用户名: 密码: 验证码:
遥感腾发模型研究及其在干旱区平原绿洲的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
腾发是地表水热传输过程中的重要环节,也是水资源的最终消耗方式,因此成为水文水资源、气候、农业等领域的重要研究内容。传统的腾发量计算方法基于点观测数据建立,下垫面的不均匀性使其难以扩展到比较大的空间尺度。遥感数据具有空间连续性和时间动态性的特点,为区域腾发量的计算提供了新的途径。本论文在遥感腾发模型已有研究的基础上就有关问题进行深入研究,并将其应用于干旱区平原绿洲的耗水分析。
     土壤热通量是腾发量计算中的重要一项,针对现有模型中该能量分量估算的经验性,论文引入机理性较强的土壤热通量计算方法——谐波法。利用植被覆盖度改进了谐波法的计算,同时通过引入晴天地表温度日内变化典型曲线,以及谐波法与双源模型TSEB的耦合,解决了谐波法的参数获取问题。站点计算结果表明模型耦合对潜热通量的误差具有制约作用,能够提高其模拟精度。
     为获取同时具有高时间分辨率和高空间分辨率的遥感数据,论文提出地表温度空间降尺度的三角形法。利用Landsat 7 ETM+数据开展该方法与多项式法、植被覆盖度法、邻域相似法等降尺度方法的对比检验,表明三角形法精度相对较高;进一步的分析表明基于地表温度—植被指数函数关系的地表温度降尺度方法只适用于低分辨率像元内植被密度变异性较大的区域。
     为解决遥感反演腾发量的时间扩展问题,论文对陆面数据同化进行研究,分析了同化系统的敏感性,并开展了遥感反演的表层土壤含水率、地表温度、潜热通量和显热通量的同化试验。研究表明观测数据的系统偏差对同化结果影响较大;当观测数据的误差被控制在一定范围时,数据同化对观测变量的模拟具有改进作用,对非观测变量模拟结果的影响具有不确定性。
     在上述研究基础上,论文利用多时相MODIS数据构建了不同时间尺度的腾发量估算方法,并应用于叶尔羌河平原绿洲,分析了绿洲2007年耗水的年内过程、区域分布以及不同土地利用的耗水比例,为绿洲耗水研究和水资源配置提供了科学依据。
Evapotranspiration is an important component in the mass and energy exchange between land surface and atmosphere. It is also the final type of water consumption. So it has attracted many researchers from hydrology, water resources management, climatology and agriculture fields. The traditional methods to compute evapotranspiration are based on field measurements. These results are difficult to extend to a larger spatial scale because of the heterogeneity in land surface. Remote sensing data are continuous in space and dynamic in time. So it is potential to use them to estimate regional evapotranspiration. This thesis did further researches on some aspects in evapotranspiration retrieval, and applied these results to analyze water consumption within the arid oasis.
     Soil heat flux is an important component during evapotranspiration retrieval. It is estimated empirically in existing remote sensing models. This thesis introduced a more theoretical method—the harmonic method—to estimate soil heat flux. This method was modified with fractional vegetation cover. Then researches were focused on how to obtain input variables of the harmonic method. On one hand, a typical curve to describe the diurnal pattern of surface temperature was introduced to determine the harmonic term. On the other hand, the harmonic method was coupled with the Two-Source Energy Balance (TSEB) model through surface soil water content. Comparisons with field measurements indicated that errors in latent heat flux simulations are limited through model coupling.
     In order to obtain remote sensing data with high spatiotemporal resolution, this thesis put forward downscaling surface temperature data with the triangle method. This method was compared with the polynomial method, the fractional vegetation cover method, and the local similarity method using Landsat 7 ETM+ data. Simulations with the triangle method are more reasonable. Further analysis showed that these downscaling methods based on vegetation index are only applicable to coarse pixels with large heterogeneity in vegetation density.
     Evapotranspiration retrieved by the remote sensing model is usually instantaneous. In order to extend this value to a longer temporal scale, this thesis carried out some researches on land surface data assimilation, including analyzing sensitivity of the data assimilation system and assimilating surface soil water content, surface temperature, latent and sensible heat fluxes retrieved from remote sensing data. It was found that the systemic bias in measurements can deeply affect assimilation results. When the precision of measurements is controlled within a certain range, data assimilation can improve simulations of the measured variable. For the other variables, assimilation results may be worse than the full open loop case.
     Based on researches above, this thesis designed a process to estimate evapotranspiration at different temporal scales using multi-temporal MODIS data. It was applied to the Yerqiang Oasis. The spatiotemporal distribution of water consumption in this oasis in 2007 was analyzed. Water consumption proportions by different land use types were also calculated. These results can provide scientific basis for water consumption research and water resources allocation in the oasis.
引文
[1]曹卫星,罗卫红.作物系统模拟及智能管理.北京:华文出版社, 2000.
    [2]陈丹,莫兴国,林忠辉,等.基于MODIS数据的无定河流域蒸散模拟,地理研究, 2006, 25(4):617-623.
    [3]陈云浩,李晓兵,史培军.中国西北地区蒸发散量计算的遥感研究.地理学报, 2001, 56(3):261-268.
    [4]丛振涛.冬小麦生长与土壤-植物-大气连续体水热运移的耦合研究[博士学位论文].北京:清华大学, 2003.
    [5]崔启武,孙延俊.论水热平衡联系方程.地理学报, 1979, 34(2):169-178.
    [6]党安荣,王晓栋,陈晓峰,等. ERDAS IMAGINE遥感图像处理方法.北京:清华大学出版社, 2004.
    [7]傅抱璞.论陆面蒸发的计算.大气科学, 1981, 5(1):23-31.
    [8]甘甫平,陈伟涛,张绪教,等.热红外遥感反演陆地表面温度研究进展.国土资源遥感, 2006, (1):6-11.
    [9]高彦春,龙笛.遥感蒸散发模型研究进展.遥感学报, 2008, 12(3):515-528.
    [10]韩旭军,李新.非线性滤波方法与陆面数据同化.地球科学进展, 2008, 23(8):813-820.
    [11]何延波, Su Z, Jia L,等. SEBS模型在黄淮海地区地表能量通量估算中的应用.高原气象, 2006, 25(6):1092-1100.
    [12]黄春林,李新.土壤水分同化系统的敏感性试验研究.水科学进展, 2006a, 17(4):457-465.
    [13]黄春林,李新.基于集合卡尔曼滤波的土壤水分同化试验.高原气象, 2006b, 25(4):665-671.
    [14]黄妙芬,邢旭峰,朱启疆,等.大气下行长波辐射模型的改进.地理研究, 2005, 24(5):757-766.
    [15]贾仰文,王浩,倪广恒,等.分布式流域水文模型原理与实践.北京:中国水利水电出版社, 2005.
    [16]姜全生.新疆叶尔羌河流域水资源分布于绿洲生态.新疆农业大学学报, 2002, 25(增刊):62-65.
    [17]金晓媚,唐蕴.山西三大盆地蒸散量的遥感研究.科技导报, 2007, 25(4):31-34.
    [18]雷志栋,杨诗秀,谢森传.土壤水动力学.北京:清华大学出版社, 1988.
    [19]雷志栋,杨诗秀,胡和平,等.四水转化、水资源与水土资源平衡.水利规划设计, 2001(2):28-30.
    [20]雷志栋,杨汉波,倪广恒,等.干旱区绿洲耗水分析.水利水电技术, 2006, 37(1):15-20.
    [21]李芳花,辛景峰,刘迪,等.特征空间法与墒情监测应用分析.黑龙江水专学报, 2005, 32(2):1-3.
    [22]李家春,欧阳兵.陆面过程的模式与观测研究.北京:科学出版社, 1996.
    [23]李召良, Stroll M P,张仁华,等.利用ATSR分解土壤和植被温度的研究.中国科学: E辑, 2000, 30(增刊):27-38.
    [24]刘昌明,窦清晨.土壤-植被-大气连续体模型中的蒸散发计算.水科学进展, 1992, 3(4):255-263.
    [25]刘闯,葛成辉.美国对地观测系统(EOS)中分辨率成像光谱仪(MODIS)遥感数据的特点和应用.遥感信息, 2000, (3):45-48.
    [26]刘辉志,董文杰,符淙斌,等.半干旱地区吉林通榆“干旱化和有序人类活动”长期观测试验.气候与环境研究, 2004, 9(2):378-389.
    [27]刘辉志,涂钢,董文杰,等.半干旱地区地气界面水汽和二氧化碳通量的日变化及季节变化.大气科学, 2006, 30(1):108-118.
    [28]刘绍民,孙中平,李小文,等.蒸散发测定与估算方法的对比研究.自然资源学报, 2003, 18(2):161-167.
    [29]刘志武.阿克苏平原绿洲腾发遥感模型研究[博士学位论文].北京:清华大学, 2005.
    [30]龙笛.白洋淀流域蒸散发遥感估算[硕士学位论文].北京:中国科学院研究生院, 2008.
    [31]毛克彪,覃志豪,李满春,等. AMSR被动微波数据介绍及主要应用研究领域分析.遥感信息, 2005, (3):63-65.
    [32]梅安新,彭望琭,秦其明,等.遥感导论.北京:高等教育出版社, 2001.
    [33]闵祥军,朱启疆,田庆久.敦煌地区大气水气和气溶胶对获取地表温度的影响.遥感学报, 1998, 2(4):255-258.
    [34]钱正英主编.西北地区水资源配置生态环境建设和可持续发展战略研究(综合卷).北京:科学出版社, 2004.
    [35]覃志豪, Zhang M, Karnieli A,等.用陆面卫星TM6数据演算地表温度的单窗算法.地理学报, 2001, 56(4):456-466.
    [36]覃志豪, Li W, Zhang M,等.单窗算法的大气参数估计方法.国土资源遥感, 2003, (2):37-43.
    [37]清华大学水利水电工程系,叶尔羌河流域管理处.叶尔羌河平原绿洲耗水研究报告. 2006.
    [38]任玉敦,崔远来,江炜.参考作物腾发量长期年际变化规律及其机理探讨.灌溉排水学报, 2007, 26(4):8-10.
    [39]申双和,崔兆韵.棉田土壤热通量的计算.气象科学, 1999, 19(3):276-281.
    [40]宋小宁.基于植被蒸散发的区域缺水遥感监测方法研究.北京:中国科学院研究生院, 2004.
    [41]王正兴,刘闯, Alfredo H.植被指数研究进展:从AVHRR-NDVI到MODIS-EVI.生态学报, 2003, 23:989-997.
    [42]吴北婴,李卫,陈洪滨,等.大气辐射传输实用算法.北京:气象出版社, 1998.
    [43]吴炳方,邵建华.遥感估算蒸腾蒸发量的时空尺度推演方法及应用.水利学报, 2006, 37(3):286-292.
    [44]辛晓洲.用定量遥感方法计算地表蒸散[博士学位论文].北京:中国科学院研究生院, 2003.
    [45]辛晓洲,柳钦火,唐勇,等.用CBERS-02卫星和MODIS数据联合反演地表蒸散通量.中国科学: E辑, 2005, 35(增刊1):125-140.
    [46]许迪,刘钰.测定和估算田间作物腾发量方法研究综述.灌溉排水学报, 1997, 16(2):54-59.
    [47]许继军.分布式水文模型在长江流域的应用研究[博士学位论文].北京:清华大学, 2007.
    [48]徐希孺,陈良富,庄家礼.基于多角度热红外遥感的混合像元组分温度演化反演方法.中国科学: D辑, 2001, 31(1):81-88.
    [49]徐希孺.遥感物理.北京:北京大学出版社, 2005.
    [50]杨贵军,柳钦火,刘强,等.基于遗传自组织神经元网络的可见光与热红外遥感数据融合方法.武汉大学学报:信息科学版, 2007, 32(9):786-790.
    [51]杨汉波,流域水热耦合平衡方程推导及其应用[博士学位论文],北京:清华大学, 2008.
    [52]杨永民,冯兆东,周剑.基于SEBS模型的黑河流域蒸散发.兰州大学学报:自然科学版, 2008, 44(5):1-6.
    [53]易永红.植被参数与蒸发的遥感反演方法及区域干旱评估应用研究[博士学位论文].北京:清华大学, 2008.
    [54]张强,王胜.关于黄土高原陆面过程及其观测试验研究. 2008, 23(2): 167-173.
    [55]张仁华,孙晓敏,朱治林,等.以微分热惯量为基础的地表蒸发全遥感信息模型及在甘肃沙坡头地区的验证.中国科学: D辑, 2002, 32(12):1041-1050.
    [56]张仁华,孙晓敏,王伟民,等.一种可操作的区域尺度地表通量定量遥感二层模型的物理基础.中国科学: D辑, 2004, 34:200-216.
    [57]张生雷,谢正辉,师春香,等.集合Kalman滤波在土壤湿度同化中的应用.大气科学, 2008, 32(6):1419-1430.
    [58]张文江.典型草原生态系统区域尺度地表水热通量模拟研究[博士学位论文].北京:中国科学院研究生院, 2007.
    [59]张晓涛,康绍忠,王鹏新,等.估算区域蒸发蒸腾量的遥感模型对比分析.农业工程学报, 2006, 22(7):6-13.
    [60]周剑,王根绪,李新,等.数据同化算法在青藏高原高寒生态系统能量-水分平衡分析中的应用.地球科学进展, 2008, 23(9):965-973.
    [61] Agam N, Kustas W P, Anderson M C, et al. A vegetation index based technique for spatial sharpening of thermal imagery. Rem Sens Env, 2007, 107:545-558.
    [62] Ahmad M–D, Biggs T, Turral H, et al. Application of SEBAL approach and MODIS time-series to map vegetation water use patterns in the data scarce Krishna river basin of India, Water Science and Technology, 2006, 53(10) :83-90.
    [63] Anderson M C, Norman J M, Diak G R, et al. A two-source time-integrated model for estimating surface fluxes using thermal infrared remote sensing. Remote Sensing of Environment, 1997, 60(2):195-216.
    [64] Avissar R. Which type of soil-vegetation-atmosphere transfer scheme is needed for general circulation models: a proposal for a higher-order scheme. Journal of Hydrology, 1998, 212-213(1-4):136-154.
    [65] Baldocchi D, Falge E, Gu L, et al. FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem-Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities. Bulletin of the American Meteorological Society, 2001, 82:2415-2434.
    [66] Bastiaanssen W G M, Menentia M, Feddesb R A, et al. A remote sensing surface energy balance algorithm for land (SEBAL): 1. Formulation. Journal of Hydrology, 1998, 212-213(1-4):198-212.
    [67] Bastiaanssen W G M, Noordman E J M, Pelgrum H, et al. SEBAL model with remotely sensed data to improve water-resources management under actual field conditions. Journal of Irrigation and Drainage Engineering, 2007, 133(4):380-394.
    [68] Batra N, Islam S, Venturini V, et al. Estimation and comparison of evapotranspiration from MODIS and AVHRR sensors for clear sky days over the Southern Great Plains. Remote Sensing of Environment, 2006, 103:1-15.
    [69] Bertoldi G, Albertson J D, Kustas W P, et al. On the opposing roles of air temperature and wind speed variability in flux estimation from remotely sensed land surface states. Water Resources Research, 2007, 43(10):pW10433, doi:10.1029/2007WR005911.
    [70] Bhumralkar C M. Numerical experiments on the computation of ground surface temperature in an atmospheric general circulation model. Journal of Applied Meteorology, 1975, 14:14-26.
    [71] Blyth E M, Harding R J. Application of aggregation model to surface heat flux from the Sahelian tiger bush. Agricultural and Forest Meteorology, 1995, 72:213-235.
    [72] Boegh E, Soegaard H, Hanan N, et al. Remote sensing study of the NDVI-Ts relationship and the transpiration from sparse vegetation in the Sahel based on high-resolution satellite data. Remote Sensing of Environment, 1999, 69:224-240.
    [73] Bouchet R. Evapotranspiration reelle evapotranspiration potentielle, signification climatique. Int Assoc Sci Hydrol Proc, 1963, 62:134-142.
    [74] Bounoua L, Masek J, Tourre Y. Sensitivity of surface climate to land surface parameters: A case study using the simple biosphere model SiB2. Journal of Geophysical Research, 2006, 111:D22S09, doi:10.1029/2006JD007309.
    [75] Brown K W, Rosenburg N J. A Resistance Model to Predict Evapotranspiration and Its Application to a Sugar Beet Field. Agronomy Journal, 1973, 65:341-347.
    [76] Brutsaert W. On a derivable formula for long-wave radiation from clear skies. Water Resources Research, 1975, 11:742-744.
    [77] Brutsaert W, Stricker H. An advection-aridity approach to estimate actual regional evapotranspiration. Water Resources Research, 1979, 15(2):443-450.
    [78] Brutsaert W. Evaporation into the Atmosphere: Theory, Hisstory and Application, Dordrecht, Holland/Boston. USA: D. Reidel Publishing Company, 1982.
    [79] Budyko M I. Climate and Life. New York and London: Academic Press, 1974.
    [80] Carlson T N, Ripley D A. On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote sensing of Environment, 1997, 62:241-252.
    [81] Cellier P, Richard G, Robin P. Partition of sensible heat fluxes into bare soil and the atmosphere. Agricultural and Forest Meteorology, 1996, 82:245-265.
    [82] Chang S O, Horton R. Soil heat and water flow with a partial surface mulch. Water Resources Research, 1987, 23(12):2175-2186.
    [83] Chehbouni A, Lo Seen D, Njoku E G, et al. Examination of the difference between radiative and aerodynamic surface temperatures over sparsely vegetated surfaces. Remote Sensing of Environment, 1996, 58:177-186.
    [84] Chehbouni A, Goodrich D C, Moran M S, et al. A preliminary synthesis of major scientific results during the SALSA program. Agric For Meterol, 2000, 105:311-323.
    [85] Chehbouni A, Nouvellon Y, Lhomme J–P, et al. Estimation of surface sensible heat flux using dual angle observations of radiative surface temperature. Agricultural and Forest Meteorology, 2001, 108:55-65.
    [86] Choudhury B J, Monteith J L. A four layer model for the heat budget of homogeneous land surfaces. Quarterly Journal of the Royal Meteorological Society, 1988, 114, 373-398.
    [87] Choudhury B J, Ahmed N U, Idso S B, et al. Relations between evaporation coefficients and vegetation indices studied by model simulations. Rem Sens Env, 1994, 50:1-17.
    [88] Claussen M. Estimation of areally averaged surface fluxes. Boundary Layer Meteorology,1991, 54:387-410.
    [89] Colaizzi P D, Evett S R, Howell T A, et al. Comparison of five models to scale daily evapotranspiration from one-time-of-day measurements. Transactions of the ASABE, 2006, 49(5):1409-1417.
    [90] Crago R D. Conservation and variability of the evaporative fraction during the daytime. Journal of Hydrology, 1996, 180:173-194.
    [91] Crow W T, Wood E F. The assimilation of remotely sensed soil brightness temperature imagery into a land surface model using Ensemble Kalman Filtering: a case study based on ESTAR measurements during SGP97. Advances in Water Resources, 2003, 26(2): 137-149.
    [92] Crow W T, Koster R D, Reichle R H, et al. Relevance of time-varying and time-invariant retrieval error sources on the utility of spaceborne soil moisture products. Geological Research Letters, 2005, 32:L24405, doi:10.1029/2005GL0204889.
    [93] Crow W T, Kustas W P, Prueger J H. Monitoring root-zone soil moisture through the assimilation of a thermal remote sensing-based soil moisture proxy into a water balance model. Remote Sensing of Environment, 2008, 112(4):1268-1281.
    [94] Dingman S L. Physical Hydrology. Upper Saddle River: Prentice Hall, 1994.
    [95] Dyer A J, Hicks B B. Flux-gradient relationship in the constant flux layer. Quarterly Journal of the Royal Meteorological Society, 1970, 96:715-721.
    [96] Eagleson P S. Ecohydrology: Darwinian expression of vegetation form and function. Cambridge, UK: Cambridge University Press, 2002.
    [97] Evensen G. Sequential data assimilation with a nonlinear quasigeostrophic model using Monte Carlo methods to forecast error statistics. Journal of Geophysical Research, 1994, 99(C5):10143-10162.
    [98] Francois C, Ottle C, Prevot L. Analytical parameterization of canopy directional emissivity and directional radiance in the thermal infrared. Application on the retrieval of soil and foliage temperatures using two-directional measurements. International Journal of Remote Sensing, 1997, 12 (18):2587-2621.
    [99] French A N. Scaling of surface energy fluxes using remotely sensed data [Doctor Thesis]. Maryland: University of Maryland, 2001.
    [100] Gao Z, Chae N, Kim J, et al. Modeling of surface energy partitioning, surface temperature, and soil wetness in the Tibetan prairie using the Simple Biosphere Model 2 (SiB2). J Geophys Res, 2004, 109:D06102, doi:10.1029/2003JD004089.
    [101] Garratt J R. The atmospheric boundary layer. Combridge: Cambridge University Press, 1992.
    [102] Gates D M. Biophysical Ecology. New York: Springer Verlag, 1980.
    [103] Gillies R R, Carlson T N, Cui J, et al. A verification of the‘triangle’method for obtaining surface soil water content and energy fluxes from remote measurements of the Normalized Difference Vegetation Index(NDVI) and surface radiant temperature. International Journal of Remote Sensing, 1997, 18:3145-3166.
    [104] Gowda P H, Chavez J L, Colaizzi P D, et al. Remote sensing based energy balance algorithms for mapping ET: Current status and future challenges. Transactions of the ASABE, 2007, 50(5):1639-1644.
    [105] Grace J. Some effects of wind on plants. // Grace J, Ford E D, Jarvis P G, Eds. Plants and their atmospheric environment. London: Blackwell Scientific, 1981.
    [106] Granger R J. A complementary relationship approach for evaporation from nonsaturated surfaces. Journal of Hydrology, 1989, 111:31-38.
    [107] Groeneveld D P, Baugh W M, Sanderson J S, et al. Annual groundwater evapotranspiration mapped from single satellite scenes, Journal of Hydrology, 2007, 344(1-2):146-156.
    [108] Crow W T, Kustas W P, Prueger J H. Monitoring root-zone soil moisture through the assimilation of a thermal remote sensing-based soil moisture proxy into a water balance model. Remote Sensing of Environment, 2008, 112(4):1268-1281.
    [109] Guha A, Lakshmi V. Use of the Scanning Multichannel Microwave Radiometer (SMMR) to retrieve soil moisture and surface temperature over the central United States. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(7):1482-1494.
    [110] Gupta R K, Prasad S, Viswanadham T S. Estimation of surface temperature over agriculture region. Advances in Space Research, 1997, 19:503-506.
    [111] Gutman G, Ignatov A. The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models. International Journal of Remote Sensing, 1998, 19:1533-1543.
    [112] Hatfield J L, Perrier A, Jackson R D. Estimation of evapo-transpiration at one time-of-day using remotely sensed surface temperatures. Agricultural Water Management, 1983, 7, 341-350.
    [113] Hong S, Lakshmi V, Small E E. Relationship between vegetation biophysical properties and surface temperature using multisensor satellite data. Journal of Climate, 2007, 20:5593-5606.
    [114] Horton R, Wierenga P J. Estimating the soil heat flux from observation of soil temperature near the surface. Soil Science Society of America Journal, 1983, 47:14-20.
    [115] Houtekamer P L, Mitchell H L. Data assimilation using an ensemble Kalman filter technique. Monthly Weather Review, 1998, 126(3):796-811.
    [116] Huang C, Li X, Lu L. Retrieving soil temperature profile by assimilating MODIS LSTproducts with ensemble Kalman filter. Rem Sen Env, 2008, 112(4):1320-1336.
    [117] Huband, N D S, Monteith J L. Radiative surface temperature and energy balance of a wheat canopy. Boundary-Layer Meteorology, 1986, 36:107-116.
    [118] Ibánez M, Pérez P J, Caselles V, et al. A simple method for estimating the latent heat flux over grass from radiative Bowen ratio. Journal of Applied Meteorology, 1998, 37(4):387-392.
    [119] Idso S B, Aase J K, Jackson R D. Net radiation-soil heat flux relations as influenced by soil water content variations. Boundary-Layer Meteorology, 1975, 9:113-122.
    [120] Irish R R. Landsat 7 Science Data User's Handbook. (2009-03-12) [2004-2-5]. http://landsathandbook.gsfc.nasa.gov/handbook/handbook_toc.html.
    [121] Ivanov V Y, Bras R L, Vivoni E R. Vegetation-hydrology dynamics in complex terrain of semiarid areas: 1. A mechanistic approach to modeling dynamic feedbacks. Water Resources Research, 2008, 44:W03429, doi:10.1029/2006WR005588.
    [122] Jackson R D, Reginato R J, Idso S B. Wheat canopy temperature: a practical tool for evaluating water requirements. Water Resources Research, 1977, 13:651-656.
    [123] Jackson R D, Hatfield J L, Reginato R J, et al. Estimation of daily evapotranspiration from one-time-of-day measurements. Agric Water Manage, 1983, 7(3):351-362.
    [124] Jacob F, Olioso A, Gu X F, et al. Mapping surface fluxes using airborne visible, near infrared, thermal infrared remote sensing data and a spatialized surface energy balance model. Agronomie, 2002, 22:669-680.
    [125] Jacobsen A, Hansen B U. Estimation of the soil heat flux/net radiation ratio based on spectral vegetation indexes in high latitude Artic areas. International Journal of Remote Sensing, 1999, 20:445-461.
    [126] Jensen J R. Remote sensing of the environment: An Earth resource perspective. Series in geographic information science. Upper Saddle River, New Jersey: Prentice Hall, 2000.
    [127] Jiang L, Islam S. A methodology for estimation of evapotranspiration over large areas using remote sensing information. Geo Res Letters, 1999, 26(17):2773-2776.
    [128] Jiang L, Islam S. An intercomparison of regional latent heat flux estimation using remote sensing data. International Journal of Remote Sensing, 2003, 24:2221-2236.
    [129] Kondoh A, Higuchi A. Relationship between satellite-derived spectral brightness and evapotranspiration from a grassland. Hydrological Processes, 2001(15):1961-1770.
    [130] Koster R D, Suarez M J. A comparative analysis of two land surface heterogeneity representations. Journal of Climate, 1992, 5:1379-1390.
    [131] Kustas W P, Choudhury B J, Moran M S, et al. Determination of sensible heat flux over sparse canopy using thermal infrared data. Agricultural and Forest Meteorology, 1989, 44:197-216.
    [132] Kustas W P, Daughtry C S T. Estimation of the soil heat flux/net radiation ratio from spectral data. Agricultural and Forest Meteorology, 1990, 49:205-233.
    [133] Kustas W P, Daughtry C S T, Van Oevelen P J. Analytical treatment of the relationships between soil heat flux/net radiation ratio and vegetation indices. Remote Sensing of Environment, 1993, 46:319-330.
    [134] Kustas W P, Zhan X, Schmugge T J. Combining optical and microwave remote sensing for mapping energy fluxes in a semiarid watershed. Rem Sens Env, 1998, 64:116-131.
    [135] Kustas W P, Norman J M. Evaluation of soil and vegetation heat flux predictions using a simple two-source model with radiometric temperatures for partial canopy cover. Agricultural and Forest Meteorology, 1999, 94:13-29.
    [136] Kustas W P, Norman J M, Anderson M C, et al. Estimating subpixel surface temperatures and energy fluxes from the vegetation index-radiometric temperature relationship. Remote Sensing of Environment, 2003, 85:429-440.
    [137] Liang S, Strahler H, Walthall C W. Retrieval of land surface albedo from satellite observation: A simulation study. Journal of Applied Meteorology, 1999, 38:712-725.
    [138] Liu B Y, Jordan R C. The interrelationship and characteristic distribution of direct, diffuse, and total solar radiation. Solar Energy, 1960, 4:1-19.
    [139] Loew A. Impact of surface heterogeneity on surface soil moisture retrievals from passive microwave data at the regional scale: The Upper Danube case. Remote Sensing of Environment, 2008, 112(1):231-248.
    [140] Matsui T, Lakshmi V, Small E E. The effects of satellite-derived vegetation cover variability on simulated land–atmosphere interactions in the NAMS. Journal of Climate, 2005, 18:21-40.
    [141] McNaughton K G, Van den Hurk B J J M. A“Lagrangian”revision of the resistors in the two-layer model for calculating the energy budget of a plant canopy. Boundary-Layer Meteorology, 1995, 74(3): 262-288.
    [142] McNider R T, Song A J, Casey D M. Toward a dynamic thermodynamic assimilation of satellite surface temperature in numerical atmospheric models. Monthly Weather review, 1994, 122(12):2784-2803.
    [143] Monteith J L. Evaporation and environment. Symp Soc Exp Biol, 1965, 19:205-234.
    [144] Moradkhani H, Sorooshian S, Gupta H V, et al. Dual state–parameter estimation of hydrological models using ensemble Kalman filter. Advances in Water Resources, 2005, 28:135-147.
    [145] Moran M S, Jackson R D, Raymond L H, et al. Mapping surface energy balance components by combining landsat thematic mapper and ground-based meteorological data. Remote Sensing of Environment, 1989, 30:77-87.
    [146] Moran M S, Kustas W P, Vidal A, et al. Use of ground-based remotely sensed data for surface energy balance evaluation of a semi-arid rangeland. Water Resources Research,, 1994, 30:1339-1349.
    [147] Morton F I. Operational estimates of areal evapotranspiration and their significance to the science and practice of hydrology. Journal of Hydrology, 1983, 66:1-76.
    [148] Mostovoy G V, Anantharaj V, King R L, et al. Interpretation of the relationship between skin temperature and vegetation fraction Effect of subpixel soil temperature variability. International Journal of Remote Sensing, 2008, 29:2819-2831.
    [149] Muramatsu K, Nakayama S, Kaihotsu I. A case study of estimating thermal energy budget in Mongolian plateau using LANDSAT7/ETM+ data. Advances in Space Research, 2006, 38:2191-2195.
    [150] Murray T, Verhoef A. Moving towards a more mechanistic approach in the determination of soil heat flux from remote measurementsⅠ. A universal approach to calculate thermal inertia. Agricultural and Forest Meteorology, 2007a, 147:80-87.
    [151] Murray T, Verhoef A. Moving towards a more mechanistic approach in the determination of soil heat flux from remote measurements II. Diurnal shape of soil heat flux. Agricultural and Forest Meteorology, 2007b, 147:88-97.
    [152] Nagler P L, Cleverly J, Glenn E, et al. Predicting riparian evapotranspiration from MODIS vegetation indices and meteorological data. Remote Sensing of Environment, 2005, 94(1):17-30.
    [153] Nemani R R, Running S W. Estimation of regional surface resistance to evapotranspiration from NDVI and Thermal-IR AVHRR data. Journal of Applied Meteorology, 1989, 28:276-284.
    [154] Norman J M, Kustas W P, Humes K S. Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature. Agricultural and Forest Meteorology, 1995, 77:263-293.
    [155] Norman, J M, Anderson, M C, Kustas W P. Are single-source remote-sensing surface-flux models too simple? // D'Urso G, Osann Jochum M A, Moreno J, Eds. Proceedings of the international conference on earth observation for vegetation monitoring and water management. American Institute of Physics, 2006, 852:170-177.
    [156] Oleson K W, Emery W J, Maslanik J A. Evaluating land surface parameters in the biosphere–atmosphere transfer scheme using remotely sensed data sets. Journal of Geophysical Research, 2000, 105:7275-7293.
    [157] Payero J O, Neale C M U, Wright J L. Estimating soil heat flux for alfalfa and clipped tall fescue grass. Applied Engineering in Agriculture, 2005, 21(3):401-409.
    [158] Penman H L. Natural evaporation from open water, bare soil and grass. Proc Roy Soc (SerA), 1948, 193:120-146.
    [159] Pipunic R C, Walker J P, Western A. Assimilation of remotely sensed data for improved latent and sensible heat flux prediction: A comparative synthetic study. Remote Sensing of Environment, 2008, 112(4):1295-1305.
    [160] Priestley C H B, Taylor R J. On the Assessment of surface heat flux and evaporation using large-scale parameters. Monthly Weather Review, 1972, 100(2):81-92.
    [161] Qin C, Jia Y, Su Z, et al. Integrating Remote Sensing Information Into A Distributed Hydrological Model for Improving Water Budget Predictions in Large-scale Basins through Data Assimilation. Sensors, 2008, 8:4441-4465.
    [162] Roerink G J, Su Z, Menenti M. A simple remote sensing algorithm to estimate the surface energy balance. Physics and Chemistry of the Earth(B), 2000, 25(2):147-157.
    [163] Sandholt I, Rasmussen K, Andersen J. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sensing of Environment, 2002, 79:213-224.
    [164] Santanello J A, Friedl M A. Diurnal covariation in soil heat flux and net radiatio. Journal of Applied Meteorology, 2003, 42:851-862.
    [165] Schreiber P. Ueber die Beziehungen zwischen dem Niederschlag und der Wasserfvhrung der flvsse in Mitteleuropa. Meteorol Z, 1904, 21:441-452.
    [166] Seguin B, Itier B. Using midday surface temperature to estimate daily evaporation from satellite thermal IR data. International Journal of Remote Sensing, 1983, 4:371-383.
    [167] Sellers P J, Heiser M D, Hall F G. Relations between surface conductance and spectral vegetation indices at intermediate (100m2-15km2) length scales. Journal of Geophysical Research, 1992, 97(D17):19033-19059.
    [168] Sellers P J, Randall D A, Collatz G J, et al. A Revised land surface parameterization (SiB2) for atmospheric GCMs. Part I: Model formulation. Journal of Climate, 1996a, 9(4):676-705.
    [169] Sellers P J, Los S O, Tucker C J, et al. A Revised Land Surface Parameterization (SiB2) for Atmospheric GCMS. Part II: The Generation of Global Fields of Terrestrial Biophysical Parameters from Satellite Data. Journal of Climate, 1996b, 9(4):706-737.
    [170] Shuttleworth W J, Wallace J S. Evaporation from sparse crops-an energy combination theory. Quarterly Journal of the Royal Meteorological Society, 1985, 111:839-855.
    [171] Shuttleworth W J. Evaporation. // Maidment D R, eds. Handbook of Hydrology. New YorK: McGraw-Hill Inc, 1993, 4.2.5.
    [172] Song C, Woodcock C E, Seto K C, et al. Classification and change detection using Landsat TM data: when and how to correct atmospheric effects?. Remote Sensing of Environment, 2001, 75:230-244.
    [173] Sprintsin M, Karnieli A, Berliner P, et al. The effect of spatial resolution on the accuracy of leaf area index estimation for a forest planted in the desert transition zone. Remote Sensing of Environment, 2007, 109:416-428.
    [174] Steven M D, Malthus T J, Baret F, et al. Intercalibration of vegetation indices from different sensor systems. Remote Sensing of Environment, 2003, 88:412-422.
    [175] Su Z, Schmugge T, Kustas W P, et al. An evaluation of two models for estimation of the roughness height for heat transfer between the land surface and the atmosphere. Journal of Applied Meteorology, 2001, 40:1933-1951.
    [176] Su Z. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrology and Earth System Sciences, 2002, 6(1):85-99.
    [177] Sugita M, Brutsaert W. Comparision of land surface temperatures derived from satellite observations with ground truth during FIFE. International Journal of Remote Sensing, 1993, 14:1659-1676.
    [178] Sun R, Gao X, Liu C–M, et al. Evapotranspiration estimation in the Yellow River Basin, China using integrated NDVI data. International Journal of Remote Sensing, 2004, 25(13):2523-2534.
    [179] Sun Z, Wang Q, Ouyang Z, et al. Evaluation of MOD16 algorithm using MODIS and ground observational data in winter wheat field in North China Plain. Hydrological Process, 2007, 21:1196-1206.
    [180] Tasumi M, Allen R G, Trezza R, et al. Satellite-based energy balance to assess within-population variance of crop coefficient curves. Journal of Irrigation and Drainage Engineering. 2005, 131(1):94-109.
    [181] Thom A S. Momentum, mass and heat exchange of vegetation. Quarterly Journal of the Royal Meteorological Society, 1972, 98:124-134.
    [182] Timmermans W J, Kustas W P, Anderson M C, et al. An intercomparison of the Surface Energy Balance Algorithm for Land (SEBAL) and the Two-Source Energy Balance (TSEB). Remote Sensing of Environment, 2007, 108:369-384.
    [183] Townshend J G R, Justice C O. Selecting the spatial resolution of satellite sensors required for global monitoring of land transformations. International Journal of Remote Sensing, 1988, 9:187-236.
    [184] Turc L. Le bilan d'eau des sols. Relations entre les precipitations, l'evaporation et l'ecoulement. Anna ls of Agronomy, 1954, 5:491-596.
    [185] Verhoef H, Debruin H A R, Vandenhurk B J J M. Some practical notes on the parameter kB-1 for sparse vegetation. Journal of Applied Meteorology, 1997, 36:560-572.
    [186] Verma S B. Aerodynamic resistances to transfers of heat, mass and momentum. Estimation of areal evapotranspiration. IAHS Publication, 1989, 177:13-20.
    [187] Wagner W, Naeimi V, Scipal K, et al. Soil moisture from operational meteorological satellites. Hydrogeology Journal, 2007, 15:121-131.
    [188] Walker J P, Houser P R. A methodology for initializing soil moisture in a global climate model: Assimilation of near surface soil moisture observations. Journal of Geophysical Research, 2001, 106:11761-11774.
    [189] Wang K, Li Z, Cribb M. Estimation of evaporative fraction from a combination of day and night land surface temperatures and NDVI: A new method to determine the Priestley Taylor parameter. Remote Sensing of Environment, 2006, 102:293-305.
    [190] Webb E K. Profile relationships: The log-linear range, and extension to strong stability. Quarterly Journal of the Royal Meteorological Society, 1970, 96:67-90.
    [191] Yang D, Tamagawa K, et al. Hydrological improvement of the land surface process scheme using the CEOP observation data. Proceeding of CEOP/IGWCO Joint Meeting, Tokyo, Feb 28-Mar 4, 2005.
    [192] Zeng X, Dickinson R E, Walker A, et al. Derivation and evaluation of global 1-km fractional vegetation cover data for land modeling. Journal of Applied Meteorology, 2000, 39:826–839.
    [193] Zhang L, Lemeur R, Goutorbe J P. A one-layer resistance model for estimating regional evapotranspiration using remote sensing data. Agricultural and Forest Meteorology, 1995, 77:241-261.
    [194] Zhou Y, Mclaughlin D, Entekhabi D. Assessing the Performance of the Ensemble Kalman Filter for Land Surface Data Assimilation. Monthly Weather Review, 2006, 134:2128-2142.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700