用户名: 密码: 验证码:
季风边缘区湖泊孢粉记录与气候模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
QTHO1、QTH02剖面位于猪野泽干涸湖盆,剖面的海拔高度为1309m。两剖面共采集14C年代样品14个(其中8个常规14C样品,6个AMS14C样品),并完成了孢粉、粒度、磁化率、碳酸盐含量、有机化学元素含量(TOC、TON、TOH)、有机碳稳定同位素(δ13C)等环境代用指标的测试,两剖面的沉积物记录了猪野泽地区及整个石羊河流域晚冰期以来的气候环境变化过程。本项研究从环境代用指标的对比研究入手,以孢粉记录为主,对比并探讨孢粉记录和其他指标之间的相互关系。
     根据猪野泽沉积物孢粉记录,该区域环境变化可以分为6个部分,从剖面底部到年代上限-13 cal ka BP,乔木花粉百分比相对较高,样品孢粉浓极低;-13 cal ka BP--7.7 cal ka BP期间,乔木百分含量较高,乔木花粉中以云杉(Picea)为主,本段花粉浓度仍较低;-7.7--7.4 cal ka BP期间,乔木花粉急剧减少,草本植物花粉平均94%左右,麻黄花粉(Ephedra)明显增多;-7.4--4.7 cal ka BP期间,花粉组合虽以蒿(Artemisia)、藜(Chenopodiaceae)为主,乔木及灌木花粉较少,但花粉植物种类较多,且花粉浓度急剧增加,为整个剖面孢粉浓度最大值;-4.7--1.5cal ka BP期间,藜科花粉(Chenopodiaceae)开始增加,蒿花粉(Artemisia)开始减少,麻黄(Ephedra),白刺(Nitraria)等花粉增加;-1.5 cal ka BP-0期间,蒿花粉(Artemisia)含量继续减少,藜科花粉(Chenopodiaceae)含量继续增加,麻黄(Ephedra)、白刺(Ni traria)、蔷薇科(Rosaceae)、菊科(Compositae)等干旱区的耐旱草本及灌木花粉含量继续增多。
     通过分析不同花粉指标与粒度指标之间的相关性关系,发现部分花粉指标和粒度组分之间相关性较好。较为显著的是,Betula、Quercus、Urtica的花粉百分比与较粗的粒度组分存在正相关关系,Picea花粉与Result Below 1.490μm、Result 1.49μm-21.50μm, Result 21.50μm-89.31μm三个粒度范围的组分存在正相关关系与Result 89.31μm-691.73μm、Result Above 691.725μm两个粒度范围的组分存在负相关关系。Artemisia与Pinus花粉与各个粒度敏感组分相关性不显著。孢粉记录与粒度组合之间的相关性主要是由花粉传播过程、湖泊面积、河流和湖泊水动力条件及局部植被、地貌特点共同决定。
     猪野泽沉积物磁化率值的变化主要表现了沉积物来源的变化,晚冰期早全新世,云杉(Picea)、桦(Betula)、栎(Quercus)等乔木花粉百分比相对含量较高,总花粉浓度较低时,该阶段流域中下游地区有效水分少,植被较为稀疏,地表物质较易迁移,成为终端湖湖泊沉积物的主要贡献者,沉积物磁化率值相对中全新世较高;中晚全新世,孢粉浓度较高,全流域植被发育较好,地表物质迁移受到植被覆盖的影响,流域中只有部分较易迁移的物质才能最终在终端湖沉积下来,这样的沉积特点和物质来源,决定了该段沉积物较低的磁化率。-1.5 cal ka BP以来,陆生风成沉积物的形成,导致了磁化率的急剧增加。
     猪野泽沉积物碳酸盐含量与总花粉浓度值有正相关的关系,高碳酸盐含量对应了全流域有效水分条件较好的阶段,同时总花粉浓度也较高,表明流域性植被覆盖度较高。
     猪野泽沉积物TOC、C/N和δ13C指标主要代表了,湖泊周围及流域的初级生产力及植物种类,沉积物中乔木花粉含量相对较高,花粉浓度低的时期,对应了,TOC、C/N较低的时期,期间δ13C(‰)平均为—25.31;中晚全新世花粉浓度较高,植被茂盛的时期,TOC、C/N均达到了全新世阶段的最高值,δ13C(‰)平均为-26.68相对较低;-1.1 cal ka BP以来,花粉浓度相对中全新世较少,干旱植物发育,TOC、C/N均下降,δ13C(‰)范围及平均值与剖面底部相近。
     猪野泽地区及石羊河流域晚冰期以来环境变化过程可以划分为6个阶段:猪野泽剖面底部一-13.0 cal ka BP,该阶段剖面位置处于湖泊边缘,石羊河流域中下游地区及湖泊周围植被覆盖度低,流域性有效水分较低,气候环境条件受整个中国北方及蒙古国干旱区大气候背景的影响,气候相对干旱,同时也说明这一时期东亚夏季风强度较弱,西风带带来的降水也较少;-13.0一-7.7 cal ka BP,该阶段湖泊面积扩张,流域有效水分条件增加,中下游地区植被相对稀疏,这可能与地球轨道尺度的太阳辐射量增加有关。从12000年前开始,增加的太阳辐射量加强了海陆热力差异,同时导致了东亚地区的季风强度;-7.7一-7.4 cal kaBP,该阶段湖泊面积突然缩小,流域中下游及湖盆周围植被覆盖度在增加,是流域性的环境突变事件,在未找到邻近区域及整个东亚季风区类似的气候事件的情况下,可能是流域内部水文循环变化和湖泊本身地貌演化的原因诱发了这次突变;-7.4—-4.7 cal ka BP,该阶段处于“全新世适宜期”,流域植被覆盖度高,湖泊面积达到全新世最大,形成了典型的干旱区盐湖,湖泊中浮游生物发育,全流域初级生产力较高,石羊河流域中全新世气候变化过程与西风带和东亚季风区大量研究结果相符,“中全新世适宜期”建立在较强的东亚季风和较为湿润的西风环流的基础上,可能受到季风与西风带环流的共同影响;-4.7一-1.5 cal ka BP,该阶段湖泊开始退缩,剖面上泥炭层和湖相沉积物交替沉积,流域植被覆盖度减小,一些旱生植物增加,根据对比其他区域的气候记录,该地区“全新世适宜期”的结束可能与东亚季风的整体退缩有关,但是要稍早于典型东亚季风区的气候记录,这可能是季风边缘区对气候变化的敏感性所致,也可能由于终端湖地区极端干旱的气候状况所致;-1.5一0 cal ka BP,该阶段湖泊基本退出剖面位置,早生植物含量在该阶段继续增加,植被覆盖度减小,这次进一步干旱化,可能与西风气流变干有关。
     最后,基于CCSM 3.0系统和湖泊能量、水量平衡模型,模拟了东、中亚地区全新世期间,湖泊水位变化的过程和原因。根据对比模拟结果和猪野泽全新世湖泊水位演化过程,发现猪野泽受到季风区和中亚干旱区影响湖泊水位变化因素的共同作用,其湖泊水位变化的特点既体现了季风区湖泊的部分特征,也表现了中亚干旱区湖泊的部分特征,由此进一步说明季风边缘区湖泊演变和气候变化的复杂性。
Through a variety of proxies, such as pollen, grain size, magnetic susceptibility, carbonate content, total organic carbon and organic carbon isotopes, to study the lake sediments, is widely used in reconstructing the past climatic and environmental changes. In response to the climatic and environmental changes, in the lake sediments, the proxies reflect a wide range of information from the lake basin and watershed. Studying the relationship among various proxies, allows us to better understand the significances of the proxies, and get a more accurate reconstruction of the past environment. This doctoral dissertation contributes a comparative study of the relationship between the pollen records and other proxies.
     Zhuye Lake, the terminal lake of the Shiyang River drainage basin, is located between the Badain Jaran Desert and Tengger Desert in Minqin Basin, the arid region of northwest China. In the marginal area of the Asian monsoon, this lake is sensitive to the evolution of the Asian monsoon, simultaneously, which is also affected by the westerlies, so it is an ideal place to study the Asian monsoon history and the interaction between the Asian monsoon and the westerlies. Since the 20th century, the ecological environment deteriorated sharply, so reconstructing the Late Glacial and Holocene environmental changes and understanding the geomorphologic history of Zhuye Lake are of great significances for the guidance of the ecological restoration and reconstruction in Minqin Basin and the Shiyang River basin.
     Late Glacial and Holocene environmental records were obtained from the QTH01 and QTH02 sections in Zhuye Lake, which lie in the dry lake basin, at 1309m after sea level, and fourteen 14C dates were sampled from the two sections, in which there are 8 conventional 14C dates and 6 AMS 14C dates. The fluctuations in pollen, grain-size, magnetic susceptibility, carbonate content, total organic carbon content, C/N ratios and 813C record notable environmental variation. Previous work has recorded little about the relationship between pollen records and other proxies in lake sediments, and our approach in this work is to combine information from these proxies in order to clarify some past environmental changes in Zhuye Lake.
     According to the pollen records, the vegetation history can be divided into 6 parts in the section, from the bottom of the section to-13 cal ka BP, with a relatively high percentage of tree pollen, and the total pollen concentration is very low. Between-13 cal ka BP and-7.7 cal ka BP, the tree pollen is rich, Picea pollen occupies the maximum score in the tree pollen, and the pollen concentration is still low; during-7.7--7.4 cal ka BP, a sharp decline happen to the tree pollen, and the average of herbaceous pollen reaches about 94%, the percentages of Ephedra pollen increase obviously. During-7.4--4.7 cal ka BP, although Artemisia and Chenopodiaceae accounted for most of the pollen, in contrast to the small percentages of the tree and shrub pollen, however, a large number types of pollen happen in this phase, and a sharp increase in total pollen concentration, which reaches the maximum level in the section. Between-4.7 and-1.5 cal ka BP, Artemisia begins to decline and Chenopodiaceae pollen begins to increase, and so on, Ephedra and Nitraria increase. During-1.5 cal ka BP-0, the content of Artemisia continues to decline, meanwhile, Chenopodiaceae continues to grow, and as drought-resistant vegetation, a large number of Ephedra, Nitraria, Rosaceae and Compositae pollen emerge.
     By analyzing the relationship between the pollen records and grain-size, a certain degree of relevance emerges between some of the pollen and grain-size components, such as the percentages of Betula, Quercus, Urtica pollen have a positive correlation with the coarse components. Picea pollen is positively correlated with the three components of Result below 1.490μm, Result 1.49μm-21.50μm, Result 21.50μm-89.31μm, and negatively correlated with the components of the Result 89.31μm-691.73μm, Result above 691.725μm. Some pollen, for example, Artemisia and Pinus are not significantly correlated with grain-size. Totally, the relationship between the pollen and grain-size is mainly controlled by the pollen spread, the lake area, the hydrodynamic conditions of the river, and the effective surface moisture in the whole drainage basin.
     The values of the magnetic susceptibility perform the main sources of the Zhuye Lake sediments. During the Late Glacial and early Holocene, the content of tree pollen is relatively high, but the total pollen concentration is low, in the middle and lower reaches of the basin, the water conditions are less effective, and with sparse vegetation, surface materials are easier to move to the terminal lake, which becomes the main contributor of the lake sediments. During the mid-Holocene, the total pollen concentration is very high, so the lush vegetation of the basin limits the migration of surface materials, only the materials, which are smaller and easier to transfer, are able to move to the Terminal Lake. The values of magnetic susceptibility are relatively high in this phase. During the late Holocene, from-1.5 cal ka BP, terrestrial aeolian sediments are formed in the section, leading to a sharp increase in the magnetic susceptibility.
     The carbonate content in the Zhuye Lake sediments is positively related with the total pollen concentration. During the phase of the high total pollen concentration, the high effective moisture keeps the high lake-level, in this case, the expansion of the lake can dissolve a large number of carbonate in the surface of the basin, and the increase of the surface water also can bring much surface carbonate, both of which maintain the high carbonate content.
     The TOC, C/N andδ13C represent the major plant species and the primary production levels in the lake basin. During the Late Glacial and Early Holocene, the high tree pollen and low pollen concentration correspond the lower TOC and C/N, in this period,δ13C(%o) for an average of -25.31. During the high pollen concentration phase, the TOC and C/N reach the highest in the section and with relatively lowδ13C (%o). From-1.1 cal ka BP, the pollen concentration is relatively low, and drought-resistant plants develop, the values of TOC, C/N decreased, theδ13C (‰) values are similar to those at the bottom phase of the section.
     The environmental changes, since the Late Glacial in Shiyang River basin, can be divided into 6 phases. During the bottom of the section to-13.0 cal ka BP, the location of the section lied at the edge of the lake, the scene of low vegetation cover appeared in the middle and lower reaches of the basin. The effective moisture was low and the dry climate was affected by the background of the large-scale drought in the northern China and Mongolia, which was controlled by the weak East Asian summer monsoon and the dry Westerlies. Between -13.0 and-7.7 cal ka BP, the lake area began to expand, but in the middle and lower reaches of the basin, the vegetation was sparse. The relatively increasing moisture may be related to the strengthening Asian monsoon. From 12,000 years ago, the increase in the solar radiation, which was induced by the earth orbital changes, enhanced the thermal difference between land and sea, at the same time, led to the intensity of the East Asia monsoon. Then, a basin-wide abrupt environmental change, which was likely caused by some changes in the lake geomorphology and hydrological cycle, persisted for about 300 years. The Holocene Optimum was between -7.4 and -4.7 cal ka BP in this region. Pollen concentrations reached their highest values in the section. The abundant herb pollen reflected the high vegetation cover in the lower part of the watershed. The lake-level, primary productivity and effective moisture reached their highest in the Holocene. The Holocene Optimum benefited from the strong East Asian summer monsoon and the humid Westerlies. Between-4.7 and-1.5 cal ka BP the lake-level fell and silty peat was formed at the site. The vegetation cover reduced and a number of Xerophyte increased. The end of the Holocene Optimum might be related to the weakening of the East Asian monsoon, but which was earlier than other records in the typical East Asia monsoon domain, this due to the climatic sensitivity in the marginal area of the Asian monsoon. In the last 1500 years the lake shrank further, while terrestrial sediments were deposited at the site. In this phase, Chenopodiaceae, Nitraria and Ephedra reached their highest values in the section reflecting an arid environment. The intensive arid trend might be related to the dry westerlies.
     Then, based on the CCSM3, lake energy balance model and lake water balance model, we examined the Holocene lake level changes and their reasons in the monsoonal and arid central Asia. By comparing the model results and the lake level history in Zhuye Lake, we found the lake level changes in Zhuye Lake, in the marginal area of Asian monsoon, were both affected by the factors of influencing lake level changes in the arid central and monsoonal Asian.
引文
本研究以石羊河流域的终端湖猪野泽地区的QTH01和QTH02剖面样品为研究对象,对样品进行了孢粉、粒度、磁化率、碳酸盐含量、有机碳同位素、有机碳含量、C/N等指标的测试。并且以孢粉为主要指标,将之与其他指标进行对比研究,探讨各种指标之间的关系,从而重建猪野泽古湖泊沉积物的沉积过程及古气候、古环境。本研究共采集湖泊沉积物样品660组,完成660个样品的粒度实验分析,74个孢粉样品的鉴定分析,完成292个样品的磁化率、有机碳、有机碳同位素、C/N比和碳酸盐含量的实验分析。将各种指标的实验数据进行科学地分析对比,借助于统计学方法,总结猪野泽湖泊沉积物中孢粉记录与其他指标的关系并以此为基础重建猪野泽湖盆及石羊河流域晚冰期以来的环境变化。具体研究内容主要包括以下几个方面:
    (1)孢粉记录与猪野泽沉积物粒度的关系;
    (2)孢粉记录与猪野泽沉积物磁化率的关系;
    (3)孢粉记录与猪野泽沉积物有机碳及C/N比的关系;
    (4)孢粉记录与猪野泽沉积物有机碳同位素的关系;
    (5)孢粉记录与猪野泽沉积物碳酸盐含量的关系;
    (6)以孢粉记录与其他指标关系为基础重建石羊河流域晚冰期以来气候变化;
    (7)该区域气候记录与其他区域气候记录对比及探讨;
    (8)通过东亚季风区与中亚干旱区的气候模拟及湖泊能量、水量平衡模拟探讨全新世猪野泽演化历史。
    [1]叶笃正,符淙斌.全球变化的主要科学问题.大气科学,1994,18(4):498-512.
    [2]Perry, J. S. Understanding our ovm planet:An overview of major international scientific activities. ICSU Secretariat,1993:35-37.
    [3]张志强,孙成权.全球变化研究十年新进展.科学通报,1999,44(5):464-477.
    [4]葛全胜,王芳,陈泮勤,田砚宇,程邦波.全球变化研究进展和趋势.地球科学进展, 2007,22(4):417-427.
    [5]周德全.湖泊沉积记录与过去全球变化.矿物岩石地球化学通报,2006,25(3):260-265.
    [6]Kummel, B., Raup, D. Handbook of Paleontological Techniques. W. H. Freeman and Company, San Francisco,1965:862.
    [7]Bouma, A. H. Methods for the Study of Sedimentary Structures. John Wiley, Sons, New York,1969:458-459.
    [8]Carver, R. E. Procedures in Sedimentary Petrology. Wiley Interscience, New York, 1971:653-654.
    [9]Liu, K.-B. , Colinvaux, P. A. A 5200-year history of Amazon rainforest. Journal of Biogeography,1988,15:231-48.
    [10]Maley, J. and Brenac, C. Vegetation dynamics, palaeoenvironments and climate change in the forests of western Cameroon during the last 28,000 years BP. Review of Palaeobotany and Palynology,1998,99:157-87.
    [11]DeMenocal, P., Ortiz, J., Guilderson, T., Adkins, J., Sarnthein, M., Baker, L. and Yarusinsky, M. Abrupt onset and termination of the African Humid Period. Quaternary Science Reviews,2000,19:347-61.
    [12]Gasse, F.2000:Hydrological changes in the African tropics since the Last Glacial Maximum. Quaternary Science Reviews,19:189-211.
    [13]Salzmann, U., Hoelzmann, P. and Morczinek, I. Late Quaternary climate and vegetation of the Sudanian zone of northeast Nigeria. Quaternary Research, 2002,58:73-83.
    [14]Darbyshire, I., Lamb, H., Umer, M. Forest clearance and regrowth in northern Ethiopia during the last 3000 years. Holocene,2003,13:537-46.
    [15]Behling, H., Pillar, V. P., Orloci, L. and Bauermann, S. G. Late Quaternary Araucaria forest, grassland (Campos), fire and climate dynamics, studied by high-resolution pollen, charcoal and multivariate analysis of the Cambara do Sul core in Southern Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004,203:277-97.
    [16]Burney, D. A. Late Quaternary stratigraphic charcoal records from Madagascar. Quaternary Research,1987,28:274-80.
    [17]Long, C. J., Whitlock, C., Bartlein, P. J. and Millspaugh, S. H. A 9000-year fire history from the Oregon Coast Range based on high-resolution charcoal study. Canadian Journal of Forest Research,1998,28:774-787.
    [18]Piperno, D. R. Phytolith analysis:an archaeological and geological perspective. San Diego:Academic Press,1988:46-48.
    [19]Mworia-Maitima, J. Vegetation response to climate change in central Rift Valley. Quaternary Research,1991,35:234-45.
    [20]Gasse, F., Barker, P., Gell, P. A., Fritz, S. C., Chalie, F. Diatom inferred salinity in palaeolakes:an indirect tracer of climate change. Quaternary Science Reviews,1997,16:547-63.
    [21]Barker, P. A., Street-Perrott, F. A., Leng, M. J., Greenwood, P. B., Swain, D. L., Perrott, R. A., Telford, R. J. and Ficken, K. J. A 14,000-year oxygen isotope record from diatom silica in two alpine lakes on Mount Kenya. Science, 2001,292:2307-2310.
    [22]Halfman, D., Thomas, C. Enhanced Atmospheric Circulation over North America During the Early Holocene:Evidence from Lake Superior. Science,1984,224: 61-63.
    [23]Stockhausen, H., Bernd, Z. Environmental changes since 13,000 cal. BP reflected in magnetic and sedimentological properties of sediments from Lake Holzmaar (Germany). Quaternary Science Reviews,1999,18:913-925.
    [24]Noren, A., Bierman, P. R., Steig, E. J., Lini, A., Southon, J. R. Millennial-scale Storminess Variability in the Northeastern United States during the Holocene Epoch. Nature,2002,419:821-824.
    [25]Schmidt, R., Karin, K., Roy, T., Christian, K. A multi proxy core study of the last 7000 years of climate and alpine land-use impacts on an Austrian mountain lake (Unterer Landschitzsee, Niedere Tauern). Palaeogeography, Palaeoclimatology, Palaeoecology,2002,187:101-120.
    [26]Abbott, M. B., Wolfe, B. B., Aravena, R., Wolfe, A. P., Seltzer, G.0. Holocene hydrological reconstructions from stable isotopes and paleolimnology, Cordillera Real, Bolivia. Quaternary Science Reviews,2000,19:1801-1820.
    [27]Lee, S., Lee Y., Yoon H., Yoo, K. East Asian monsoon variation and climate changes in Jeju Island, Korea, during the latest Pleistocene to early Holocene.2008, Quaternary Research,70:265-274.
    [28]Wooller, M., Wang, Y., Axford, Y., A multiple stable isotope record of Late Quaternary limnological changes and chironomid paleoecology from northeastern Iceland. Journal of Paleolimnology,2008,40:63-77.
    [29]Hakansson, S. A review of various factors influences the stable carbon isotope ratio of organic lake-sediments by the change from glacial to postglacial environmental-conditions. Quaternary Science Reviews,1985,4:135-146.
    [30]Fritz, S. C., Baker, P. A., Tapia, P., Garland, J. Spatial and temporal variation in cores from Lake Titicaca, Bolivia/Peru during the last 13,000 yrs. Quaternary International,2006,158:23-29.
    [31]Curtis, J. H., Brenner, M., Hodell, D. A. Climate change in the lake Valencia Basin, Venezuela, approximate to 12600 yr BP to present. Holocene 9,609-619.
    [32]Hu, S., Deng, C., Appel, E., Verosub, K. L. Environmental magnetic studies of lacustrine sediments. Chinese Science Bulletin,2002,47:613-617.
    [33]Brahney, J., Clague, J. J., Menounos, B., Edwards, T. W. D. Timing and cause of water level fluctuations in Kluane Lake, Yukon Territory, over the past 5000 years. Quaternary Research,2008,70:213-227.
    [34]Boyd, W. E., Hall, V. A. New frontiers and applications in palynology: Ⅸ International Palynological Congress, Houston, Texas, USA,1998,23-25.
    [35]王苏民.湖泊沉积学在中国科学院南京地理与湖泊研究的发展.中国科学院南京地理与湖泊研究所集刊,1991,8:135-138.
    [36]韩美,李艳红,张维英,张丽娜.近30年来我国湖泊沉积研究的进展.山东师范大学学报(自然科学版),2003,18(3):52-55.
    [37]程国良,林金录,李素玲.泥河湾层”的古地磁学初步研究.地质科学,1978,3:247-252.
    [38]黄宝玉,郭书元.从软体动物化石讨论泥河湾地层划分、时代及岩相古地理.中国地质科学院天津地质矿产研究所所刊,1981,4:17-30.
    [39]Chu, G. Q., Liu, J. Q., Sun, Q., Lu, H. Y., Gu, Z. Y., Wang, W. Y., Liu, T. S. The Mediaeval Warm Period drought recorded in Lake Huguangyan, tropical South China. Holocene,2002,12:511-516.
    [40]Xiao, J., Xu, Q., Nakamura, T., Yang, X., Liang, W., Inouchi, Y. Holocene vegetation variation in the Daihai Lake region of north-central China:a direct indication of the Asian monsoon climatic history. Quaternary Science Reviews,2004,23: 1669-1679.
    [41]Chen, F. H., Cheng, B., Zhao, Y., Zhu, Y., Madsen, D. B. Holocene environmental change inferred from a high-resolution pollen record, Lake Zhuyeze, arid China. Holocene,2006,16:675-684.
    [42]Liu, X. Q., Dong, H. L., Rech, J. A., Matsumoto, R., Bo, Y., Wang, Y. B. Evolution of Chaka Salt Lake in NW China in response to climatic change during the Latest Pleistocene-Holocene. Quaternary Science Reviews 2008,27:867-879.
    [43]山发寿.青海湖盆地35万年来的植被演化及环境变迁.湖泊科学,1993,5(1):9-16.
    [44]沈吉,王苏民,羊向东.湖泊沉积物中有机碳稳定同位素测定及其古气候环境意义.海洋与湖沼,1996,27(4):400-403.
    [45]刘卫国,肖应凯,韩凤清.昆特依盐湖氯同位素特征及古气候意义.海洋与湖沼,1998,29(4):431-434.
    [46]孙千里,周杰,肖举乐.岱海沉积物粒度特征及其古环境意义.海洋地质与第四纪地质,2001,21(1):93-95.
    [47]钟巍,舒强.南疆博斯腾湖近12.0 ka B P以来古气候与古水文状况的变化.海洋与湖沼,2001,32(2):213-219.
    [48]张振克,吴瑞金,沈吉.近2000年来云南洱海沉积记录的气候变化.海洋地质与第四纪地质,2001,21(2):31-34.
    [49]马燕,郑长苏.太湖全新世海相硅藻化石的发现及其意义.科学通报,1991,36(21):1641-1643.
    [50]周廷儒,李华章,刘清泗.泥河湾盆地新生代古地理研究.北京:科学出版社,1991:27-62.
    [51]刘清泗,王加兴,李华章.北方农牧交错带全新世湖泊演变特征.北京:科学出版社,1990:1-7.
    [52]张振克,吴瑞金,王苏民.2600年来居廷海环境演变的湖泊沉积记录.湖泊科学,1998,10(2):156-161.
    [53]羊向东,王苏民.一万多年来乌伦古湖地区花粉组合及其古环境.干旱区研究,1994,11(2):7-10.
    [54]林瑞芬,卫克勤.新疆玛纳斯湖沉积物氧同位素记录的古气候信息探讨:青海湖和色林错比较.第四纪研究,1998,18(4):308-316.
    [55]李世杰,郑本兴,焦克勤.西昆仑山南坡湖相沉积和湖泊演化的初步研究.地理科学,1991,11(4):306-314.
    [56]王苏民,薛滨,夏威岚.希门错2000多年来气候变化的湖泊记录.第四纪研究,1997,17(1):62-67.
    [57]王云飞,青海湖.岱海的湖泊碳酸盐化学沉积与气候环境变化.海洋与湖沼,1993,24(1):31-35.
    [58]刘嘉麒,Nwgendnk, J.F.W.,王文元,等.中国玛珥湖的时空分布与地质特征.第四纪研究,2000,20(1):78-86.
    [59]王文远,刘嘉麒.新仙女木事件在热带湖光岩玛珥湖的记录.地理科学,2001,21(1):94-96.
    [60]Yancheva, G., Nowaczyk, N. R., Mingram, J. Influence of the Intertropical Convergence Zone on the East Asian monsoon. Nature,2007,445:74-77.
    [61]Li, X., Zhou, J., Shen, J., Weng, C., Zhao, H., Sun, Q. Vegetation history and climatic variations during the last 14 ka BP inferred from a pollen record at Daihai Lake, north-central China. Review of Palaeobotany and Palynology,2004, 132:195-205.
    [62]景民昌,孙镇城,杨革联,等.柴达木盆地达布逊湖地区3万年来气候演化的微古生物记录.海洋地质与第四纪地质,2001,21(2):55-58.
    [63]李元芒,朱立平,李炳元.150年来青藏高原南红山湖的介形类与环境变化.地理研究,2001,20(2):199-205.
    [64]彭子成,韩有松.莱州湾地区10万年以来沉积环境变化.地质评论,1992,38(4):360-366.
    [65]介冬梅,吕金福,李志民,等.大布苏湖全新世沉积岩心的碳酸盐含量与湖面波动.海洋地质与第四纪地质,2001,21(2):77-82.
    [66]马燕,王苏民,潘红玺.硅藻和色素在古环境演化研究中的意义—以固城湖为例.湖泊科学,1996,8(1):16-26.
    [67]杨振京,刘志明.银川盆地中更新世以来的孢粉记录及古气候研究.海洋地质与第四纪地质,2001,21(3):43-49.
    [68]沈吉,王苏民,Matsumoto R,等.内蒙古岱海古盐度定量复原初探.科学通报,2000,45(17):1885-1888.
    [69]吴艳宏,吴瑞金,王强.运城盆地11ka B P以来气候环境变迁与湖面波动.海洋地质与第四纪地质,2001,21(2):83-86.
    [70]陈敬安,万国江,唐德贵.洱海近代气候变化的沉积物粒度与同位素记录.自然科学进展,2000,10(3):253-259.
    [71]Zhai, Q., Guo, Z., Li, Y., Li, R. Annually laminated lake sediments and environmental changes in Bashang Plateau, North China. Palaeogeography Palaeoclimatology Palaeoecology,2006,241:95-102.
    [72]李万春,李世杰.高分辨率古环境指示器:湖泊纹泥研究综述.地球科学进展,1999,14(2):172-176.
    [73]张振克,吴瑞金.岱海湖泊沉积物频率磁化率对历史时期环境变化的反映.地理研究,1998,17(3):297-302.
    [74]曹建廷,王苏民,沈吉.近千年来内蒙古岱海气候环境演变的湖泊沉积记录.地理科学,2000,20:391-396.
    [75]许清海,李月丛,李育,阳小兰,张振卿,贾红娟.现代花粉过程与第四纪环境研究若干问题讨论.自然科学进展,2006,16(6):647-656. 研究从孢粉纪录入手,对比孢粉和其他指标之间的关系,深入探讨猪野泽湖泊沉积物的沉积过程和机理,为该地区的环境变化研究提供新的证据。
    [1]汤奇成,曲耀光,周幸超.中国干旱区水文及水资源利用.科学出版社,北京:1992,44-80.
    [2]赵强.石羊河流域末次冰消期以来环境变化研究.兰州大学博士毕业论文,2005.
    [3]陈隆亨,曲耀光.河西地区水土资源及其开发利用.科学出版社,北京,1992:6-46.
    [4]康尔泗,程国栋,董增川.中国西北干旱区冰雪水资源与出山径流.科学出版社,北京,2002:270-293.
    [5]李吉均.中国西部地区晚更新世以来环境变迁模式.第四纪研究,1990,3:197-203.
    [6]中国科学院中国自然地理编辑委员会.中国自然地理:气候.科学出版社,北京,1984:1-30.
    [7]黄太荣.甘肃植被.甘肃科学技术出版社,兰州,1997:163-176.
    [8]中国植被编辑委员会.中国植被.科学出版社,北京,1980:195-197.
    [9]张建明.石羊河流域土地利用/土地覆被变化及其环境效应.兰州大学博士毕业论文,2007.
    [10]邬光剑,潘保田,管清玉.祁连山东段北麓近10ka来的气候变化初步研究.中国沙漠,1998,18(3):193-200.
    [11]王乃昂.亚洲季风演进与季风边缘区全新世气候变迁.兰州大学博士毕业论文,1997.
    [12]冯绳武.民勤绿洲的水系演变.地理学报,1963,29(3):241-249.
    [13]李并成.猪野泽及其历史变迁考.地理学报,1993,48(1):55-59.
    [14]Pachur, H. J., Wunnemann, B., Zhang, H. C. Lake evolution in the Tengger Desert, Northwest China, during the last 40000 years. Quaternary Reasearch,1995,44: 171-180.
    [15]Zhang, H. C., Ma, Y. Z., Li, J. J., Qi, Y., Chen, G. J., Fang, H.B., Wunnemann, B., Pachur, H. J. Palaeolake evolution and abrupt climate changes during last glacial period in NW China Geophysical Research Letters,2001,28:3203-3206.
    [16]Zhang, H. C., Wunnemann, B., Ma, Y.Z., Peng, J. L., Pachur, H. J., Li, L. J., Qi, Y., Chen, G. J., Fang, H. B., Feng, Z. D. Lake level and climate changes between 42,000 and 18,000 C-14 yr BP in the Tengger Desert, Northwestern China. Quaternary Research,2002,58:62-72.
    [17]Zhang, H. C., Peng, J. L., Ma, Y. Z., Chen, G., Feng, Z. D, Li, B., Fan, H. F, Chang, F. Q, Lei, G. L., Wunnemann, B. Late Quaternary palaeolake levels in Tengger Desert, NW China. Palaeogeography, Palaeoclimatology, Palaeoecology 2004,211:45-48.
    [18]Zhang, H. C., Ma, Y. Z., Wunnemann, B. A Holocene climatic record from arid northwestern China. Palaeogeography, Palaeoclimatology, Palaeoecology,2000, 162:389-401.
    [19]Ma, Y. Z., Zhang, H. C., Pachur, H. J., Wunnemann, B., Li, J. J., Feng, Z. D. Modern pollen-based interpretations of mid-Holocene palaeoclimate (8500 to 3000 cal. BP) at the southern margin of the Tengger Desert, northwestern China. Holocene, 2004,6:841-850.
    [20]Herzschuh, U., Tarasov, P., Wunnemann, B., Hartmann, K. Holocene vegetation and climate of the Alashan Plateau, NW China, reconstructed from pollen data Palaeogeography, Palaeoclimatology, Palaeoecology,2004,211:1-17.
    [21]陈发虎,朱艳,李吉均.民勤盆地湖泊沉积记录的全新世千百年尺度夏季风快速变化.科学通报,2001,46:1414-1419.
    [22]Shi, Q., Chen, F. H., Zhu, Y. Lake evolution of the terminal area of Shiyang River drainage in arid China since last glaciation. Quaternary International, 2002,93-94:31-44.
    [23]陈发虎,吴薇,朱艳.阿拉善高原中全新世干旱事件的湖泊记录研究.科学通报,2004,49(1):1-9.
    [24]Chen, F. H., Cheng, B., Zhao, Y., Zhu, Y., Madsen, D. B. Holocene environmental change inferred from a high-resolution pollen record, Lake Zhuyeze, arid China. Holocene,2006,16:675-684.
    [23]王乃昂,李吉均,穆得芬,等.河西走廊东段湖泊旋回及其古气候意义.湖泊科学, 1999,11(3):225-230.
    [24]赵强,王乃昂,李秀梅,程弘毅,李育,李钢.青土湖地区9 500 a BP以来的环境变化研究,冰川冻土,2005,27(3):352-359.
    [25]隆浩,王乃昂,李育,马海州,赵强,程弘毅,黄银洲.猪野泽记录的季风边缘区全新世中期气候环境演化历史,第四纪研究,2007,27(3):371-381.
    [26]Li, Y., Wang, N., Cheng, H., Long, H., Zhao, Q. Holocene environmental change in the marginal area of the Asian monsoon: a record from Zhuye Lake, NW China. Boreas,2009,38:349-361.
    [28]Li, Y., Wang, N., Morrill, C., Cheng, H., Long, H., Zhao, Q. Environmental change implied by the relationship between pollen assemblages and grain-size in N. W. Chinese lake sediments since the Late Glacial. Review of Palaeobotany and Palynology,2009,154:54-64.
    [1]隆浩.季风边缘区全新世中期气候变化的古湖泊记录.兰州大学硕士毕业论文,2006.
    [2]Arnold, J. R., Libby, W. F. Age Determinations by Radiocarbon Content:Checks with Samples of Known Age. Science,1949,110:678-680.
    [3]仇世华等.中国14C年代学研究.科学出版社,北京,1990,1-10.
    [4]Bradley, R. S. Quaternary Palaeolimatoloty. Allen and Unwin, Boston,1985.
    [5]Regnell, J. Preparing pollen concentrates for AMS dating. Radiocarbon,1992, 36(3):407-412.
    [6]Geyh, M. A., Schotterer, U., Grosjean, M. Temporal changes of the 14C reservoir effect in lakes. Radiocarbon,1998,40:921-931.
    [7]孙湘君,杜乃秋,陈因硕.西藏色林错湖相沉积物的花粉分析.植物学报,1993,35(12):943-950.
    [8]任国玉.内蒙古湖相沉积中14C年代测定中“硬水”影响的发现.湖泊科学,1998,10(3):80-82.
    [9]周卫建,周杰,萧家仪.花粉浓缩物的加速器14C年代测定初探.中国科学(D辑),1998,28:453-458.
    [10]周卫建,卢雪峰,武振坤,等.若尔盖高原全新世气候变化的泥炭记录与加速器放射性碳测年.科学通报,2001,46:1040-1044.
    [11]王乃昂,王涛,高顺尉.河西走廊芒硝和砂楔的形成时代及其古气候解释.地学前缘,2001,7(增刊):59-66.
    [12]陈发虎,朱艳,李吉均.民勤盆地湖泊沉积记录的全新世千百年尺度夏季风快速变化.科学通报,2001,46:1414-1419. 区有机质的含量可以直接反映古生产力的变化。湖泊有机质分为内源和外源两种,外源有机质主要包括陆生植物和湖滨沼泽、湖岸地带的水生植物,为湖盆流域经河流搬运入湖的有机成分,如果周边植被茂盛,地表侵蚀程度强,湖泊沉积物中的有机质含量就会增加。内生有机质则指湖泊本身生长的水生生物,包括浮游植物、挺水植物和沉水植物。有机质的含量通常以总有机碳(TOC)来反映。有机质的C/N比被认为是有效的判别有机质来源的指标,陆生高等植物C/N比为14-23;低等植物,C/N通常小于10。湖泊沉积物有机δ13C变化与沉积物中有机质来源密不可分,同时也受控于受控于有机质的绝对含量。陆源植物根据不同的生理习性可分为C3、C4和CAM三种类型,C3植物δ13C值在-21‰和-33‰之间;C4植物6‘3C值在-9‰和-21‰之间;CAM植物的δ13C值约在-10‰和-30‰之间;湖泊水生植物的δ13C值也各不相同,沉水植物在-12‰--20‰之间;漂浮植物δ13C值可偏负至-35.5‰。有机δ13C的环境意义存在多解性,其具体的环境意义,需要根据不同湖泊位置和周围植被类型来探讨。
    [1]Stockmarr, J. Tablets with spores used in absolute pollen analysis. Pollen and Spores,1971,13:615-621.
    [2]Cwynar, L. C., Burden, E., McAndrews, J. H. An inexpensive sieving method for concentrating pollen and spores from fine-grained sediments. Can. J. Earth Sci, 1979,16:1115-1120.
    [3]Dohrer, L. I. Palynomorph preparation procedures currently used in the paleontology and stratigraphy laboratories, U.S.Geological Survey. Geological Survey Circular,1980,33-50.
    [4]Heusser, L. E., Stock, C. E. Preparation techniques for concentrating pollen from marine sediments and other sediments with low pollen density. Palynology,1984, 8:225-227.
    [5]Vidal, G. A. Palynological preparation methods. Palynology,1988,12:215-220.
    [6]Faegri, K., Iversen, J. Textbook of pollen analysis.4th edition. John Wiley and Sons, New York,1989,76-81.
    [7]孙湘君,宋长青,王瑜.黄土高原南缘10万年以来的植被.植物学报,1995,38(12):982-988.
    [8]柯曼红.黄土孢粉分析方法的研究.植物学报,1996,36(2):144-147.
    [9]李小强,周杰.黄土孢粉分析的新途径-筛滤分析法.中国沙漠,1999,19(4):399-402.
    [10]李春海,何翠玲.黄土孢粉HF处理方法.微体古生物学报,2004,21(3):346-348.
    [11]王伏雄.中国植物花粉形态.科学出版社,北京,1995.
    [12]中国科学院北京植物研究所古植物研究室孢粉组.中国蕨类植物孢子形态.科学出版社,北京,1976.
    [13]朱艳,程波,陈发虎,张家武.石羊河流域现代孢粉传播研究.科学通报,2004,49:15-21.
    [14]赵强.石羊河流域末次冰消期以来环境变化研究.兰州大学博士毕业论文,2005.
    [15]隆浩.季风边缘区全新世中期气候变化的古湖泊记录.兰州大学硕士毕业论文,2006.
    [16]Halfman, D., Thomas, C. Enhanced Atmospheric Circulation over North America During the Early Holocene:Evidence from Lake Superior. Science,1984,224: 61-63.
    [17]Stockhausen, H., Bernd, Z. Environmental changes since 13,000 cal. BP reflected in magnetic and sedimentological properties of sediments from Lake Holzmaar (Germany). Quaternary Science Reviews,1999,18:913-925.
    [18]Nore, A., Bierman, P. R., Steig, E. J., Lini, A., Southon, J. R. Millennial-scale Storminess Variability in the Northeastern United States during the Holocene Epoch. Nature,2002,419:821-824.
    [19]Schmidt, R., Karin, K., Roy, T., Christian, K. A multi proxy core study of the last 7000 years of climate and alpine land-use impacts on an Austrian mountain lake (Unterer Landschitzsee, Niedere Tauern). Palaeogeograp, Palaeoclimatology, Palaeoecology,2002,187:101-120.
    [20]Peng, Y., Xiao, J., Nakamura, T., Liu, B., Inouchi, Y. Holocene East Asian monsoonal precipitation pattern revealed by grain-size distribution of core sediments of Daihai Lake in Inner Mongolia of north-central China. Earth and Planetary Science Letters,2005,233:467-479.
    [21]Zhai, Q., Guo, Z., Li, Y., Li, R. Annually laminated lake sediments and environmental changes in Bashang Plateau, North China. Palaeogeography, Palaeoclimatology, Palaeoecology,2006,241:95-102.
    [22]Walker, D. Holocene sediments of Lake Barrine, north-east Australia, and their implications for the history of lake and catchment environments. Palaeogeography, Palaeoclimatology, Palaeoecology,2007,251:57-82.
    [23]Lutz, B., Gregory, W., Thomas, L., Joshua, M. The 8.2-ka abrupt climate change event in Brown's Lake, northeast Ohio. Quaternary Research,2007,67:292-296.
    [24]任明达,王乃梁.现在沉积环境概论.科学出版社,北京,1985,1-4.
    [25]Verosub, K. L., Roberts, A. P. Environmental magnetism:past, present, and future. Geophys. Res.,1995,100(B2):2175-2192.
    [26]Thompson, R., Bloemendal, J., Dearing, J. A. Environmental applications of magnetic measurements. Science,1980,207:481-486.
    [27]Thompson, R., Oldfield, F. Environmental Magnetism. London: Allen & Unwin, 1986.
    [28]吴瑞金.湖泊沉积物的磁化率、频率磁化率及其古气候意义.湖泊科学,1993,5(2):128-135.
    [29]胡守云,王苏民.呼伦湖湖泊沉积物磁化率变化的环境磁学机制.中国科学(D辑),1998,28(4):334-339.
    [30]陈敬安,万国江,汪福顺.湖泊现代沉积物碳环境记录研究.中国科学(D辑),2002,32(1):73-80.
    [31]沈吉,王苏民,羊向东.湖泊沉积物中有机碳稳定同位素测定及其古气候环境意义.海洋与湖沼,1996,27:400-404
    [32]Wang, J. Q., Liu, J. L. Amino acids and stable carbon isotope distributions in Taihu Lake, China, over the last 15 000 years, and their palaeoecological implications. Quaternary Research,2000,53:223-228.
    [33]Digerfeldt, G., Olsson, S., Sandgren, P. Reconstruction of lake-level changes in lake Xinias, central Greece, during the last 40 000 years. Palaeogeography, Palaeoclimatology, Palaeoecology,2000,158:65-82.
    [34]Krishnamurthy, R. V., Bhattacharya, S. K. Palaeoclimatic changes deduced from 13C/12C and C/N ratios of Karewa lake sediments, India. Nature,1986,323: 150-152.
    [35]Wagner, B., Melles, M., Hahne, J. Holocene climate history of Geographical Socienty, East Greenland-evidence from lake sediments. Palaeogeography, Palaeoclimateology, Palaeoecology,2000,160:45-68.
    [36]Stuiver, M., Yang, I. C., Denton, G. H. Climate versus changes in 13C content of the organic component of lake sediments during the late quaternary. Quaternary Research,1975,5:251-262.
    [37]Aravena, R., Warner, B. G., MacDonald, G. M. Carbon isotope compositionof lake sediments in relation to lake productivity and radiocarbon dating. Quaternary Research,1992,37:333-345.
    [38]Bowen, R. Isotopes and climates. Elsevier Applied Science, London,1991, 128-131. 花粉指标将全新世-7.4--1.5cal ka BP部分可以划分为2个阶段,一个是-7.4--4.7 cal ka BP,另一个是-4.7--1.5 cal ka BP,但是在使用碳酸盐含量对剖面进行划分的时候-7.4--1.5 cal ka BP就属于一个阶段。这些差异是由于不同的指标参数对环境变化的响应不同、敏感性也不同,所以造成了采用不同指标划分剖面的不同。我们在下一章,利用孢粉记录和其他指标对比来重建石羊河流域晚冰期以来环境变化过程时,会充分考虑不同指标的差异,来更好地重建古环境。
    [1]朱艳,程波,陈发虎,张家武.石羊河流域现代孢粉传播研究.科学通报,2004,49:15-21.
    [2]吴征镒.中国植被.科学出版社,北京,1980.
    [3]Sun, D., Bloemendal, J., Rea, D. K. Grain size distribution function of polymodal sediments in hydraulic and Aeolian environments, and numerical partitioning of the sedimentary components. Sedimentary Geology,2002,152:263-277.
    [4]Prins, M. A., Postma, G., Weltje, G. J. Controls on terrigenous sediment supply to the Arabian Sea during the late Quaternary:the Makran continental slope. Marine Geology,2000,169:351-371.
    [5]Prins, M. A., Postma, G., Cleveringaa, J. Controls on terrigenous sediment supp ly to theArabian Sea during the late Quaternary:the Indus Fan. Marine Geology, 2000,169:327-349.
    [6]Prins, M. A., Weltje, G. J. End-membermodeling of siliciclastic grain size distributions:The late Quaternary record of eolian and fluvial sediment supp ly to theArabian Sea and its paleoclimatic significance. In: Harbaugh J, Watney L, Rankey G, Slingerland R, Goldstein R, Franseen E, eds. Numerical Experiments in Stratigraphy:RecentAdvances in Stratigraphic and Sedimentologic Computer Simulations, SEPM (Society for Sedimentary Geology) Special Publication,1999, 62:91-111.
    [7]Stuut, J. B. W., Prins, M. A.,, Schneider, R. R. A 3002 kyr record of aridity and wind strength in southwestern Africa:Inferences from grain size distributions of sediments on Walvis Ridge, SE Atlantic. Marine Geology,2002, 180:221-233.
    [8]孙有斌,高抒,李军.边缘海陆源物质中环境敏感粒度组分的初步分析.科学通报,2003,48:83-87.
    [9]Boulay, S., Colin, C., Trentesaux, A. Mineralogy and sedimentology of Pleistocene sediments on the South China Sea (ODP Site 1144).Proceedings of the Ocean Drilling Program. Scientific Results,2002,184-187.
    [10]Vincens, A., Bonnefille, R. Modern pollen sedimentation in Africa lakes.7th International Palynology Congress, Brisbane,1988,173-174.
    [11]Bony, A. P. Seasonal and annual variation over 5 years in contemporary airborne pollen teapped at a Cumbrian Lake. Journal of Ecology,1980,68:421-441.
    [12]DeBusk, G. H. The distribution of pollen in the surface sediments of lake Malawi, Africa, and the transport of pollen in large lakes. Review of Palaeobotany and Palynology,1997,97:123-153.
    [13]Luly, J. G. Modern pollen dynamics and surficial sedimentary processes at Lake Tyrrell, semi-arid northwestern Victoria, Australia. Review of Palaeobotany and Palynology,1997,97:301-318.
    [14]Prentice, I. C. Pollen representation, source area and basin size; toward a unified theory of pollen analysis. Quaternary Research,1985,23:76-86.
    [15]Sugita, S. A model of pollen source area for an entire lake surface. Quaternary Research,1993,39:239-244.
    [16]Sugita, S. Pollen representation of vegetation in Quaternary sediments:theory and method in patchy vegetation. Journal of Ecology,1994,82:881-897.
    [17]Wang, L., Sarnthein, M., Erlenkeuzer, H. East Asian monsoon climate during the late Pleistocene:High resolution sediment records from the South China Sea. Marine Geology,1999,156:245-284.
    [18]Rea, D. K., Hovan, S. A. Grain size distribution and depositional processes of the mineal component of abyssal sediments:Lessons from the North Pacific. Paleoceanography,1995,12:251-258.
    [19]Middleton, G. V. Hydraulic interpretation of sand size distributions. Journal of Geology,1976,84,405-426.
    [20]Herzschuh, U. Reliability of pollen ratios for environmental reconstructions on the Tibetan Plateau. Journal of Biogeography,2007,34:1265-1273.
    [21]Zhu, Y., Chen, F., Cheng, B., Zhang, J., Madsen, D. Pollen Assemblage Features of Modern Water Samples from the Shiyang River Drainage, Arid Region of China. Acta Botanica Sinica,2002,44:367-372.
    [22]胡守云,邓成龙,Appel, E., Verosub, K.湖泊沉积物磁学性质的环境意义.科学通报,2001,46:1491-1494.
    [23]张恩楼,沈吉,王苏民,夏威岚,金章东.青海湖近900年来气候环境演化的湖泊沉积记录.湖泊科学,2002,14:32-38.
    [24]Nakai, N., Koyama, M. Reconstruction of palaeoenvironment from the vie-points of the inorganic constituents, C/N ratio and carbon isotopic ratio in the 1400m core taken from lake Biwa. In:Horie, S. (ed.). History of Lake Biwa. Kyoto Univ Coontrib,1987,137-156. 候、古环境记录对比中的不确定性因素。Herzschuh (2006)在中东亚地区,以有效水分—effective moisture为主要指标,综合了75个古气候记录,所作出的统计结果,是相对让人信服的。根据他的研究,在西风带和东亚季风区,中全新世适宜期较为普遍存在,这主要受到较强的东亚季风和较湿润的西风气流的影响。为了了解石羊河流域和周围区域气候、环境变化的关系,本项研究也对比了大量全新世气候记录(如图6.6,6.7),根据对比发现,石羊河流域中全新世气候变化过程与西风带和东亚季风区大量研究结果相符,中全新世表现气候适宜期,但是不同于印度季风区。印度季风的强盛早于东亚季风区,这一点在Chen (2007)的研究中,也得到了印证。石羊河流域中全新世适宜期建立在较强的东亚季风和较为湿润的西风环流的基础上,可能受到了两股湿润气流的共同影响。根据现有的结果,还无法在本研究中详细分辨东亚季风和西风带对季风边缘区的影响过程及季风-西风互动过程。因此,关于季风西风互动过程的研究还需要更高分辨率的古环境重建结果和气候模拟方法得以实现。
    从4.7 cal ka BP开始,石羊河流域“全新世适宜期”结束,在下游终端湖的气候记录要稍微敏感于中游及上游黄土剖面的记录(如图6.6,6.7)。这可能是由于终端湖地区,年降水量小,蒸发量大,对于气候变化反应敏感,中上游地区沉积记录显示的适宜期结束稍晚。根据对比其他区域的气候记录(如图6.6,6.7),该地区“中全新世适宜期”的结束可能与东亚季风的整体退缩有关,但是要稍早于典型东亚季风区的气候记录,这可能是季风边缘区对气候变化的敏感性所致,也可能由于终端湖地区极端干旱的气候状况所致。根据终端湖的沉积记录,在1.5 cal ka BP左右,环境进一步干旱,湖泊基本完全退出剖面位置,对比西风带晚全新世记录,这次进一步干旱化,可能与西风气流变干有关。
    [1]邬光剑,潘保田,管清玉,王建民,赵志军.祁连山东段北麓近10ka来的气候变化初步研究.中国沙漠,1998,18(3):193-200.
    [2]Zhang, J., Lin, Z. Climate of China. Wiley, New York,1992,376.
    [3]王可丽,江灏,赵红岩.西风带与季风对中国西北地区的水汽输送.水科学进展,2005,16:432-438.
    [4]Wunnemann, B., Pachur, H, Zhang, H. Climatic and environmental changes in the deserts of Inner Mongolia, China, since the Late Pleistocene. In:Alsharan, Glennie, A., Whittle, G. (Eds.), Quaternary Deserts and Climatic Change. Bakema, Rotterdam,1998,381-394.
    [5]Owen, L., Spencer, J., Ma, H., Barnard, P., Derbyshire, E., Finkel, R., Caffee, M., Nlan, Z. Timing of Late Quaternary glaciation along the southwestern slopes of the Qilian Shan, Tibet. Boreas,2003,32:281-291.
    [6]Grunert, J., Lehmkuhl, F., Walther, M. Palaeoclimatic evolution of the Uvs Nuur Basin and adjacent areas (Western Mongolia). Quaternary International,2000. 65/66:171-192.
    [7]Yang, X., Karl, T., Frank, L., Zhu, Z., John, D. The evolution of dry lands in northern China and in the Republic of Mongolia since the Last Glacial Maximum. Quaternary International,2004,118-119:69-85.
    [8]Wang, Y., Cheng, H., Edwards, R.L., He, Y., Kong, X., An, Z., Wu, J., Kelly, M. J., Dykoski, C. A., Li, X. The Holocene Asian monsoon:links to solar changes and North Atlantic climate. Science,2005,308:854-857.
    [9]Fleitmann, D., Burns, S. J., Mudelsee, M., Neff, U., Kramers, J., Mangini, A., Matter, A. Holocene forcing of the Indian monsoon recorded in a stalagmite from Southern Oman. Science,2003,300:1737-1739.
    [10]Shen, J., Liu, X., Ryo, M., Wang, S., Yang, X. A high-resolution climatic change since the Late Glacial Age inferred from multi-proxy of sediments in Qinghai Lake. Science in China Series D-Earth Sciences,2005,48:742-751.
    [11]Morrill, C., Jonathan, T., Julia, E., Liu, K., Shen, C., Tang, L. Holocene variations in the Asian monsoon inferred from the geochemistry of lake sediments in central Tibet. Quaternary Research,2006,65:232-243.
    [12]Wunnemann, B., Mischke, S., Chen, F. A Holocene sedimentary record from Bosten Lake, China. Palaeogeography, Palaeoclimatology, Palaeoecology,2006,234: 223-238.
    [13]Xiao, J., Nakamura, T., Lu, H., Zhang, G. Holocene climate changes over the desert/loess transition of north-central China. Earth and Planetary Science Letters,2002,197:11-18.
    [14]Peng, Y., Xiao, J., Nakamura, T., Liu, B., Inouchi, Y. Holocene East Asian monsoonal precipitation pattern revealed by grain-size distribution of core sediments of Daihai Lake in Inner Mongolia of north-central China. Earth and Planetary Science Letters,2005,233:467-479.
    [15]蔡演军,彭子成,安芷生.贵州七星洞全新世石笋的氧同位素记录及其指示的季风气候变化.科学通报,2001,46:1398-1403.
    [16]Hong, Y., Hong, T., Lin, Q., Shibata, Y., Hirota, M., Zhu, Y., Leng, X., Wang, Y., Wang, H., Yi, L. Inverse phase oscillations between the East Asian and Indian Ocean summer monsoons during the last 12000 years and paleo-El Nino. Earth and Planetary Science Letters,2005,231:337-346.
    [17]Herzschuh, U., Pavel, T., Wunnemann, B., Hartmann, K. Holocene vegetation and climate of the Alashan Plateau, NW China, reconstructed from pollen data. Palaeogeography, Palaeoclimatology, Palaeoecology,2004,211:1-17.
    [18]Thompson, L., Mosley-Thompson, M., Bolzan, J., Dai, J., Gundestrup, N., Yao, T., Wu, X., Xie, Z. Holocene-Late Wisconsin Pleistocene climatic ice core records from Qinghai-Tibetan Plateau, Science,1989,246:474-477.
    [19]Zhai, Q., Guo, Z., Li, Y., Li, R. Annually laminated lake sediments and environmental changes in Bashang Plateau, North China. Palaeogeography, Palaeoclimatology, Palaeoecology,2006,241:95-102.
    [20]Naumann, S., Walther, M. Mid-Holocene lake-level fluctuations of Bayan Nuur (north-west Mongolei). Marburger Geographische Schriften,2000,135:15-27.
    [21]Walther, M. Befunde zur jungquart. aren Klimaentwicklung rekonstruiert am Beispiel der Seespiegelst. ande des Uvs-Nuur-Beckens (NW-Mongolei). Die Erde, 1999,130:131-150.
    [22]Grunert, J., Lehmkuhl, F., Walther, M. Palaeoclimatic evolution of the Uvs Nuur Basin and adjacent areas (Western Mongolia). Quaternary International,2000, 65/66:171-192.
    [23]Zhou, W., Head, J., Deng, L. Climate changes in northern China since the late Pleistocene and its response to global change. Quaternary International,2001, 83-85:285-292.
    [24]COHMAP Members. Climatic changes of the last 18000 years:observations and model simulations. Science,1988,241:1043-1052.
    [25]An, Z., Porter, S., Kutzbach, J.., Wu, X., Wang, S., Liu, X., Li, X., Zhou, W. Asynchronous Holocene optimum of the East Asian monsoon. Quaternary Science Reviews,2000,19:743-762.
    [26]He, Y., Wilfred, H., Zhang, Z., Zhang, D., Yao, T., Chen, T., Shen, Y., Pang, H. Asynchronous Holocene climatic change across China. Quaternary Research, 2004,61:52-63.
    [27]An, C., Feng, Z., Barton, L. Dry or humid? Mid-Holocene humidity changes in arid and semi-arid China. Quaternary Science Reviews,2006,25:351-361.
    [28]Chen, F., Yu, Z., Yang, M., Ito, E., Wang, S., Madsen, D., Huang, X. Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history. Quaternary Science Reviews,2008,27:351-364.
    [29]Herzschuh, U. Palaeo-moisture evolution in monsoonal Central Asia during the last 50,000 years. Quaternary Science Reviews,2006,25:163-178.
    [30]An, C., Feng, Z., Tang, L. Evidence of a humid Mid-Holocene in the western part of Chinese Loess Plateau. Chinese Science Bulletin,2003,48:2472-2479.
    [31]Huang, C., Pang, J., Zhou, Q., Chen, S. Holocene pedogenic change and the emergence and decline of rain-fedcereal agriculture on the Chinese Loess Plateau. Quaternary Science Reviews,2004,23:2525-2535.
    [32]Peck, J., Khosbayar, P., Fowell, S., Pearce, R., Ariunbileg, S., Hansen, B. Soninkhishig, N. Mid to Late Holocene climate change in North Central Mongolia as recorded in the sediments of Lake Telmen. Palaeogeography, Palaeoclimatology, Palaeoecology,2002,183:135-153.
    [33]Fowell, S., Hansen, B., Peck, J., Khosbayar, P., Ganbold, E. Mid to Late Holocene climate evolution of the Lake Telmen Basin, North Central Mongolia, based on palynological data. Quaternary Research,2003,59:353-363.
    [34]陈发虎,黄小忠,杨美临.亚洲中部干旱区全新世气候变化的西风模式-以新疆博斯腾湖记录为例.第四纪研究,2006,26:881-887. 湖泊演化历史的特殊性,从某种角度来看,既带有季风区湖泊演化的特征又带有西风带湖泊演化的特征。处于季风边缘区的湖泊不仅猪野泽体现了中全新世高湖面的特征,另一研究热点湖泊——岱海,也体现出和猪野泽相似的特点,在中全新世期间湖泊水位达到最高,这也充分说明了季风边缘区湖泊演化的复杂性。
    在前一节,对比模拟结果和中亚干旱区湖泊演化记录来看,中亚干旱区部分湖泊也呈现出中全新世高湖面的特征,这与模拟出的该区域晚全新世高湖面的特征不符。分析认为,因为有部分湖泊表现出了晚全新世高湖面的特征,所以这种不符是由于模型误差和晚全新世人类活动影响共同造成。从这点来看,中全新世阶段,处在季风边缘区的猪野泽和岱海等湖泊,可能受到了使中亚地区湖泊保持高湖面的气候因素影响;早全新世期间,猪野泽湖面扩张的特征与模拟出的季风区早全新世高湖面的记录相符,这说明早全新世期间,猪野泽体现出部分季风区湖泊的特征;晚全新世期间,根据湖泊记录来看,季风区和大部分中亚干旱区的湖泊共同退缩,模拟结果在季风区也证明了这一点,猪野泽可能受到季风区和中亚干旱区湖泊变化要素的共同影响,不过从一些进一步干旱化的时段(~1.5 cal ka BP)上来看,可能受西风带湖泊变化的因素影响更多一些。
    [1]丁仲礼,熊尚发.古气候数值模拟:进展评述.地学前缘2006,13(1):21-31.
    [2]Collins, W. D. and 14 others. The Community Climate System Model Version 3 (CCSM3). Journal of Climate,2006,19:2122-2143.
    [3]Berger, A. L. Long-term variations of caloric insolation resulting from the Earth's orbital elements. Quaternary Research,1978,9:139-167.
    [4]Fluckiger, J., Dallenbach, A., Blunier, T., Stauffer, B., Stocker, T. F., Raynaud, D. and Barnola, J. M. Variations in atmospheric N2O concentration during abrupt climate changes. Science,1999,285:227-230.
    [5]Fluckiger, J., Monnin, E., Stauffer, B., Schwander, J., Stocker, T. F., Chappellaz, J., Raynaud, D. and Barnola, J. M. High-resolution Holocene N2O ice core record and its relationship with CH4 and CO2. Global Biogeochemical Cycles,2002,16: 1010.
    [6]Monnin, E., Steig, E. J., Siegenthaler, U., Kawamura, K., Schwander, J., Stauffer, B., Stocker, T. F., Morse, D. L., Barnola, J. M., Bellier, B., Raynaud, D. and Fisher, H. Evidence for substantial accumulation rate variability in Antarctica during the Holocene, through synchronization of CO2 in the Taylor Dome, Dome C and DML ice cores. Earth and Planetary Science Letters,2004,224:45-54.
    [7]Peltier, W. R. Global glacial isostasy and the surface of the ice-age Earth: The ICE-5G (VM2) model and GRACE. Annual Review of Earth and Planetary Sciences, 2004,32:111-149.
    [8]Otto-Bliesner, B. L., Brady, E. C., Clauzet, G., Tomas, R., Levis, S. and Kothavala, Z. Last Glacial Maximum and Holocene climate in CCSM3. Journal of Climate, 2006,19:2526-2544.
    [9]Meehl, G. A., Arblaster, J. M., Lawrence, D. M., Seth, A., Schneider, E. K. Kirtman, B. P. and Min, D. Monsoon regimes in the CCSM3. Journal of Climate, 2006,19:2482-2495.
    [10]Liu, X. Q., Shen, J., Wang, S. M., Wang, Y. B., and Liu, W. G. Southwest monsoon changes indicated by oxygen isotope of ostracode shells from sediments in Qinghai Lake since the late Glacial. Chinese Science Bulletin,2007,52,539-544.
    [11]Wang, Y. J., Cheng, H., Edwards, R. L., He, Y. Q., Kong, X. G., An, Z. S., Wu, J. Y., Kelly, M. J., Dykoski, C. A. and Li, X. D. The Holocene Asian monsoon: Links to solar changes and North Atlantic climate. Science,2005,308:854-857.
    [12]Dykoski, C. A., Edwards, R. L., Cheng, H., Yuan, D. X., Cai, Y. J., Zhang, M. L., Lin, Y. S., Qing, J. M., An, Z. S. and Revenaugh, J. A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China. Earth and Planetary Science Letters,2005,233:71-86.
    [13]Cosford, J., Qing, H. R., Eglington, B., Mattey, D., Yuan, D. X., Zhang, M. L. and Cheng, H. East Asian monsoon variability since the Mid-Holocene recorded in a high-resolution, absolute-dated aragonite speleothem from eastern China. 2008, Earth and Planetary Science Letters,275:296-307.
    [14]Hostetler, S. W. and Bartlein, P. J. Simulation of lake surface evaporationwith application to modeling lake level variations of Harney-Malheur Lake, Oregon. Water Resources Research,1990,26:2603-2612.
    [15]Dickinson, R. E., Henderson-Sellers, A. and Kennedy, P. J. Biosphere-atmosphere transfer scheme (BATS) version le as coupled to the NCAR community climate model. National Center for Atmospheric Research, Boulder, Colorado, USA,1993:72.
    [16]Morrill, C. The influence of Asian summer monsoon variability on the water balance of a Tibetan lake. Journal of Paleolimnology,2004,32:273-286.
    [17]Morrill, C., Small, E. E. and Sloan, L. C. Modeling orbital forcing of lake level change:Lake Goisute (Eocene), North America. Global and Planetary Change, 2001,29:57-76.
    [18]Mason, I. M., Guzkowska, M. A. J., Rapley, C. G. The response of lake levels and areas to climatic change. Climate Change,1994,27:161-197.
    [19]Chen, Z. Y. and Stanley, D. J. Sea-level rise on eastern China's Yangtze delta. Journal of Coastal Research,1998,14:360-366.
    [20]Wang, J., Chen, X., Zhu, X. H., Liu, J. L., and Chang, W. Y. B. Taihu Lake, lower Yangtze drainage basin:evolution, sedimentation rate and the sea level. Geomorphology,2001,41:183-193.
    [21]Chen, F. H., Yu, Z. C., Yang, M. L., Ito, E., Wang, S. M., Madsen, D. B. Huang, X. Z., Zhao, Y., Sato, T., Birks, H. J. B., Boomer, I., Chen, J. H., An, C. B. and Wunnemann, B. Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history. Quaternary Science Reviews,2008,27:351-364.
    [22]Fowell, S. J., Hansen, B. C. S., Peck, J. A., Khosbayar, P. and Ganbold, E. Mid to late Holocene climate evolution of the Lake Telmen basin, North Central Mongolia, based on palynological data. Quaternary Research,2003,59:353-363.
    [23]Peck, J. A., Khosbayar, P., Fowell, S. J., Pearce, R. B., Ariunbileg, S., Hansen, B. C. S., Soninkhishig, N. Mid to Late Holocene climate change in north central Mongolia as recorded in the sediments of Lake Telmen. Palaeogeography, Palaeoclimatology, Palaeoecology,2002,183:135-153.
    [24]Morrill, C., Overpeck, J. T., Cole, J. E., Liu, K. B., Shen, C. M. and Tang, L. Y. Holocene variations in the Asian monsoon inferred from the geochemistry of lake sediments in central Tibet. Quaternary Research,2006,65:232-243.
    [25]Jiang, W. Y. and Liu, T. S. Timing and spatial distribution of mid-Holocene drying over northern China:Response to a southeastward retreat of the East Asian Monsoon. Journal of Geophysical Research-Atmospheres,2007,112:1-8.
    [26]Shen, J., Yang, L. Y., Yang, X. D., Matsumoto, R., Tong, G. B., Zhu, Y. X., Zhang, Z. K. and Wang, S. M. Lake sediment records on climate change and human activities since the Holocene in Erhai catchment, Yunnan Province, China. Science in China Series D-Earth Sciences,2005,48:353-363.
    [27]Xiao, J., Si, B., Zhai, D., Itoh, S. and Lomtatidze, Z. Hydrology of Dali Lake in central-eastern Inner Mongolia and Holocene East Asian monsoon variability. Journal of Paleolimnology,2008,40:519-528.
    [28]Madsen, D. B., Ma, H. Z., Rhode, D., Brantingham, P. J. and Forman, S. L. Age constraints on the late Quaternary evolution of Qinghai Lake, Tibetan Plateau. Quaternary Research,2008,69:316-325.
    [29]Morinaga, H., Itota, C., Isezaki, N., Goto, H., Yaskawa, K., Kusakabe, M., Liu, J., Gu, Z., Yuan, B. and Cong, S.0-18 and C-13 Records for the Last 14,000 Years from Lacustrine Carbonates of Siling-Co (Lake) in the Qinghai-Tibetan Plateau. Geophysical Research Letters,1993,20:2909-2912.
    [30]Kong, P., Na, C. G., Fink, D., Huang, F. X. and Ding, L. Cosmogenic Be-10 inferred lake-level changes in Sumxi Co Basin, Western Tibet. Journal of Asian Earth Sciences,2007,29:698-703.
    [31]Chen, C. T. A., Lan, H. C., Lou, J. Y. and Chen, Y. C. The dry Holocene Megathermal in Inner Mongolia. Palaeogeography, Palaeoclimatology, Palaeoecology,2003, 193:181-200.
    [32]李万丽,王可丽,傅慎明,江景.区域西风指数对西北地区水汽输送及收支的知识型.冰川冻土,2008,30:28-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700