nuclear society’s 5th topical meeting on robotic and remote handling, knoxville, tennessedd, 1993, 4: 323~341
    96钟志华,文桂林.具有中间两轮主动摆臂的路面自适应菱形月球车移动系统.湖南大学,中国发明专利,申请号200810030899.6
    97文桂林,钟志华,金秋谈等.主动摇臂式可变菱形四轮月球车移动系统.湖南大学,中国发明专利,申请号200810030444.4
    98 Sreenivasan S V, Wilcox B H. Stability and traction control of an actively actuated micro-rover. Journal of Robotic Systems, 1994, 11(6): 487~502
    99 V. Kucherenko, V. Gromov, I. Kazhukalo et al Engineering Support on Rover Locomotion for EXOMARS Rover Phase A–“ESROL-A”. Report for the European Space Agency (ESA) by Science & Technology Rover Company Ltd (RCL) 2004
    100 http://www.asl.ethz.ch/project_pages/crab
    101 Thuer T.Lamon P.Krebs A CRAB-exploration rover with advanced obstacle negotiation capabilities 2006
    102李辉.混合驱动可控压力机的基础理论研究.天津大学. 2003
    103李允旺,葛世荣,朱华.摇杆式移动机器人用齿轮式差动平衡机构[P],中国发明专利,申请号200810123354.X
    104王洪欣,机械设计工程学,徐州,中国矿业大学出版社, 2001
    105于影,于波,陈革成.轮系的分析与设计.哈尔滨工业大学出版社,2007:21~29
    106李允旺,葛世荣,朱华.行星齿轮式差动机构,中国专利, 200810023579.8
    107王成,方宗德,张军辉.基于图论的2K-H型周转轮系效率计算的研究.制造业自动化[J]. 2007, 29(8): 15~20
    108 Wong G. Theory of Ground Vehicles. 2nd. New York, USA: John Wiley & Sons Inc, 2001
    109 Siegwart R,Estier T,Crausaz Y.Innovative Concept for Wheeled Locomotion in Rough Terrain.Sixth International Conference on Intelligent Autonomous Systems[C]. 2000: 776~785
    110刘吉成.月球车车轮驱动性能及其综合评价的研究.哈尔滨工业大学博士学位论文, 2009, 6
    111 Whitlow R.“Basic soil mechanics”3rd Edition, Longman Group Limited, New York, USA
    112 Lysmer. J. vertical motion of rigid footings, Ph.D thesis, University of Michigan, 1965
    113梁维奎,柏合民,孙伟等.月面巡视探测器移动系统的移动性能指标分析与评估方法.测试技术学报, 2007, 21(6): 44~51
    114汪新,杨栋,许昊等.高机动越障机器人攀登机构的关键问题解析[J].中国科学技术大学学报, 2005, 8(4): 506~511
    115丁亮,高海波,邓宗全,刘吉成,陶建国.基于应力分布的月球车轮地相互作用地面力学模型[J].机械工程学报. 2009, 45 (7): 49~55
    116 Leonovich, N. Pavlov, V. Cromov, et al. The Efficient Evaluation of Soil Trafficability of Planetary Vehicles. Acta Astronautica. 1978, (5): 507~514
    117 Alex Ellery. Environment-Robot Interaction- The Basis for Mobility in Planetary Micro-Rovers. Robotics and Autonomous Systems. 2005, (51): 29~39
    118 D. Apostolopoulos, M. D. Wagner, B. Shamah, et al Technology and Field Demonstration of Robotic Search for Antarctic Meteorites. The International Journal of Robotics Research. 2000, 19(11): 1015~1032
    119 M. Bekker. Theory of Land Locomotion: The Mechanics of Vehicle Mobility. University of Michigan Press, New York . 1956
    120 D. S. Apostolopoulos. Analytical Configuration of Wheeled Robotics Locomotion. Carnegie Mellon University, Pittsburgh, Pennsylvania. 2001: 24~26
    121 Bekker M. Mechanics of Locomotion and Lunar Surface Vehicle Concepts. Automotive Engineering Congress.1964: 549~569
    122 M. I. Malenkov, et al. Key Technologies of the Moon Exploration-Realizationand Perspectives of Creation of Highly Effective Locomotion Systems for the Moon Rovers. The 8th ILEWG conference on exploration and utilization of the moon, Beijing, China, July 2006
    123王莲芬,许树柏.层次分析法引论.北京:中国人民大学出版社, 1990: 23~25
    124 T.L. Saaty. The Analytic Hierarchy Process. McGraw-Hill International. New York. 1980
    125叶义华.系统综合评价技术与应用.治金工业出版社. 2006: 11~28
    126徐菲菲等,风景名胜区规划方案的层次分析法与嫡技术评价.地理研究. 2004, (5): 394~401

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700