用户名: 密码: 验证码:
液体激光器流动热管理的研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光介质热效应是制约高平均功率激光器发展的主要瓶颈。借助于高能固体热容激光器多个盘片快速更迭技术的思想,液体的可流动性为解决高能激光器热效应问题提供了一个新的思路,使得高能液体激光器在高能激光技术领域研究中逐渐引起重视。通常认为,液体的流动可以带走增益区内的热量,避免废热的累积,有助于减少热效应对光束质量的影响。但在抽运时间范围内增益区的热效应对光束质量的影响是一个待解决的问题。在确立高能液体激光器理论模型的基础上,本文应用流体力学原理及能量方程方法对液体循环结构设计、流动热管理及其在高能液体激光器应用的可行性进行了研究和探讨;分析了中低功率条件下,流动热管理的成功应用;并基于半经典理论短脉冲抽运宽谱染料激光器的模式竞争效应进行了理论和实验研究。
     由于静态液体激光介质中在强抽运条件下存在强烈的热效应,因此高能液体激光器对液体激光介质提出了均匀高速的流动需求。在液体的循环结构设计中,收缩段的设计是至关重要的,决定了增益区内液体的流动状态及对激光波前的影响。通过FLUENT软件K ?ε模型的数值模拟,采用光滑的离轴维氏曲线面型和双三次方曲线面型的收缩段设计达到了在对液体进行加速的同时,避免边界层分离的目的,取得了较好的流动品质。但在流动方向,随着距离的增加,边界层发展较快,可以通过增加入口流速的方法降低边界层的厚度。实验研究了不同流速下,Rh6G的乙醇溶液流动对氦氖信标光波前的影响。三种流速下波前畸变的Strehl Ratio( SR )值均大于0.99,流动对激光光束质量影响非常微弱,确立了抽运引起的热效应是影响激光光束质量的主要因素。
     本文基于流体的能量方程推导了液体流动介质的温度场方程,对脉冲和连续波模式下流动热管理模型及介质的热效应进行研究。结果表明:在长脉冲工作模式下,流动热管理虽然可以消除重频脉冲之间的热效应的累积作用,但是对消除每个脉冲的热沉积起不到明显作用,此时的温升和光程差对光束质量的影响与静止状态单脉冲工作的液体激光器几乎相同。
     在相同功率输出的条件下连续波工作模式由于抽运光功率密度的下降及出光时间的增加,对介质温升和光学长度沿流动方向沿介质流动方向不会出现脉冲模式下的突变,整体温升也小于脉冲模式,其光束质量得到了提升。抽运光功率密度起伏是引起相位畸变的主要因素。对于高斯型非均匀抽运,流速一定条件下,随着光束均匀性的下降,其SR值下降明显。当抽运条件相同时,连续波模式下的光束质量优于脉冲模式下的光束质量。激光器的生热效率η和液体流速u y对光束波前具有一定的影响,降低激光器的生热效率、提高液体流速都可在一定程度上提高激光的相位均匀性。利用波前曲率传感原理和Green函数波前恢复算法实验研究了小尺寸,低抽运功率时液体介质热效应对激光光束质量的影响。在低流速下液体流动热管理对光束质量的改善效果并不明显,随着抽运功率的提高,介质热效应明显。随着流速的提高,信标光的波前相位均匀性得到了改善,但是由于抽运不均匀性的影响,无法完全消除热效应对信标光波前的影响。
     在上述研究的基础上,对流动热管理在高能液体激光器中应用的可行性进行了研究。由于受到输出功率要求的限制,很难通过减少流动方向尺寸达到减少增益区热量的目的,同时较大介质尺寸对抽运均匀性的要求更高;提高液体流速会影响液体的气溶性而引起气穴现象的产生,降低激光器效率。为了防止气穴现象,液体循环系统对总压有着很高的要求。因此在目前工程技术条件下很难通过单一的流动热管理消除介质热效应的影响。在寻找到更好热光性能的液体介质或提高抽运均匀性之前,100kW级的高光束质量液体激光器难以实现。
     在中低功率条件下,流动热管理可以得到很好的应用。本文基于宽谱染料激光器的光强模式耦合方程给出了分析宽谱染料激光器增益竞争的分析方法。提出了短脉冲抽运条件下,宽谱激光器模式竞争非常激烈,不能用稳态方程对模式竞争进行分析,需采用数值解法对竞争过程进行研究。采用数值方法模拟了双谱线调谐的模式竞争效应,通过调节其中一支的腔损耗,可以达到双波长功率近似相等输出,并且调谐范围得到加宽。其结果与已有的实验结果进行了定性对比,符合较好。通过数值模拟和实验方法讨论了宽谱共增益区的谱线竞争效应,两者之间的结果基本吻合。总结了宽谱染料激光的光谱特征。
The thermal effect of the laser gain media is the main bottleneck restricting the development of high average power laser. Liquid flowing provides a new method solving the thermal problem in high average power laser, which results in high-power liquid laser absorbing more attention gradually. In general opinion, liquid can take out the heat from the gain area by flowing, which is helpful to reducing the influence of laser beam quality by thermal effect. But the influence of laser beam quality by thermal effect during the pumping period is not worked out. In this dissertation, by the aid of the principle of hydrodynamics and the energy equation method, the design of the construction of liquid circulation and flowing heat management are studied. The feasibility of flowing heat management using in high energy liquid laser is discussed. On the base of the semiclassical theory, the theoretical and experimental investigation of mode competition in short pulse pumped broad spectrum dye laser are studied.
     It is the most important for shrinkage segment design in the design of the construction of fluid circulation. This decides the flowing state in gain area. In this section, witozinsky curve and double cubic curve are applied. Through the numerical simulation by Fluent Software, the result shows that the good flowing quality is achieved, avoiding the separation of boundary layer. By means of promoting the entrance speed, the thickness of boundary layer is declined. The wave-front of He-Ne probe laser influenced by the flow of Rh6G dissolved in ethanol is experimental studied. Under three kinds of speed conditions, the strehl ratios of the probe laser are bigger than 0.99 all. Flow influences the beam quality sightly.
     On the base of the analysis of thermal effect mechanism in liquid laser media, the main factor is decided. The nonuniform distribution of the refractive index induced by nonuniform temperature distribution lead the undulation of the optical path distance along the laser path. The temperature equation is deduced. The model of flow heat management and the thermal effect of liquid laser media are both investigated under the pulse mode and the continuous wave mode conditions. Although the heat cumulation can be eliminated between the pulses, but the heat can not be ignored during the pulse. The working condition shows no difference with the stand singer pulse laser.
     Under the continuous wave mode condition, the optical power density is declined, and the lasing time is increased. Therefore, there is no break in the distribution of the temperature and the optical path distance. The promotion of the temperature is smaller than that in pulse mode. The laser beam quality is enhanced. As to Guassian nonuniform pumping, when the flow speed is constant, the strehl ratio descends distinctly while theκlessening. Heat efficiencyηand flow speed u y influence the laser beam quality. The uniformity of the phase can be improved by lessening u y and promotingη. By the aid of the curvature sensor and the Green’s function algorithm, liquid thermal effect with small scale and pumping power is researched experimentally. Under the slow flow speed condition, the purpose of promoting the laser beam quality by flow heat management is not distinctive, the laser beam quality becomes worse while the power is bigger. Along with the improvement of the flow speed, the uniformity of the probe laser phase is ameliorated. But because of the nonuniformity of pumping, the influence of thermal effect can not be eliminated.
     The feasibility of flow heat management using in high energy liquid laser is researched. Because of the request of output power, it is difficult to reducing the heat in gain area by shorten the distance in flow direction. On the other hand, the improvement of flow speed will induce the“Gas Cavity”phenomenon, which could lessen the efficiency of laser. For the sake of avoiding the“Gas Cavity”phenomenon, the cumulation system demands high request for the pressure. Therefore under the engineering technology condition at present, it’s very difficult to eliminate the thermal effect only by flow heat management.
     Under the middle or small pumping power condition, the flow heat management make a good use for many applications. When the pumping pulse is very short, mode competition is very serious, so the numerical resolution must be used. In the two spectrum competition condition, both of the spectrum will export approximate power, by adjust the waste of one spectrum. the tunning range broaden. It make consistent which the experimental result. Through the numerical modification and the experiment, the mode competition in the broad spectrum is discussed, and the spectrum character of broad spectrum dye laser is concluded.
引文
[1]苏毅,万敏编著.高能激光系统[M].北京:国防工业出版社. 2004.
    [2] Stilowski S E, Saroyan R A, Weber M J. Nd:doped laser glass spectroscopic and physical properties[R]. Lawrence Livermore National Lab. Report M-095. 1981.
    [3] BloembeCrgen N, Patel C K, Avizonis P, et al. Science and technology of directed energy Weapons[C]. USA: American Physical Society, 1987.
    [4] Welsh L D, Latham D C. High energy laser weapon systems applications[C].Washington D. C.: Defense Science Board, 2001.
    [5] Etter D, Ullrich G, Riker J. High energy laser executive review panel[Z]. USA: Department of Defense, 2000.
    [6] Tyle T, Kanazawa, Albert J S. The airborne laser program revolutionizing air-power for the 21 century[J]. SPIE, 1998, 3381:2~7.
    [7] Grossman J. Military laser systems[R]. Santa Monica CA: RAND Corp, 1991.
    [8] Steiner T D, Butts R R. The airborne laser advanced concepts testbed[Z]. 1999, 3706: 180~186.
    [9] Duffner R W. Airborne laer Bullets of light[C]. NewYork: Plenum Trade, 1997.
    [10] Walters C T, Dulaney B E, Campbell, et al. Nd:glass burst laser with kW average ower[J]. IEEE J. QE, 1995, 31(2): 293~300.
    [11] Rotter M, Dane C B. A 10 kW solid-state heat-capacity laser system installed at HELSTF white sands missile range[J]. Laser Science & Technology, 2001(12): 1.
    [12] Yanamoto R, Rotter M, Mitchell S, et al. First light from battery powered solid-state heat-capacity laser for missile defense[J]. Laser Science & Technology, 2003(4): 1.
    [13] Yanamoto R, Allen K, Allmon R, et al. A solid state laser for the battlefield[J]. Proceeding of the ASC2006, 2006.11.
    [14]唐晓军,周寿桓,秘国江等.增益介质可交换的固体热容激光技术[J].中国激光, 2006, 33(增刊): 41~44.
    [15] Bass I L, Bonanno R E, Hackel R P, et al. High-average-power dye laser at Lawrence Livermore National Laboratory[J]. Applied Optics. 1992, 31(33): 6993~7006.
    [16] Tether T. Statement before the house armed service committee[EB/OL]. http://www. house.gov/ hasc/opening statements and press releases/108 Thcongress, 2003.
    [17] High energy liquid laser defense system(HELLADS) [EB/OL]. http:// www .globalsecurity. Org/military/systems/aircraft/systems/hellads.htm 2005.
    [18] Sorokin P P, Lankard J R. Stimulated emission observed from an organicdye, chloro- aluminum phthalocyanine[R]. IBM J. Res. Develop.,1966, 10: 162~163.
    [19] Schafer F P. Dye Laser[R]. New York: Springer-Verlag Heidelberg. 1973
    [20] Hansch W. Repetitively pulsed tunable dye laser for high resolution spectroscopy[J]. Applied Optics. 1972, 11(4): 895~898
    [21] Greenaway A H. Adaptive optics: astronomy and beyond[J]. Optics and Photonics News, 2006, 17(9): 22~27
    [22] Snavely B B, Schafer F P. Feasibility of CW operation of dye laser[J]. Phys. Rev. Lett, 1996, 28A: 728~729.
    [23] Peterson O G, Tuccio S A, Snavely B B. CW operation of an organic dye solution[J]. Appl. Phys. Lett., 1970, 17:245~247
    [24] Tuccio S A, Strome F C. Design and operation of a tunable continuous dye laser[J]. Applied Optics. 1972, 11(1): 64~73
    [25] Wu Y X, Ho P T. Evolution of gain and absorption in a cw mode-locked dye laser[J]. Optical Letters, 1989,14(7): 362~363
    [26]刘扬满.染料激光器的热透镜效应及三重态的消除方法[J].激光技术, 1999, 23(3): 183~185
    [27] Baltakov F N, Barikhin B A, Sukhanov L V. Spatial and temporal characteristics of a 100J laser using a solution of rhodamine 6G in ethanol[J]. JETP Letter, 1974, 4(4): 537~539.
    [28] Mazzinghi P, Burlamacchi P, Matera M, et al. A 200W average power, narrow bandwidth, tunable waveguide dye laser[J]. IEEE J. Quantum Electron., 1981, QE-17: 2245~2247
    [29] Klimek D E, Aldag H R, Russell. High-energy high-power flash-pumped dye laser[C]. In Conference on Lasers and Electro-Optics, Vol 12 of OSA 1992 Technical digest series,332
    [30] Heller A. A high-gain room-temperature liquid laser: travalent neodymium in selenium oxychloride[J]. Applied Physics Letters, 1966, 9(3):106~108
    [31] Samelson H, Kocher R, Waszak T, et al. Oscillator and amplifier Characteristics of lasers based on Nd3+ dissolved in aprotic solvents[J]. J. Appl. Phys., 1970, 41(6):2459~2469
    [32] Andreou D. A high-power liquid laser amplifier[J]. J. Phys. D: Appl. Phys., 1974, 7:1073~1077
    [33]石春山,吕玉华.无机液体激光工作物质Nd·POCl3/ZrCl4体系折射率梯度的测定及某些添加物的影响[J].中国激光, 1982, 10(5):291~294,298
    [34] Hassaun A J. Flowing neodymium offers improved heat management[J]. Laser Focus Word, 2004, (3):15~20
    [35]李密,许正,陈兴无等.二极管双侧抽运横流连续液体激光系统性能模拟[J].光学学报,2007, 27(9): 1653~1657
    [36] Mitsunori I, Yasuchika H, Yuji W, et al. Luminescence of Nd3+ complexes with some asymmetric ligands in organic solutions[J]. J. Luminesc., 1998, 79(1): 29~38
    [37] Shozo Y, Yasuchika H, Kei M,et al. strategies for enhancing photoluminescence of Nd3+ in liquid media[J]. Coor. Chem. Rev., 1998, 171(1):461~480
    [38] Shozo Y, Yasuchika H, Yuji W. Remarkable luminescence of novel Nd (III) complexes with low viabrational hexafluoroacetylacetone and DMSO-d6 molecules[J]. J. Luminesc., 2000, 87-89(1):995~998
    [39] Yasuchika H, Yuji W, Shozo Y. Strategies for the design of luminescence lanthanide (III) complexes and their photonic applications[J]. J. Photochem Photob. C:Photochem. Rev., 2004, 5(3):183~202
    [40]叶云霞,余柯涵,钱列加等. Nd3+螯合物的含氢有机溶液光谱性能分析[J].物理学报,2006,55(12):6424~6428
    [41] Schimitschek E J. Laser emission of a neodymium salt dissolved in POCl3[J]. J. Appl. Phys., 1968, 39(13):6120~6121
    [42] Bondarev A S, Buchenkov V A, Volynkin V M, et al. New low-toxicity inorganic Nd3+ activated liquid medium for lasers[J]. Sov. J. of Quant. Electron., 1976, 6(2):202~204.
    [43] Andreou D, Brophy V A, Selden A C, et al. The output characteristics of a Q-switched liquid laser system, Nd·POCl3/ZrCl4[J]. J. Phys. D: Appl. Phys., 1972, 5: 59~63
    [44] Fahlen T S. High-average-power Q-switched liquid laser[J]. IEEE J. Quantum Electronics, 1973, QE-9(4): 493~496
    [45]许正,苏毅,李春领等.二极管抽运无机液体激光器出光实验研究[J].强激光与粒子束, 2006, 18 (12) :1941~1943
    [46] Brinkschulte H, Perchermeier J, Schimitschek E. A repetitively pulsed, Q-switched, inorganic liquid laser[J]. J. Phys. D: Appl. Phys., 1974, 7:1362~1368
    [47]李密,许正,陈兴无等.激光二极管抽运单/双增益模块的液体激光系统性能对比.[J]光学学报,2008, 28(4): 722~725
    [1] Tether T. Statement before the house armed service committee[EB/OL]. http://www. house.gov/ hasc/opening statements and press releases/108 Thcongress, 2003.
    [2] Wade R.C. Annular resonators for high-power chemical lasers[J]. SPIE, 1993, Vol 1868:334~360
    [3]苏毅,万敏编著.高能激光系统[M].北京:国防工业出版社.2004
    [4] Peterson O G, Tuccio S A, Snavely B B. Appl. Phys. Lett., 1970, 17:245
    [5] Tuccio S A, Strome F C. Design and operation of a tunable continuous dye laser[J]. Applied Optics. 1972, 11(1): 64~73
    [6] Venner M R W, Case A D, Fulker D J. Lasing Properties of near Infrared Laser Dyes in the Liquid and Solid State[J]. Proc. SPIE. 2004, 5332: 189~199.
    [7] Snavely B B. Flashlamp-Excited organic dye lasers[J]. Proceedings of the IEEE, 1969, 57(8): 1374~1390
    [8] Duarte F J. High-Power Dye Laser[M]. New York: Springer-Verlag Heidelberg. 1991, 97~107
    [9] W.克希耐尔(著),孙文等译.固体激光工程[M].北京:科学出版社. 2002
    [10]石春山,吕玉华.无机液体激光工作介质Nd : POCl3 /ZrCl 4体系折射率的测定及某些添加物的影响[J].中国激光, 1983, 10(5): 291~294
    [11] Bass I L, Bonanno R E, Hackel R P, et al. High-average-power dye laser at Lawrence Livermore National Laboratory[J]. Applied Optics. 1992, 31(33): 6993~7006.
    [12]黄珂.高平均功率无机液体激光器的流动热管理研究[D].长沙:国防科学技术大学研究生院, 2006.11.
    [13]李景镇.光学手册[M].西安:陕西科学技术出版社, 1986.5
    [14] Baltakov F N, Barikhin B A, Sukhanov L V. JETP Letter, 1974, 19: 174.
    [15] Mazzinghi P, Burlamacchi P, Matera M, et al. IEEE J. Quantum Electron., 1981, QE-17: 2245
    [16] Klimek D E, Aldag H R, Russell. High-energy high-power flash-pumped dye laser[C]. In Conference on Lasers and Electro-Optics, Vol 12 of OSA 1992 Technical digest series,332
    [17] Fahlen T S. High-average-power Q-switched liquid laser[J]. IEEE J. Quantum Electronics, 1973, QE-9(4): 493~496
    [18] Mitsunori I, Yasuchika H, Yuji W, et al. Luminescence of Nd3+ complexes with some asymmetric ligands in organic solutions[J]. J. Luminesc., 1998, 79(1): 29~38
    [19] Shozo Y, Yasuchika H, Kei M,et al. strategies for enhancing photolu minescence of Nd3+ in liquid media[J]. Coor. Chem. Rev., 1998, 171(1):461~480
    [20] Shozo Y, Yasuchika H, Yuji W. Remarkable luminescence of novel Nd (III) complexes with low viabrational hexafluoroacetylacetone and DMSO-d6 molecules[J]. J. Luminesc., 2000, 87-89(1):995~998
    [21] Yasuchika H, Yuji W, Shozo Y. Strategies for the design of luminescence lanthanide (III) complexes and their photonic applications[J]. J. Photochem Photob. C:Photochem. Rev., 2004, 5(3):183~202
    [22]叶云霞,余柯涵,钱列加等. Nd3+螯合物的含氢有机溶液光谱性能分析[J].物理学报,2006,55(12):6424~6428
    [23] Amit M, Bialolenker D, Levron. Refractive index gradients and dye solution flow characteristics in pulsed copper vapor laser pumped dye laser cells[J]. J. Applied Physics., 1988, 63(5): 1293~1298
    [24] Sigrist M W. Laser generation of acoustic waves in lliquids and gases[J]. J.Appl. Phys. 1986, 60(7): 83~121\
    [25]戚诒让,张德勇,许龙江.液体中的激光超声脉冲[J].自然杂志, 2003, 25(2): 63~70
    [26]陈懋章.粘性流体力学基础[M].北京:高等教育出版社. 2002
    [27] Teague M R. Irradiance moments: their propagation and use for unique retrieval of phase[J]. J. Opt. Soc. Am. A. 1982, 72(9): 1199~1209
    [28] Teague M R. Deterministic phase retrieval: a Green’s function solution[J]. J. Opt. Soc. Am. S. 1983, 73(11): 1434~1441
    [29] Roddier F, Roddier C, Roddier N. Curvature sensing: a new wavefront sensing method[J]. Proc. SPIE 976: 203~209, 1998
    [30]习锋杰,许晓军,王铁志等.相位型波前曲率传感器[J].光学学报,2007, 27(2): 377~378
    [1] W.克希耐尔(著),孙文等译.固体激光工程[M].北京:科学出版社. 2002
    [2] Walters C T, Dulaney J L, Campbell B E, et al. Nd:glass burst laser with kW average power output[J]. IEEE J. Quantum Electronics. 1995, QE-31(2):293~300
    [3]石春山,吕玉华.无机液体激光工作介质Nd : POCl3 /ZrCl 4体系折射率的测定及某些添加物的影响[J].中国激光, 1983, 10(5): 291~294
    [4] Albrecht G F, Suntton S B, George, et al. The heat capacity disk laser[R]. LLNL report, Rep. UCRL-JC-130962, 1998
    [5]周寿桓.固体激光器中的热管理[J].量子电子学报. 2005, 22(4): 497~509
    [6] Yanamoto R, Allen K, Allmon R, et al. A solid state laser for the battlefield[J]. Proceeding of the ASC2006, 2006.11
    [7] Basu S, Sridharan A. Disk motion– a new control element in high-brightness solid state laser design[J]. Opt. Lett. 2004, 12: 3114-3124
    [8] Rotter M D, Dane C B, Fochs S, et al. Solid-state heat-capacity laser: good candidates for the marketplace[J]. Photonics Spectra. 2004, August: 44~56
    [9] Watson W, Reich S, Lempicki A, et al. A circulating-liquid laser system[J]. IEEE J. Quantum Electronics. 1968, QE-4(11): 842~849
    [10] Samelson H, Kocher R, Waszak T, et al. Oscillator and amplifier characteristics of lasers based on Nd 3+ dissolved in aprotic solvents[J]. J Appl. Phys. 1970, 41(6):2459~2469
    [11] Andreou D, Brophy V A, Selden A C, et al. The output characteristics of a Q-switched liquid laser system, Nd·POCl3/ZrCl4[J]. J. Phys. D: Appl. Phys., 1972, 5: 59~63
    [12]林建忠,阮晓东,陈邦国等.流体力学[M].北京:国防工业出版社, 2005
    [13] Duarte F J. High-Power Dye Laser[M]. New York: Springer-Verlag Heidelberg. 1991
    [14]章梓雄,董曾南.粘性流体力学[M].北京:清华大学出版社, 1998
    [15]刘政崇,廖达雄,董谊信等.高低速风洞气动与结构设计[M].北京:国防工业出版社, 2003
    [16]左罗克,霍夫曼.气体动力学[M].北京:国防工业出版社, 1984
    [17]潘锦珊.气体动力学基础[M].北京:国防工业出版社, 1989
    [18]韩占忠,王敬,兰小平. FLUENT流体工程仿真计算实例与应用[M].北京:北京理工大学出版社. 2004
    [19]陈懋章.粘性流体力学基础[M].北京:高等教育出版社. 2002
    [20]王墨戈,许晓军,陆启生.液体流动对激光光束质量的影响[J].中国激光,to be printed
    [21]习锋杰,许晓军,王铁志等.相位型波前曲率传感器.[J]光学学报,2007, 27(2): 377~378
    [1] Bowman S R. Lasers without internal heat generation[J]. IEEE J. Quantum Electronics. 1999, 35(1): 115~122
    [2] Beach R J, Ochea E C, Sutton S B, et al. High-average-power diode-pumped Yb:YAG laser[J]. SPIE, 2000, 3889: 246~260
    [3] Xin J R, Hall D R. Compact multipass single transeverse mode CO2 laser[J]. Appl. Phys. Lett. 1987, 51(7): 469~471
    [4] Vetrovec J. Solid-state laser high-energy laser[J]. SPIE, 2002, 4632: 104~114
    [5] Basu S, Sridharan A. Disk motion– a new control element in high-brightness solid state laser design[J]. Opt. Lett. 2004, 12: 3114-3124
    [6]李明海,任建勋,宋耀祖等.天基激光器的排气方案研究[J].激光技术, 2002, 26(3): 198~200, 203
    [7] Albrechet G, George E V, Kurpke W F, et al. High energy bursts from a solid state laser operated in the heat capacity limited regime[P]. US Patent. 1996, 50526372
    [8] Vetrovec J. Chemical Oxygen-iodine with a closed gas cycle[J]. Proc. SPIE. 2001, 4184: 83~86
    [9]叶云霞,范滇元掺稀土离子液体激光器的研究进展[J]激光与光电子学进展,2007,44(1):45~50
    [10] Duarte F J. High-Power Dye Laser[M]. New York: Springer-Verlag Heidelberg. 1991, 97~107
    [11]任国光新型战术高能液体激光器.[J]激光技术,2006,30(4):418~421
    [12] Winston H, Gudmundsen R A. Refractive gradient effects in proposed liquid laser[J]. Appl. Opt. 1964, 3(1): 143~146
    [13]王墨戈,许晓军,陆启生.纵向抽运液体激光器热效应研究[J].光学学报, to be printed
    [14]习锋杰.光栅型曲率传感器的设计与应用研究[D].长沙:国防科学技术大学研究生院. 2008.9
    [15] Ichikawa K, Lohmann A W, Takeda M. Phase retrieval based on the irradiance transport equation and the Fourier transform method: experiments[J]. Appl.Opt., 1988,27(16): 3433~3436
    [16] Woods S C, Greenway A H. Wave-front sensing by use of a Green’s function solution to the intensity transport equation[J]. J. Opt. Soc. Am. A, 2003, 20(3): 508~512
    [17] Gureyev T E, Robert A, Nugent K A. Phase retrieval with the transport of intensity equation: matrix solution with the use of Zernike polynomials[J]. J. Opt. Soc. Am. 1995, 12(9): 1932~1941
    [18] Teague M R. Deterministic phase retrieval: a Green’s function solution[J]. J. Opt. Soc. Am. 1983, 73(11): 1434~1441
    [19] Seremet. Handbook of Green’s Functions and Matrices[M] New York:WIT Press, 2003, 124
    [20]习锋杰,许晓军,王铁志等.相位型波前曲率传感器.[J]光学学报,2007, 27(2): 377~378
    [21]苏毅,万敏编著.高能激光系统[M].北京:国防工业出版社.2004
    [22]吕百达.强激光的传输与控制[M].北京:国防工业出版社.1999
    [23] Smith D C. High-Power Laser Propagation: Thermal Blooming[J]. Proc.IEEE, 1977, 65:1679-1714
    [24]许晓军.气动光学的工程研究[D].长沙:国防科学技术大学, 2000.10
    [25] Gebhardt F G. Twenty-Five Years of Thermal Blooming: An Overview[C]. SPIE Proc. on Propagation of High-Energy Laser Beams through the Earth's Atmosphere, 1990, 1221: 2~25
    [26]税奇军.气溶胶所致热晕的数值研究[D].成都:电子科技大学, 2007
    [1]陈永康,戴宏,江楠等.用激光增益获取弱增益拉曼模式的受激拉曼光谱[J].物理学报, 2003, 52(10), 2443~2448
    [2]贾锁堂,李昌勇,马维光等. LDS751染料的受激拉曼散射[J].物理学报2002, 51(4), 814~817
    [3] Schafer F P. Dye Laser, Topics in Applied Physics, Vol.1[M]. Berlin: Springer Verlag. 1990
    [3]潘少华.染料激光器模式耦合半经典理论[J].物理学报. 1981,卷30,1067~1076
    [4]张国威.可调谐激光技术[M].北京:国防工业出版社2002
    [5] Hansch T W. Repetitively Pulsed Tunable Dye Laser for High Resolution Spectroscopy[J]. Appl. Opt. 1972, 11(4): 895-898
    [6] Liu K, Littman M G. Novell geometry for single-mode scanning of tunable lasers[J]. Opt. Lett. 1981,6(3):117~118
    [7] Duarte F J, Piper A J. Prism preexpanded grazing-incidence grating cavity for pulsed dye lasers[J]. Appl. Opt. 1981, 20(12): 2113~2116
    [8]褚玉喜,罗才雁.四棱镜扩束染料激光器的多线振荡[J].光学学报, 1993, 13(7): 642-648
    [9]韩全生,厚美英,余永柏等.振放交叠独立调谐的双波长染料激光器[J].激光杂志, 1987, 8(3): 172~175
    [10] Heller A. Laser technology follows in Lawrence’s footsteps[J]. S&TR 2000,May: 13~21
    [11] Bass I L, Bonanno R E, Hackel R P, et al. High-average-power dye laser at Lawrence Livermore National Laboratory[J]. Applied Optics. 1992, 31(33): 6993~7006.
    [12]汤星里,上官诚,林英仪等.多波长染料激光器[J].光学学报, 1992, 12(8): 684~687
    [13]侯学元,刘恩泉,李宇飞等.多波长激光器的研究[J].应用激光, 1994, 14(4): 177~178
    [14] Herschel S P. simultaneous two-wavelength selection in the laser-pumpeddye laser[J]. Appl. Phys. Lett. 1972, 2(3)1, 339~340
    [15] Dinev S G, Koprinkov I G, Stamenov K V, et al. two-wavelength single mode grazing incidence dye laser[J]. Opt. Commun. 1980, 32(2), 313~316
    [16] Dorsinville R. emission laser a deux longueurs d’onde accordables[J]. Opt. Commun. 1978, 24(1), 31~32
    [17] Nair L G , Dasgupta K. Double wavelength operation of a grazing incidence tunable dye laser [J]. J. Quantum Electronics 1980, QE-16(2): 111~112
    [18] Sargent M, Scully M O, Lamb W E. Laser Physics[M]. 1974, Addison-Wesley
    [19]张国威,一种双频染料激光器的相关调谐原理[J].中国激光, 1988, 15(5): 272~274,294
    [20]张国威,多频染料激光器的相关调谐原理[J].光学学报, 1990, 10(10): 881~887
    [21] Huang Z G , Namba K. High power efficient dye laser pumped by copper vapor laser[J]. Jpn. J. Appl. Phys. 1980, Vol 20(12), 2383~2387
    [22] Sun W, Tang C S , Zhuge X B , et al. Theory and experiments of dye lasers longitudinally pumped by copper vapor lasers(CVL) [J]. Opt. Commun. 1986, 58(3),196~200
    [23] Friesem A A, Ganiel U, Neumann G. Simultaneous multiple wavelength operation of a tunable dye laser. Appl. Phys. Lett., 1973 23(5): 249~251
    [24]王墨戈,许晓军,李霄等.横向抽运染料激光振荡器效率分析[J].中国激光, 2007, 34(9): 1232~1236
    [25]王墨戈,陆启生,许晓军等.宽谱染料激光器的数值模型及实验验证[J].物理学报, 2008, 57(3): 1857~1861

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700