用户名: 密码: 验证码:
含煤地层水岩作用与矿井水环境效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用现场观察、资料收集、采样测试、物理模拟、数值模拟等手段,以徐州-大屯矿区为研究对象,从矿物学、岩石学、地球化学、界面化学、环境化学等角度,系统分析了研究区矿井水的污染状况和Hg、As、Se、Cr等重金属元素的来源及溶出机理。按照研究区地下水径流路线,即水文地质单元东部补给区地表水、水文地质单元奥陶系灰岩水与太原组灰岩水、矿井水、矿区地表水的顺序,分别研究了灰岩地层、煤层顶底板、煤层及地表水体的水文地球化学条件、水-岩/水-煤相互作用过程、微量元素的溶出方式及控制机理。通过实验模拟及数据分析,建立了不同地球化学环境中Hg、As、Se、Cr及重金属元素的溶出形式模型,并从环境的pH值、Eh值、温度、离子强度等角度分析了对微量元素溶出行为的控制作用。结果表明:研究区矿井水中Hg、As、Se等元素含量较高,而Pb、Cd、Cu、Zn等金属元素含量较低;矿井水中重金属元素溶出的主要位置为含煤地层,其中Se、As、Cr等元素主要来源于煤层顶底板,而Hg的溶出主要与煤层相关;含煤地层微量元素溶出的机理首先表现在吸附对其溶出行为的控制,当微量元素的吸附程度较低时,矿物的氧化溶解成为控制因素,影响及控制这一过程的地球化学条件包括溶液的pH值、Eh值、离子强度等,以及离子交换作用、络合作用及腐殖酸的携带作用等。
The heavy-metal contamination of coal mine water was investigated, and the pollution source, the leaching behavior and mechanism of heavy metal elements were studied using the Xuzhou-Datun coal mine district. Site investigation, data collection, sampling and testing, physical modeling experiments and numerical modeling were applied from the Mineralogy, Petrology, Geochemistry, Interface Chemistry, Environmental Chemistry points of view. Following the flow path of ground water in the study area, which are surface water- carbonate water- coal mine water- surface water, the geochemistry environment, water-rock/water-coal interaction process of the limestone strata and the coal-bearing strata, leaching behavior and controlling mechanism of trace elements in the limestone strata, roof/floor of the coal, coal seam were discussed. As the result of the physical and computer modeling, the leaching behavior model of Hg/As/Se/Cr and some other metal elements were set up. The impact mechanisms of pH/Eh/temperature/ion strength on trace elements leaching were discussed. It is concluded that: the Hg, As, Se concentration were high in the coal mine water so contaminated the coal mine water and concentration of Pb, Cd, Cu, Zn etc were low; the heavy metal elements were mainly came from the coal-bearing strata, the host rock was the main source of Se, As, Cr, the Hg leaching mainly related to the coal seam; adsorption was the most important mechanism that control trace elements leaching behavior, and the oxidation-dissolution could be the controlling mechanism if the adsorption was weak; the pH, Eh, ion strength of solution and ion-exchange, complexation and humic substance adsorption impact or control the leaching process.
引文
[1]敖卫华. 2005.内蒙古乌达矿区煤矸石中有害物质环境地球化学效应研究.中国地质大学硕士学位论文.
    [2]鲍道亮. 2001.永定矿区酸性矿井水的特征及形成机理探讨.淮南工业学院学报, 21(4): 25-27.
    [3]鲍道亮. 2003.龙永煤田酸性矿井水的形成机理与防治对策.矿业安全与环保, 30(3): 41-42.
    [4]陈萍,唐修义. 2002.中国煤中的砷.中国每天地质, 14(增): 18-24.
    [5]陈清,卢国瑆主编. 1989.微量元素与健康.北京:北京大学出版社.
    [6]陈锁忠,单爱琴. 2002.徐州新河煤矿矿井水的综合利用.江苏地矿信息, (3): 16-17
    [7]从志远,赵峰华,郑晓燕. 2002.煤矿酸性矿井水研究进展.煤矿环境保护,16(5): 8-12.
    [8]崔凤海,陈怀珍. 1998.我国煤中砷的分布赋存特征.煤炭科学技术, 26(12): 44-46.
    [9]代世峰,任德贻,李生盛,宋建芳,武朝晖. 2003.华北地台晚古生代煤中微量元素及As的分布.中国矿业大学学报, 32(2): 111-114.
    [10]代世峰,任德贻,刘建荣,李生盛. 2003.河北峰峰矿区煤中微量有害元素的赋存与分布.中国矿业大学学报, 32(4): 358-362.
    [11]代世峰,唐跃刚,常春祥,张义忠,李薇薇. 2005.开滦煤洗选过程中稀土元素的迁移和分配特征.燃料化学学报, 33(4): 416-420.
    [12]费玉玲,渠敬峰,王璐. 2006.丰县地方性氟中毒流行情况调查.江苏预防医学, 17(1): 18-19.
    [13]冯福凯,王庭斌,张士亚. 1995.中国含煤-含气(油)盆地的地质条件.北京:地质出版社.
    [14]冯启言,王华,李向东,郝莉莉. 2004.华东地区矿井水的水质特征与资源化技术.中国矿业大学学报, 33(2):193-196.
    [15]付少英,彭平安,张文正,刘金钟,李剑峰,昝川莉. 2002.鄂尔多斯盆地上古生界煤的生烃动力学研究.中国科学D辑:地球科学, 32 (10): 812-818.
    [16]李定龙. 1995.徐州张集煤矿区地下水化学特征的初步研究.,中国煤田地质, 7(3): 49-54.
    [17]李定龙,田永义,赵桂生. 1996.徐州庞庄矿开采前后二叠系砂岩裂隙水水化学特征的比较.江苏煤炭, 3: 34-36.
    [18]李河名,费淑英,王素娟.鄂尔多斯盆地中侏罗世含煤岩系煤的无机地球化学研究.北京:地质出版社,1993.
    [19]黄文辉,杨宜春. 2002.中国煤中的汞.中国每天地质, 14(增):37-41.
    [20]李大华,唐跃刚. 2005.黔西晴隆矿区晚二叠世煤地球化学变异的地质成因.地质论评, 51(2): 163-168.
    [21]李海江. 2000.关于高矿化度矿井水对生态环境的影响及防治对策.煤矿环境保护, 14(1): 1.
    [22]李义连,杨玉环,卢学实. 2003.水-岩相互作用模拟的研究进展.水文地质工程地质, 3: 95-99.
    [23]李兆麟,郭洪中,王玉荣. 1995.草酸对沉积底层中Fe、Cu、Pb、Zn元素的淋滤实验研究.地球化学, 24(增): 177-182.
    [24]梁冰,肖利萍,陆海军,毕业武,张传成,狄军贞. 2006.煤矸石在动态淋滤作用下污染物释放规律研究.水利水电科技进展, 26(4): 27-30.
    [25]刘保业,王琳,刘金平等. 2003.徐州矿区矿井水综合利用.江苏国土资源, (11): 26-27.
    [26]刘惠永,徐旭常,姚强,张爱云,尹金双,王秀琴. 2000.重庆电厂炉前煤及飞灰中As元素在有机酸作用下的淋滤行为.重庆环境科学, 22(4): 29-32.
    [27]卢爱卿,任守政,石勇,张会勇. 2001.煤中砷的迁移及富集机理.新疆地质, 19(4): 309-311.
    [28]毛节华,许惠龙. 1999.中国煤炭资源预测与评价.北京:科学出版社.
    [29]彭丁茂,张红军,王树德. 2001.原地浸出采铀的水岩作用研究.华东地质学院学报. 24(1): 41-44.
    [30]秦勇,王文峰,宋党育. 2002.太西煤中有害元素在洗选过程中的迁移行为与机理.燃料化学学报, 30(2): 147-150.
    [31]秦勇,王文峰,宋党育,张晓东. 2005.山西平朔矿区上石炭统太原组11号煤层沉积地球化学特征及成煤微环境.古地理学报, 7(2): 249-260.
    [32]戎秋涛,翁焕新. 1990.环境地球化学.北京:地质出版社.
    [33]单耀,秦勇,王文峰. 2007.徐州-大屯矿区矿井水类型与水质分析.能源技术与管理, (4): 41-43.
    [34]沈照理,王焰新. 2002.水-岩相互作用研究的回顾与展望.地球科学-中国地质大学学报, 27(2): 127-133.
    [35]宋党育. 2003.煤中有害微量元素燃烧、淋滤迁移行为及其环境效应.中国矿业大学博士学位论文.
    [36]宋党育,秦勇,王文峰. 2003电厂燃煤中有害微量元素的燃烧迁移行为研究.中国矿业大学学报, 32(3): 316-320.
    [37]宋党育,秦勇,张军营,王文峰,郑楚光. 2005.晋北-宁北煤中痕量元素的地球化学特征.地球化学, 34(3): 248-256.
    [38]宋党育,秦勇,张军营,王文峰,郑楚光. 2005.煤及其燃烧产物中有害痕量元素的淋滤特性研究.环境科学学报, 25(9): 1195-1201.
    [39]宋党育,王文峰,秦勇. 2003.安太堡11#煤元素地球化学特征及环境效应.煤炭转化, 26(1): 41-44.
    [40]孙红福,赵峰华,李文生,李荣杰,葛祥坤.煤矿酸性矿井水及其沉积物的地球化学性质[J].中国矿业大学学报, 2007,36(2): 221-226
    [41]唐亦川,巨天乙,邓念东. 2000.韩城矿区地下水水化学特征及矿井水的资源化.西安科技学院学报, 20(1): 39-42.
    [42]唐修义. 2004.中国煤中微量元素.北京:商务印书馆.
    [43]唐修义,黄文辉. 2002煤中微量元素及其研究意义.中国煤田地质, 14(增): 1-4.
    [44]唐修义,找继尧. 2002.微量元素在煤中的赋存状态.中国煤田地质, 14(增): 14-17.
    [45]唐跃刚,常春祥,张义忠. 2005.河北开滦矿区煤洗选过程中15种主要有害微量元素的迁移和分配特征.地球化学, 34(4): 366-372.
    [46]王广才,陶澍,沈照理,钟佐桑. 2000.平顶山矿区岩溶水系统水-岩相互作用的随机水文地球化学模拟.水文地质工程地质, 3: 9-12.
    [47]王立刚,彭苏萍. 2003.洗选处理对大气有害微量元素的脱除效果研究.环境科学与技术, 26(1): 5-8.
    [48]王明瑞. 1996.煤矿环境保护.陕西煤炭技术, 4.
    [49]王庭斌. 2003.中国气田的成藏特征分析.石油与天然气地质, 24(2):103-110.
    [50]王文峰,秦勇,宋党育. 2003.煤中有害微量元素的赋存状态.中国煤田地质, 15(4): 10-13.
    [51]王文峰,秦勇,宋党育,傅雪海. 2002.晋北中高硫煤中稀土元素的地球化学特征.地球化学, 31(6): 564-570.
    [52]王文峰,秦勇,宋党育,桑树勋,姜波,朱炎铭,傅雪海. 2005.安太堡矿区11号煤层的元素地球化学及其洗选洁净潜势研究.中国科学D辑中国科学, 35(10): 963-972.
    [53]王文峰. 2005.煤中有害元素溶出分配规律及其地球化学控制.中国矿业大学博士论文.
    [54]王运泉,任德贻,尹金双,李亚男,王秀琴,谢洪波. 1996.煤及其燃烧产物中微量元素的淋滤实验研究.环境科学, 17(1): 16-19.
    [55]吴耀国,沈照理,钟佐燊,李广贺. 2004.矿井水污染的地表水灌溉入渗过程中的水岩作用.煤田地质与勘探, 32(3): 38-39.
    [56]许世华. 2002.矿井水的来源及其防治措施.矿业安全与保护, 29(增): 84-88.
    [57]杨社锋,方维萱,胡瑞忠. 2004.中国煤炭废弃物环境效应研究进展.矿物岩石地球化学通报, 23(3): 264-269.
    [58]杨涛,周文斌. 2005.北山处置库深部水-岩作用模拟研究.江西科学, 23(1): 28-34.
    [59]岳梅,赵峰华,任德贻. 2004.煤矿酸性水水化学特征及其环境地球化学信息研究.煤田地质与勘探, 32(3): 47-49.
    [60]岳梅,赵峰华,任德贻. 2006.模拟实验研究煤矿酸性水中CO、Ni、Zn、Cd、AI、Cr、As、Pb可溶性金属迁移行为.环境科学学报, 26(6): 949-953.
    [61]岳梅,赵峰华,孙红福,任德贻. 2005.煤系黄铁矿氧化溶解地球化学动力学研究.煤炭学报. 30(1): 75-79.
    [62]张爱青,王玉明. 2001.大同矿区水环境质量状况及评价.煤矿环境保护, 15(2): 1-2.
    [63]张增凤,丁慧贤,赵艳红. 2002.我国煤矿环境污染的成因与对策.中国矿业, 11(4): 42-51.
    [64]赵峰华. 1998.燃煤产物中有害元素淋漓试验的研究现状.煤田地质与勘探, 26(4): 14-17.
    [65]赵峰华. 2005.煤矿酸性水地球化学.北京:煤炭工业出版社.
    [66]赵峰华,孙红福,李文生.煤矿酸性矿井水中有害元素的迁移特性[J].煤炭学报, 2007, 32(3): 261-267.
    [67]赵继尧,唐修义,黄文辉. 2002.中国煤中微量元素的丰度.中国煤田地质, 14(增): 5-13.
    [68]赵燕. 2006.煤矸石对地下水污染的机理及过程.能源技术与管理, 4: 54-55.
    [69]赵勇. 2001.安徽月山矿田水-岩作用研究.合肥工业大学硕士学位论文.
    [70]郑仲,蔡昌凤,王丽丽. 2006.煤系黄铁矿氧化产酸的动力学研究.安徽工程科技学院学报, 21(3): 7-11.
    [71]朱德仁,陈明智. 1997.矿井水污染控制及资源化.中国人口资源与环境, 7(4):82-85.
    [72]朱振忠. 2002.煤矿矿井水分类探讨.洁净煤技术. 8(4): 88~49, 55.
    [73] Abate G, Masini J.C. 2003. Influence of pH and ionic strength on removal processes of a sedimentary humic acid in a suspension of vermiculite. Colloids and Surfaces A: Physicochem. Eng. Aspects 226: 25-34.
    [74] Abate G, Masini J.C. 2005. Influence of pH, ionic strength and humic acid on adsorption of Cd(II) and Pb(II) onto vermiculite. Colloids and Surfaces A: Physicochem. Eng. Aspects 262: 33-39.
    [75] Accornero M, Marini L, Ottonello G, Zuccolini M.V. 2005. The fate of major constituents and chromium and other trace elements when acid waters from the derelict Libiola mine (Italy) are mixed with stream waters. Applied Geochemistry, 20: 1368-1390.
    [76] Aiuppa A, Federico C, Allard P, Gurrieri S, Valenza M. 2005. Trace metal modeling of groundwater–gas–rock interactions in a volcanic aquifer: Mount Vesuvius, Southern Italy. Chemical Geology, 216: 289-311.
    [77] Akai J, Izumi K, Fukuhara H, Masuda H, Nakano S, Yoshimura T, Ohfuji H, Anawar H.M, Akai K. 2004. Mineralogical and geo-microbiological investigations on groundwater arsenic enrichment in Bangladesh. Appl. Geochem. 19, 215–230.
    [78] Altmaier M, Metz V, Neck V, Muller R, Fanghanel T.H. 2003. Solid-liquid equilibria ofMg(OH)2(cr) and Mg2(OH)3Cl_4H2O(cr) in the system Mg-Na-H-OH-Cl-H2O at 25°C. Geochimica et Cosmochimica Acta, 67(19): 3595-3601.
    [79] Alvarez-Puebla R.A, Vanenzuela-Calahorro C, Garrido J.J. 2006. Theoretical study on fulvic acid strcture, conformation and aggregation. Science of the Total Environment, 358: 243-254.
    [80] Appelo C.A.J, Postma D. 2005. Geochemistry, groundwater and pollution. Amsterdam: A.A.Balkema.
    [81] Barry D.A, Prommer H, Miller C.T, Engesgaard P, Brun A, Zheng C. 2002. Modeling the fate of oxidisable organic contaminants in groundwater., Advances in Water Resources, 25: 945-983.
    [82] Baruah M.K, Upreti M.C. 1994. Preferential uptake of Fe(III) by humic acid extracted from lignite. Fuel 73(2): 273-275
    [83] Baur I, Johnson A. 2003. The solubility of selenate-AFt (3CaO·Al2O3·3CaSeO4·37.5H2O) and selenate-AFm (3CaO.Al2O3·CaSeO4·xH2O). Cement and Concrete Research, 33: 1741-1748.
    [84] Benedetti M.F, Van Riemsdijk W.H, Koopal L.K, Kinniburgh D.G, Gooddy D.C, Milne C.J. 1996. Metal ion binding by natural organic matter: From the model to the Field. Geochimica et Cosmochimica Acta, 60(14): 2503-2513.
    [85] Bethke C.M, Yeakel S. 2007. The Geochemist’s Workbench essentials guide. Hydrogeology Program, University of Illinois.
    [86] Blanchard M, Wright K, Catlow C.R.A. 2006. Arsenic incorporation in FeS2 Pyrite.
    [87] Brahma P.P, Harmon T.C. 2003. The effect of multicomponent diffusion on NAPL dissolution from spherical ternary mixtures. Journal of Contaminant Hydrology, 67: 43-60.
    [88] ?akmak M., Srivastava G.P., Ellialtioglu S., ?olakoglu K. (2002) Ab inito study of the adsorption and desorption of Se on the Si(001) surface. Surface Science. 507-510, 29-33.
    [89] ?e?íkováJ, Kozler J, MadronováL, Novák J, Jano? P. 2001. Humic acids from coals of the North-Bohemian coal field II. Metal-binding capacity under static conditions. Reactive & Functional Polymers, 47: 111-118.
    [90] Calmano W, Hong J, F?rstner U. 1993. Binding and mobilization of heavy metals in contaminated sediments affected by pH and redox potential. Water Sci. Technol. 28 (8-9): 223–235.
    [91] Canty G.A, Jess W. Everett. 2006. Alkaline injection technology: field demonstration. Fuel. 85, 17-18.
    [92] Catalano J.G., Zhang Z., Fenter P., Bedzyk M J. 2006. Inner-sphere adsorption geometry of Se(IV) at the hematite(100)-water interface. Journal Colloid and interface Science. 297, 665-671.
    [93] Cronina A.A, Barth J.A.C, Elliotd T, Kalin R.M. 2005. Recharge velocity and geochemical evolution for the Permo-Triassic Sherwood Sandstone, Northern Ireland. Journal of Hydrology, 315: 308-324.
    [94] Collavini F, Zonta R, Novelli A.A, Zaggia L. 2000. Heavy metals behavior during resuspension of the contaminated anoxic sludge of the Venice canals. Toxicol. Environ. Chem. 77 (3–4): 171–187.
    [95] Cornelis G., Poppe S., Tom Van Gerven., Eric Van den Broeck., Ceulemans M., Vandecasteele C. (2008) Geochemical modelling of arsenic and selenium leaching in alkaline water treatment sludge from the production of non-ferrous metals. Journal of Hazardous Material. 7889, 1-9.
    [96] Dobson P.F, Salah S, Spycher N, Sonnenthal E.L. 2004. Simulation of water–rock interaction in the Yellowstone geothermal system using TOUGHREACT. Geothermics, 33: 493-502.
    [97] E.I. El-Shafey. (2007) Removal of Se(IV) from aqueous solution using sulphuric acid-treated peanut shell. Journal of Environmental Management. 84 (4), 620-627.
    [98] Emsley J., (1989) The elements, third edition.
    [99] Fan Yun, Zhang Fu-Shen, Feng Yinan. 2008. An effective adsorbent developed from municipal solid waste and coal co-combustion ash for As(V) removal from aqueous solution. Journal of Hazardous Materials.
    [100] Fest E.P.M.J, Temminghoff E.J.M, Comas R.N.J, van Riemsdijk W.H. 2008. Partitioning of organic matter and heavy metals in a sandy soil: Effects of extracting solution, solid to liquid ratio and pH. Geoderma, 146: 66-74.
    [101] Finkelman R.B. 1995. Modes of occurrence of environmentally-sensitive trace elements in coal. In: Swaine DJ and Goodarzi F (eds.), Environmental Aspects of Trace Elements in Coal. Dordrecht: Kluwer Academic Publishers, 24-50.
    [102] Finkelman R.B, Gross P.M.K. 1999. The types of data needed for assessing the environmental and human health impacts of coal. International Journal of Coal Geology, 40: 91-101.
    [103] Fukushi K., Sverjensky D A., (2007) A surface complexation model for sulphate and selenate on iron oxides consistent with spectroscopic and theoretical molecular evidence. Geochimica et Cosmochimica Acta. 71, 1-24.
    [104] F?rstner U, Ahlf W, Calmano W. 1989. Studies on the transfer of heavy metals between sedimentary phases with a multichamber device: combined effects of salinity and redox variation. Mar. Chem. 28:145–158.
    [105] F?rstner U, Wittmann G.T.W. 1983. Metal Pollution in the Aquatic Environment, second ed. Springer, Berlin.
    [106] Gambardella B, Marini L, Baneschi I. 2005. Dissolved potassium in the shallow groundwaters circulating in the volcanic rocks of central-southern Italy. Applied Geochemistry, 20: 875-897.
    [107] Garcia-Mina J.M. 2006. Stability, solubility and maximum metal binding capacity in metal-humic complexes involving humic substances extracted from peat and organic compost. Organic Geochemistry, 37: 1960-1972.
    [108] Gianelli G, Grassi S. 2001. Water-rock interaction in the active geothermal system of Pantelleria, Italy. Chemical Geology, 181:113-130.
    [109] Glassley W.E. 2001. Elemental composition of concentrated brines in subduction zones and the deep continental crust. Precambrian Research, 105: 371-383.
    [110] Goh Kok-Hui., Lim Teik-thye. 2003. Geochemistry of inorganic arsenic and selenium in a tropical soil: effect of reaction time, pH, and competitive anions on arsenic and selenium adsorption. Chemosphere. 55, 849-859.
    [111] Goodarzi F, Swaine D.J. 1993. Chalcophile elements in western Canadian coals. International Journal of Coal Geology, 24: 281-292.
    [112] Gordeev V.V, Rachold V, Vlasova I.E. 2003. Geochemical behavior of major and trace elements in suspended particulate material of the Irtysh river, the main tributary of the Ob river, Siberia. Applied Geochemistry, 19: 593-610.
    [113] Gulsin A, Erol P. 2007. Batch removal of chromium(VI) from aqueous solution by Turkish brown coals. Bioresource Technology, 98(15) 2836-2845.
    [114] Hassan A.E. Mohamed M.M. 2003. On using particle tracking methods to simulate transport in single-continuum and dual continua porous media. Journal of Hydrology, 275:242-260.
    [115] Holmstrom H, Ljungberg J, Ohlander B. 1999. Role of carbonates in mitigation metal release from mining waste: Evidence from humidity cells tests. Environmental Geology, 37: 267-28.
    [116] Hower J.C, Robertson J.D. 2003. Clausthalite in coal. International Journal of Coal Geology, 53:219-225.
    [117] Humphris S.E, BACH W. 2005. On the Sr isotope and REE compositions of anhydrites from the TAG seafloor hydrothermal system. Geochimica et Cosmochimica Acta, 69(6): 1511-1525.
    [118] Huggins F.E, Shah N, Huffman G.P, Kolker A, Crowley S, Palmer C.A, Finkelman R.B. 2000. Mode of occurrence of chromium in four US coals. Fuel Processing Technology, 63(2): 79-92.
    [119] Iino M. 2000. Network structure of coals and association behavior of coal-derived materials. Fuel Processing Technology, 62: 89-101.
    [120] Illés E, Tombácz E. 2005. The effect of humic acid adsorption on pH-dependent surface charging and aggregation of magnetite nanoparticles. Jonrnal of Colloid and Interface Science, 295: 115-123.
    [121] Iwashita A., Sakaguchi Y., Nakajima T., Takanashi H., Ohki A., Kambara S. 2004. Leaching Characteristics of boron and selenium for various coal fly ashes. Fuel. 84, 479-485.
    [122] Jacquier P, Ly J, Beaucaire C. 2004. The ion-exchange properties of the Tournemire argillite I. Study of the H, Na, K, Cs, Ca and Mg behavior. Applied Clay Science, 26: 163-170.
    [123] Jada A, Akbour R.A, Douch J. 2006. Surface charge and adsorption from water onto quartz sand of humic acid. Chemosphere, 64: 1287-1295.
    [124] Jones M.N, Bryan N.D. 1998. Colloidal properties of humic substances. Advances in Colloid and Interface Science, 78: 1-48.
    [125] Juhna T, Klavins M. Eglite L. 2003. Sorption of humic substances on aquifer material at artificial recharge of groundwater. Chemosphere, 51: 861-868.
    [126] Keith D.C. 1986. Granite-water interactions at 100℃, 50MPa: An experimental study. Chemical Geology, 54(1-2): 81-95.
    [127] Kekderman P, Osman A.A, 2007. Effect of redox potential on heavy metal binding froms in polluted canal sediments in Delft (The Netherlands). Water Research, 41: 4251-4261.
    [128] Kerry T.B. MacQuarrie, K. Mayer U. 2005. Reactive transport modeling in fractured rock: A state-of-the-science review. Earth-Science Reviews, 72: 189-227.
    [129] Kipton H, Powell J, Town R.M. 1992. Solutility and fractionation of humic acid effect of pH and ionic medium. Analytica Chimica Acta, 267: 47-54.
    [130] Kizilstein L.Ya., Shokhina O.A. 2001. Geochemistry of selenium in coal: environmental aspect. Geokhimiya [Geochemistry]. 4, 434-440.
    [131] Klu?ákováM, Pekar M. 2005. Solubility and dissociation of lignitic humic acids in water suspension. Colloids and Surfaces A: Physicochem. End. Aspects 252: 157-164.
    [132] Lafferty C, Hobday M. 1990. The use of low rank brown coal as an ion exchange material: 1. Basic parameters and the ion exchange mechanism. Fuel, 69(1): 78-83.
    [133] Lamborg C.H, Fitzgerald W.F, Skoog A, Visscher P.T. 2004. The abundance and source of mercury-binding organic ligands in Long Island Sound. Marine Chemistry, 90: 151-163.
    [134] Larsena D, Gentry R.W, Solomon D.K. 2003. The geochemistry and mixing of leakage in a semi-confined aquifer at a municipal well field, Memphis, Tennessee, USA. Applied Geochemistry, 18: 1043-1063.
    [135] Lee Chuan-Pin, Lan Pei-Lun, Jan Yi-Lin, Wei Yuan-Yaw, Teng Shi-Ping, Hsu Chun-Nan. 2006. Sorption of cesium on granite under aerobic and anaerobic conditions. Radiochimica Acta, 94(9-11): 679-682.
    [136] Lefticariu L., Pratt L.M., Ripley E.M. 2006. Mineralogic and sulphur isotopic effects accompanying oxidation of pyrite in millimolar solutions of hydrogen peroxide at temperaturesfrom 4 to 150℃. Geochimica et Cosmochimica Acta. 70, 4889-4905.
    [137] Lengke M.F, Tempel R, 2005. Geochemical modeling of arsenic sulfide oxidation kinetics in a mining environment. Geochimica et Cosmochimica Acta, 69(2): 341-356.
    [138] LIU Zhi-rong, ZHOU Li-min, WEI Peng, ZENG Kai, WEN Chuan-xi, LAN Hui-hua. 2008. Competitive adsorption of heavy metal ions on peat. Journal of China Univ Mining & Technol, 255–260.
    [139] Lo S.L., Chen T.Y. 1997. Adsorption of Se(IV) and Se(VI) on an iron-coated sand from water. Chemosphere. 35(5), 919-930.
    [140] Lores E.M, Pennock J.R. 1998. The effect of salinity on binding of Cd, Cr, Cu and Zn to dissolved organic matter. Chemosphere, 37(5): 861-874.
    [141] LU Hai-jun, LUAN Mao-tian, ZHANG Jin-li, YU Yong-xian. 2008. Study on the adsorption of Cr(Ⅵ) onto landfill liners containing granular activated carbon or bentonite activated by acid[J]. Journal of China Univ Mining & Technol, 18: 125–130.
    [142] Malcolm R, Soulsby C. 2001. Hydrogeochemistry of groundwater in coastal wetlands: implications for coastal conservation in Scotland. The Science of the Total Environment, 265: 269-280.
    [143] Mantoura, R.F.C, Dickson, A, Riley, J.P. 1978. The complexation of metals with humic materials in natural waters. Estuar. Coast. Mar. Sci. 6, 387–408.
    [144] Maoa X, Prommer H, Barry D.A, Langevin C.D, Panteleitd B, Li L. 2006. Three-dimensional model for multi-component reactive transport with variable density groundwater flow. Environmental Modeling & Software, 21: 615-628.
    [145] Mandal R, Sekaly A.L.R, Murimboh J, Hassan N.M, Chakrabarti C.L, Back M.H, Grégoire D.C, Schroeder. 1999. Effect of the competition of copper and cobalt on the lability of Ni(II)-organic ligand complexes, Part II: in freshwaters (Rideau River surface waters). Analytica Chimica Acta, 395: 323-334.
    [146] Marini L, Zuccolini M.V, Saldi G. 2003. The bimodal pH distribution of volcanic lake waters. Journal of Volcanology and Geothermal Research, 121: 83-98.
    [147] Martyniuk H, Wi ckowska J. 2003. Adsorption of metal ions on humic acids extracted from brown coals. Fuel Processing Technology, 84: 23-26.
    [148] Mohan D, Pittman C.U. 2007. Arsenic removal from water/wastewater using adsorbents—A critical review. Journal of Hazardous Materials, 142: 1-53.
    [149] Novák J, Kozler J, Jano? P, ?e?íkováJ, TokarováV, MadronováL. 2001. Humic acids from coals of the North-Bohemian coal field I. Preparation and characterisation. Reactive & Functional Polymers, 47: 101-109.
    [150] Palmer C.A, Mroczkowski S.J, Finkelman R.B, Crowley S.S, Bullock Jr J.H. 1998. The use of sequential leaching to quantify the modes of occurrence of elements in coal. 15th Ann. Intern. Pittsburgh Coal Conf. Proc., Pittsburgh. Pittsburgh: Sept. 14-18, 1998, 28 pp. (CD-ROM, PDF166).
    [151] Parkhurst D.L, Appelo C.A.J. 1999. User’s guide to PHREEQC(Version 2)-A computer program fro speciation, betch-reaction, one-dimensional transport, and inverse geochemical calculations. Denver, U.S. Department of the Interior, U.S. Geological Survey.
    [152] Parsons M.B, Bird D.K, Einaudi M.T, Alpers C.N. 2001. Geochemical and mineralogical controls on trace element release from the Penn Mine base-metal slag dump, California. Applied Geochemistry, 16: 1567-1593.
    [153] Petersen W, Willer E, Williamowski C. 1997. Remobilization of trace elements from polluted anoxic sediments after resuspension in oxic water. Water Air Soil Pollut. 99: 515–522.
    [154] Piao Haishan, Marx R.B, Schneider S, Irvine D.A, Staton J. 2005. Analysis of VX nerve agent hydrolysis products in wastewater effluents by ion chromatography with amperometric and conductivity detection. Journal of Chromatography A, 1089: 65-71.
    [155] Plant J, Smith D, Smith B, Williams L. 2001. Environmental geochemistry at the global scale. Applied Geochemistry, 16: 1291-1308.
    [156] Price R.E, Pichler T. 2005. Abundance and mineralogical association of arsenic in the Suwannee Limestone (Florida): Implications fro arsenic release during water-rock interaction. Chemical Geology, 228: 44-56.
    [157] Prommer H, Barry D.A, Davis G.B. 2002. Modeling of physical and reactive processes during biodegradation of a hydrocarbon plume under transient groundwater flow conditions. Journal of Contaminant Hydrology, 59: 113-131.
    [158] Rademacher L.K, Clark J.F, Hudson G. B, Erman D.C, Erman N.A. 2001. Chemical evolution of shallow groundwater as recorded by springs, Sagehen basin; Nevada County, California. Chemical Geology, 179: 37-51.
    [159] Randle K, Hartmann E.H. 2005. Application of the continuous-flow stirred-cell (CFSC) technique: II. The adsorption behavior of Na, Cs, Sr, Cu and Pb on humic acids. European Journal of Soil Science, 46(2): 303-315.
    [160] Rajesh N, Mishra B G, Pareek P K. 2008. Solid phase extraction of chromium (VI) from aqueous solutions by adsorption of its diphenylcarbazide complex on a mixed bed adsorbent (acid activated montmorillonite-silica gel) column. Spectrochimica Acta Part A, 69: 612-618.
    [161] Robert B. 1995. Modes of occcurrence of environmentally-sensitive trace elements in coal. In: Environmental Aspects of Trace Elements in Coal (eds. Swaine D J and Goodarzi F). Dordrecht:Kluwer Academic Publishers, 24-50.
    [162] Ronald L, Vanghan Jr, Brian E.R. 2005. Modeling As(V) removal by a iron oxide impregnated activated carbon using the surface complexation approach. Water Research, 39: 1005-1014.
    [163] Rosenthal E. 1998. The chemical evolution of Kurnub Group palewater in the Sinai-Negev province—a mass balance approach. Applied Geochemistry , 13(5): 553-569.
    [164] Salomons W, F?rstner U. 1984. Metals in the Hydrocycle. Springer, New York.
    [165] Savel'ev, V.F., Timofeev, N.I., 1977. On selenium in coal deposits. Sb.nauch. tr. Tashkentsk. Un-ta [Proc. Tashkent University] 530, 101-106.)
    [166] Schreiber M.E, Carey G.R, Feinstein D.T, Bahr J.M. 2004. Mechanisms of electron acceptor utilization: implications for simulating anaerobic biodegradation. Journal of Contaminant Hydrology, 73:99-127.
    [167] Schilling K.E, Li Zhongwei, Zhang You-Kuan. 2006. Groundwater–surface water interaction in the riparian zone of an incised channel, Walnut Creek, Iowa. Journal of Hydrology, 327: 140-150.
    [168] Saeki K, Okazaki M, Matsumoto S. 1993. The chemical phase changes in heavy metals with drying and oxidation of the lake sediments. Water Res. 27 (7): 1243–1251.
    [169] Sedighi A, Klammler H, Brown C, Hatfield K. 2006. A semi-analytical model for predicting water quality from an aquifer storage and recovery system. Journal of Hydrology, 329: 403-412.
    [170] Siemann M.G, Schramm M. 2000. Thermodynamic modelling of the Br partition between aqueous solutions and halite. Geochimica et Cosmochimica Acta, 64(10): 1681-1693.
    [171] Song Dangyu, Qin Yong, Zhang Junying, Wang Wenfeng, Zheng Chuguang. 2007. Concentrationand distribution of trace element in some coals from Northern China. International Journal of Coal Geology, 69: 179-191.
    [172] Stachowica M, Hiemstra T, van Riemsdijk W.H. 2008. Multi-competitive interaction of As(III) and As(V) oxyanions with Ca2+, Mg2+, PO43? , and CO32? ions on goethite. Journal of Colloid and Interface Science, 320: 400–414
    [173] Stumm W, Morgan J.J. (1996). Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, third edition. John Wiley & Sons.
    [174] Sujata Mallick S.S, Dash K M. Parida. 2006. Adsorption of hexavalent chromium on manganese nodule leached residue obtained from NH3-SO2 leaching [J]. Journal of Colloid and Interface Science, 297: 419-425.
    [175] Swain D.J. 1995.The contents and some related aspects of trace elements in coals. Environmental aspects of trace elements in coal Dordrecht, Kluwer Academic Publish: 5-23.
    [176] Swaine D.J. 2000. Why trace elements are important. Fuel Processing Technology, 65/66: 21-33.
    [177] Torres I.S.I, Ishiga H. 2003. Assessment of the geochemical conditions for the release of arsenic, iron and copper into groundwater in the coastal aquifer at Yumigahama, western Japan. Water Pollution VII (Modeling, Measuring and Prediction). WIT Press, Boston, pp. 147–157.
    [178] Tremblay L, GagnéJ.P. 2007. Distribution and biogeochemistry of sedimentary humic substances in the St.Lawrance Estuary and the Saguenay Fjord, Québec. Organic Geochemistry, 38: 682-699.
    [179] Van der Hoek E.E., Petra A. Bonouvrie., Rob N.J.Comans. (1994) Sorption of As and Se on mineral components of fly ash: relevance for leaching processes. 9, 403-412.
    [180] Wang Wenfeng, Qin Yong, Sang Shuxun, Jiang Bo, Guo Yinghai, Zhu Yanming, Fu Xuehai. 2005. Partitioning of minerals and elements during preparation of Taixi coal, China. Fuel, 85: 57-67.
    [181] Wang Wenfeng, Qin Yong, Sang Shuxun, Jiang Bo, Zhu Yanming, Guo Yinghai. 2007. Sulfur variability and element geochemistry of the No. 11 coal seam from the Antaibao mining district, China. Fuel, 86: 777-784.
    [182] Wang Wenfeng, Qin Yong, Song Dangyu, Wang Kexing. 2008. Column leaching of coal and its combustion residues, Shizuishan, China. International Journal of Coal Geology, 75(2): 81-87.
    [183] Wang Wenfeng, Qin Yong, Wei Chongtao, Guo Yinghai, Zhu Yanming. 2006. Partioning of elements and macerals during preparation of Antaibao coal. International Journal of Coal Geology, 68: 223-232.
    [184] Wang Y, Ma T, Luo Z. 2001. Geostatistical and geochemical analysis of surface of surface water leakage into groundwater on a regional scale: a case study in the Liulin karst system, northwestern China. Journal of Hydrology, 246: 223-234.
    [185] White R.N, Smith J.V, Spears D.A, Rivers M.L, Sutton S.R.1989. Analysis of iron sulfides from UK coal by synchrotron radiation X-ray fluorescence. Fuel, 68: 1480-1486.
    [186] Wood S.A. 1996. The role of humic substances in the transport and fixation of metals of economic interest(Au, Pt, Pd, U, V). Ore geology reviews,11: 1-31.
    [187] Worrall F, Pearson D. G. 2001. Water-rock interaction in an acidic mine discharge as indicated by rare earth element patterns,Geochimica et Cosmochimica Acta, 65(18):3027-3040.
    [188] Wu F.C, Kothawala D.N, Evans R.D, Dillon P.J, Cai Y.R. 2007. Relationships between DOC concentration, molecular size and fluorescence properties of DOM in a stream. Applied Geochemistry, 22: 1659-1667.
    [189] Yahya A, Johnson D.B. 2001. Bioleaching of pyrite at low pH and low redox potentials by novel mesophilic Gram-positive bacteria. Hydrometallurgy. 63, 181-188.
    [190] You Y., George F. V., Zhao H. (2001. Selenium adsorption on Mg-Al and Zn-Al layered double hydroxides. Applied Clay Science. 20, 13-25.
    [191] Yudovich Y.E, Ketris M.P. 2005. Arsenic in coal: A review. International Journal of Coal Geology. 61, 141-196.
    [192] Yudovich Y.E, Ketris M.P. 2005. Mercury in coal: a review Part 1. Geochemistry. International Journal of Coal Geology, 62: 107-134.
    [193] Yudovich Y.E, Ketris M.P. 2005. Selenium in coal: A review. International Journal of Coal Geology. 67, 112-126.
    [194] Yue Mei, Zhao Fenghua. 2008. Leaching experiments to study the release of trace elements from mineral separates from Chinese coals. International Journal of Coal Geology, 73: 43-51.
    [195] Zhang P.C., Sparks D.L. 1990. Kinetics and mechanisms of sulfate adsorption/desorption on goethite using pressurejump relaxation. Soil Sci. Soc. Am. J. 54, 1266-1273.
    [196] Zodrow E.I, Goodarzi F. 1993. Environmental implications of elements associated with pyrite concentrates from coal in the Sydney Coalfield (Upper Carboniferous), Nova Scotia, Canada. Energy Sources 15, 639-652.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700